八年级数学整式的乘法及因式分解培优专题:因式分解小结练习(含答案)
- 格式:pdf
- 大小:24.32 KB
- 文档页数:5
八年级数学上册第十四章整式的乘法与因式分解知识点题库单选题1、要使多项式(x+p)(x−q)不含x的一次项,则p与q的关系是()A.相等B.互为相反数C.互为倒数D.乘积为−1答案:A分析:计算乘积得到多项式,因为不含x的一次项,所以一次项的系数等于0,由此得到p-q=0,所以p与q 相等.解:(x+p)(x−q)=x2+(p−q)x−pq∵乘积的多项式不含x的一次项∴p-q=0∴p=q故选择A.小提示:此题考查整式乘法的运用,注意不含的项即是该项的系数等于0.2、下列分解因式正确的是()A.a3−a=a(a2−1)B.x3+4x2y+4xy2=x(x+2y)2C.−x2+4xy−4y2=−(x+2y)2D.16x2+16x+4=(4x+2)2答案:B分析:根据分解因式的方法进行分解,同时分解到不能再分解为止;A、a3−a=a(a2−1)=a(a+1)(a−1),故该选项错误;B、x3+4x2y+4xy2=x(x2+4xy+4y2)=x(x+2y)2,故该选项正确;C、−x2+4xy−4y2=−(x2−4xy+4y2)=−(x−2y)2,故该选项错误;D、16x2+16x+4=4(4x2+4x+1)=4(2x+1)2,故该选项错误;故选:B.小提示:本题考查了因式分解,解决问题的关键是掌握因式分解的几种方法,注意因式分解要分解到不能再分解为止;3、若x 2+ax =(x +12)2+b ,则a ,b 的值为( ) A .a =1,b =14B .a =1,b =﹣14 C .a =2,b =12D .a =0,b =﹣12答案:B分析:根据完全平方公式把等式右边部分展开,再比较各项系数,即可求解.解:∵x 2+ax =(x +12)2+b =x 2+x +14+b , ∴a =1,14+b =0, ∴a =1,b =﹣14,故选B .小提示:本题主要考查完全平方公式,熟练掌握完全平方公式是解题的关键.4、下列因式分解正确的是( )A .a 4b ﹣6a 3b +9a 2b =a 2b (a 2﹣6a +9)B .x 2﹣x +14=(x ﹣12)2C .x 2﹣2x +4=(x ﹣2)2D .x 2﹣4=(x +4)(x ﹣4)答案:B分析:直接利用提取公因式法以及公式法分解因式进而判断即可.解:A 、a 4b ﹣6a 3b +9a 2b =a 2b (a 2﹣6a +9)=a 2b (a ﹣3)2,故此选项错误;B 、x 2﹣x +14=(x ﹣12)2,故此选项正确;C 、x 2﹣2x +4,无法运用完全平方公式分解因式,故此选项错误;D 、x 2﹣4=(x +2)(x ﹣2),故此选项错误;故选:B .小提示:本题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法进行解题.5、如下列试题,嘉淇的得分是()姓名:嘉淇得分:将下列各式分解因式(每题20分,共计100分)①2xy−4xyz=2xy(1−2z);②−3x−6x2=−3x(1−2x);③a2+2a+1=a(a+2);④m2−4n2= (m−2n)2;⑤−2x2+2y2=−2(x+y)(x−y)A.40分B.60分C.80分D.100分答案:A分析:根据提公因式法及公式法分解即可.①2xy−4xyz=2xy(1−2z),故该项正确;②−3x−6x2=−3x(1+2x),故该项错误;③a2+2a+1=(a+1)2,故该项错误;④m2−4n2=(m+2n)(m−2n),故该项错误;⑤−2x2+2y2=−2(x+y)(x−y),故该项正确;正确的有:①与⑤共2道题,得40分,故选:A.小提示:此题考查分解因式,将多项式写成整式乘积的形式,叫做将多项式分解因式,分解因式的方法:提公因式法、公式法,根据每道题的特点选择恰当的分解方法是解题的关键.6、在下列各式中,一定能用平方差公式因式分解的是().A.−a2−9B.a2−9C.a2−4b D.a2+9答案:B分析:直接利用平方差公式:a2−b2=(a+b)(a−b),进而分解因式判断即可.A、−a2−9,无法分解因式,故此选项不合题意;B、a2−9=(a+3)(a−3),能用平方差公式分解,故此选项符合题意;C、a2−4b,无法分解因式,故此选项不合题意;D、a2+9,无法分解因式,故此选项不合题意.故选B.小提示:此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.7、若2a+3b−3=0,则4a×23b的值为()A.23B.24C.25D.26答案:A分析:先利用已知条件2a+3b−3=0,得2a+3b=3,再利用同底数幂的乘法运算法则和幂的乘方将原式变形得出答案.解:∵2a+3b−3=0,∴2a+3b=3,∵4a×23b=(22)a×23b=22×a×23b=22a+3b,∴原式=4a×23b=(22)a×23b=22×a×23b=22a+3b=23,故选:A.小提示:本题主要考查了同底数幂的乘法运算和幂的乘方,正确将原式变形是解题关键.8、下列因式分解正确的是()A.a2+b2=(a+b)2B.a2+2ab+b2=(a−b)2C.a2−a=a(a+1)D.a2−b2=(a+b)(a−b)答案:D分析:根据因式分解的方法,逐项分解即可.A. a2+b2,不能因式分解,故该选项不正确,不符合题意;B. a2+2ab+b2=(a+b)2故该选项不正确,不符合题意;C. a2−a=a(a−1),故该选项不正确,不符合题意;D. a2−b2=(a+b)(a−b),故该选项正确,符合题意.故选D.小提示:本题考查了因式分解,掌握因式分解的方法是解题的关键.9、计算(x+1)(x+2)的结果为( )A.x2+2B.x2+3x+2C.x2+3x+3D.x2+2x+2答案:B解:原式=x2+2x+x+2=x2+3x+2.故选B.10、已知2n=a,3n=b,12n=c,那么a、b、c之间满足的等量关系是()A.c=ab B.c=ab3C.c=a3b D.c=a2b答案:D分析:直接利用积的乘方、幂的乘方运算法则将原式变形得出答案.A选项:ab=2n⋅3n=6n≠12n,即c≠ab,A错误;B选项:ab3=2n⋅(3n)3=2n⋅33n=2n⋅27n=54n≠12n,即c≠ab3,B错误;C选项:a3b=(2n)3⋅3n=8n⋅3n=24n≠12n,即c≠a3b,C错误;D选项:a2b=(2n)2⋅3n=4n⋅3n=12n=c,D正确.故选:D.小提示:本题主要考查了积的乘方运算,幂的乘方运算,正确将原式变形是解题关键.填空题11、计算:(√5-2)2018(√5+2)2019的结果是_____.答案:√5+2分析:逆用积的乘方运算法则以及平方差公式即可求得答案.(√5-2)2018(√5+2)2019=(√5-2)2018×(√5+2)2018×(√5+2)=[(√5-2)×(√5+2)]2018×(√5+2)=(5-4)2018×(√5+2)=√5+2,故答案为√5+2.小提示:本题考查了积的乘方的逆用,平方差公式,熟练掌握相关的运算法则是解题的关键.12、若|a|=2,且(a−2)0=1,则2a的值为_______.答案:1##0.254分析:根据绝对值的意义得出a=±2,根据(a−2)0=1,得出a−2≠0,求出a的值,即可得出答案.解:∵|a|=2,∴a=±2,∵(a−2)0=1,∴a−2≠0,即a≠2,∴a=−2,∴2a=2−2=1.4.所以答案是:14小提示:本题主要考查了绝对值的意义,零指数幂有意义的条件,根据题意求出a=−2,是解题的关键.13、已知x−y=3,xy=10,则(x+y)2=______.答案:49分析:根据(x+y)2=(x-y)2+4xy即可代入求解.解:(x+y)2=(x-y)2+4xy=9+40=49.所以答案是:49.小提示:本题主要考查完全平方公式,熟记公式的几个变形公式对解题大有帮助.14、分解因式:am+an−bm−bn=_________________答案:(m+n)(a−b)分析:利用分组分解法和提取公因式法进行分解因式即可得.解:原式=(am+an)−(bm+bn)=a(m+n)−b(m+n)=(m+n)(a−b),所以答案是:(m+n)(a−b).小提示:本题考查了因式分解,熟练掌握因式分解的方法是解题关键.15、若x−y−3=0,则代数式x2−y2−6y的值等于______.答案:9分析:先计算x-y的值,再将所求代数式利用平方差公式分解前两项后,将x-y的值代入化简计算,再代入计算即可求解.解:∵x−y−3=0,∴x−y=3,∴x2−y2−6y=(x+y)(x−y)−6y=3(x+y)−6y=3x+3y−6y=3(x−y)=9所以答案是:9.小提示:本题主要考查因式分解的应用,通过平方差公式分解因式后整体代入是解题的关键.解答题16、化简:3(a﹣2)(a+2)﹣(a﹣1)2.答案:2a2+2a-13分析:根据平方差公式和完全平方公式去括号,再计算加减法.解:3(a﹣2)(a+2)﹣(a﹣1)2=3(a2-4)-(a2-2a+1)=3a2-12-a2+2a-1=2a2+2a-13.小提示:此题考查了整式的乘法计算公式,整式的混合运算,正确掌握平方差公式和完全平方公式的计算法则是解题的关键.17、爱动脑筋的小明在学习《幂的运算》时发现:若a m=a n(a>0,且a≠1,m、n都是正整数),则m= n,例如:若5m=54,则m=4.小明将这个发现与老师分享,并得到老师确认是正确的,请您和小明一起用这个正确的发现解决下面的问题:(1)如果2×4x×32x=236,求x的值;(2)如果3x+2+3x+1=108,求x的值.答案:(1)x=5(2)x=2分析:(1)利用幂的乘方的法则及同底数幂的乘法的法则对式子进行整理,从而可求解;(2)利用同底数幂的乘法的法则及幂的乘方的法则对式子进行整理,即可求解.(1)因为2×4x×32x=236,所以2×22x×25x=236,即21+7x=236,所以1+7x=36,解得:x=5;(2)因为3x+2+3x+1=108,所以3×3x+1+3x+1=4×27,4×3x+1=4×33,即3x+1=33,所以x+1=3,解得:x=2.小提示:本题主要考查幂的乘方,同底数幂的乘法,解答的关键是对相应的运算法则的掌握与运用.18、阅读:已知a、b、c为△ABC的三边长,且满足a2c2−b2c2=a4−b4,试判断△ABC的形状.答案:(1)③,忽略了a2−b2=0的情况;(2)见解析分析:(1)根据题意可直接进行求解;(2)由因式分解及勾股定理逆定理可直接进行求解.解:(1)由题意可得:从第③步开始错误,错的原因为:忽略了a2−b2=0的情况;故答案为③;忽略了a2−b2=0的情况;(2)正确的写法为:c2(a2−b2)=(a2+b2)(a2−b2)c2(a2−b2)−(a2+b2)(a2−b2)=0(a2−b2)[c2−(a2+b2)]=0当a2−b2=0时,a=b;当a2−b2≠0时,a2+b2=c2;所以△ABC是直角三角形或等腰三角形或等腰直角三角形.小提示:本题主要考查勾股定理逆定理及因式分解,熟练掌握勾股定理逆定理及因式分解是解题的关键.解析:解:因为a2c2−b2c2=a4−b4,①所以c2(a2−b2)=(a2−b2)(a2+b2)②所以c2=a2+b2③所以△ABC是直角三角形④请据上述解题回答下列问题:(1)上述解题过程,从第______步(该步的序号)开始出现错误,错的原因为______;(2)请你将正确的解答过程写下来.。
八年级数学上册第十四章整式的乘法与因式分解知识点归纳总结(精华版)单选题1、若(2020×2020×…×2020⏟ 共2020个)×(2020+2020+⋯+2020⏟ 共2020个)=2020n ,则n =( )A .2022B .2021C .2020D .2019 答案:A分析:2020个2020相乘,可以写成20202020,2020个2020相加,可以写成2020×2020=20202,计算即可得到答案.∵2020×2020×⋯×2020=20202020⏟ 2020,2020+2020+⋯+2020⏟ 2020=2020×2020=20202,∴原式左边=20202020×20202=20202022, 即2020n =20202022, ∴n =2022. 故选:A .小提示:本题考查了乘方的意义,以及同底数幂的乘法运算.注意:求n 个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂.2、如图,阶梯型平面图形的面积可以表示为( )A .ad +bcB .ad +c (b −d )C .ab −cdD .c (b −d )+d (a −c ) 答案:B分析:把阶梯型的图形看成是两个长方形的面积之和或面积之差即可求解.解:S 阶梯型=bc +(a ﹣c )d 或S 阶梯型=ab ﹣(a ﹣c )(b ﹣d ) 或S 阶梯型=ad +c (b ﹣d ), 故选:B .小提示:本题主要考查列代数式,整式的混合运算,解答的关键是把所求的面积看作是两个长方形的面积之和或面积之差.3、将多项式x ﹣x3因式分解正确的是( )A .x (x2﹣1)B .x (1﹣x2)C .x (x+1)(x ﹣1)D .x (1+x )(1﹣x ) 答案:D分析:直接提取公因式x ,然后再利用平方差公式分解因式即可得出答案. x ﹣x 3=x (1﹣x 2) =x (1﹣x )(1+x ). 故选D .小提示:本题主要考查了提取公因式法以及公式法分解因式,正确应用公式法是解题关键. 4、已知、为实数,且√a −12+ b 2+4=4b ,则a 2015•b 2016的值是( ) A .12B .−12C .2D .﹣2答案:C分析:已知等式整理后,利用非负数的性质求出与的值,利用同底数幂的乘法及积的乘方运算法则变形后,代入计算即可求出值.已知等式整理得:√a −12+ (b −2)2=0,∴a =12,b =2, 即ab =1,则原式=(ab)2015•b故选:C.小提示:本题考查了实数的非负性,同底数幂的乘法,积的乘方,活用实数的非负性,确定字母的值,逆用同底数幂的乘法,积的乘方,进行巧妙的算式变形,是解题的关键.5、如图,在长方形ABCD中,横向阴影部分是长方形,纵向阴影部分是平行四边形,依照图中标注的数据,计算空白部分的面积,其面积是()A.bc−ab+ac+c2B.ab−bc−ac+c2C.a2+ab+bc−ac D.b2+bc+a2−ab答案:B分析:矩形面积减去阴影部分面积,求出空白部分面积即可.空白部分的面积为(a−c)(b−c)=ab−ac−bc+c2.故选B.小提示:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.6、小阳同学在学习了“设计自己的运算程序”综合与实践课后,设计了如图所示的运算程序,若开始输入m的值为2,则最后输出的结果y是()A.2B.3C.4D.8答案:D分析:把m=2代入运算程序中计算,如小于或等于7则把其结果再代入运算程序中计算,如大于7则直接输出结果.解:当m=2时,=22-1=3<7,当m=3时,m2-1=32-1=8>7,则y=8.故选:D.小提示:此题考查了代数式求值,以及有理数的混合运算,弄清题中的运算程序是解本题的关键.7、2×(3+1)(32+1)(34+1)(38+1)(316+1)的计算结果的个位数字是()A.8B.6C.2D.0答案:D分析:先将2变形为(3−1),再根据平方差公式求出结果,根据规律得出答案即可.解:(3−1)(3+1)(32+1)(34+1)…(316+1)=(32−1)(32+1)(34+1)…(316+1)=(34−1)(34+1)…(316+1)=332−1∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…∴3n的个位是以指数1到4为一个周期,幂的个位数字重复出现,∵32÷4=8,故332与34的个位数字相同即为1,∴332−1的个位数字为0,∴2×(3+1)(32+1)(34+1)(38+1)(316+1)的个位数字是0.故选:D.小提示:本题考查了平方差公式的应用,能根据规律得出答案是解此题的关键.8、若x2+ax=(x+1)2+b,则a,b的值为()2A .a =1,b =14B .a =1,b =﹣14C .a =2,b =12D .a =0,b =﹣12 答案:B分析:根据完全平方公式把等式右边部分展开,再比较各项系数,即可求解. 解:∵x 2+ax =(x +12)2+b =x 2+x +14+b ,∴a =1,14+b =0,∴a =1,b =﹣14,故选B .小提示:本题主要考查完全平方公式,熟练掌握完全平方公式是解题的关键.9、如图,有三种规格的卡片共9张,其中边长为a 的正方形卡片4张,边长为b 的正方形卡片1张,长,宽分别为a ,b 的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A .2a+bB .4a+bC .a+2bD .a+3b 答案:A分析:4张边长为a 的正方形卡片的面积为4a 2,4张边长分别为a 、b 的矩形卡片的面积为4ab ,1张边长为b 的正方形卡片面积为b 2,9张卡片拼成一个正方形的总面积=4a 2+4ab+b 2=(2a+b)2,所以该正方形的边长为:2a+b .设拼成后大正方形的边长为x , ∴4a 2+4ab+b 2=x 2,∴(2a+b)2=x 2,∴该正方形的边长为:2a+b. 故选A.小提示:本题主要考查了完全平方公式的几何意义,利用完全平方公式分解因式后即可得出大正方形的边长. 10、下列计算正确的是( )A .m +m =m 2B .2(m −n )=2m −nC .(m +2n)2=m 2+4n 2D .(m +3)(m −3)=m 2−9 答案:D分析:根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定. 解:A.m +m =2m ,故该选项错误,不符合题意; B.2(m −n )=2m −2n ,故该选项错误,不符合题意; C.(m +2n)2=m 2+4mn +4n 2,故该选项错误,不符合题意; D.(m +3)(m −3)=m 2−9,故该选项正确,符合题意; 故选:D .小提示:本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键. 填空题11、阅读下面材料:一个含有多个字母的式子中,如果任意交换两个字母的位置,式子的值都不变,这样的式子就叫做对称式.例如:a+b+c ,abc ,a 2+b 2,…含有两个字母a ,b 的对称式的基本对称式是a+b 和ab ,像a 2+b 2,(a+2)(b+2)等对称式都可以用a+b ,ab 表示,例如:a 2+b 2=(a+b )2﹣2ab .请根据以上材料解决下列问题: (1)式子①a 2b 2②a 2﹣b 2③1a+1b中,属于对称式的是_______(填序号);(2)已知(x+a )(x+b )=x 2+mx+n . ①若m =−2,n =12,求对称式ba +ab 的值; ②若n =﹣4,直接写出对称式a 4+1a 2+b 4+1b 2的最小值.答案:(1)①③;(2)①b a +ab =6;②a 4+1a 2+b 4+1b 2的最小值为172.分析:(1)根据对称式的定义进行判断;(2)①先得到a+b =﹣2,ab =12,再变形得到b a +ab =a 2+b 2ab =(a+b)2−2abab,然后利用整体代入的方法计算;②根据分式的性质变形得到a 4+1a 2+b 4+1b 2=a 2+1a 2+b 2+1b 2,再利用完全平方公式变形得到(a+b )2﹣2ab+(a+b)2−2aba 2b 2,所以原式=1716m 2+172,然后根据非负数的性质可确定a 4+1a 2+b 4+1b 2的最小值.解:(1)式子①a 2b 2②a 2﹣b 2③1a+1b中,属于对称式的是 ①③.故答案为①③;(2)∵x 2+(a+b )x+ab =x 2+mx+n ∴a+b =m ,ab =n . ①a+b =﹣2,ab =12,b a+ab =a 2+b 2ab=(a+b)2−2abab=(−2)2−2×1212=6;②a 4+1a 2+b 4+1b 2=a 2+1a 2+b 2+1b 2=(a+b )2﹣2ab+(a+b)2−2aba 2b 2=m 2+8+m 2+816=1716m 2+172, ∵1716m 2≥0, ∴a 4+1a 2+b 4+1b 2的最小值为172.小提示:本题主要考查完全平方公式,关键是根据题目所给的定义及完全平方公式进行求解即可.12、平面直角坐标系中,已知点A 的坐标为(m ,3).若将点A 先向下平移2个单位,再向左平移1个单位后得到点B(1,n),则m +n =_______. 答案:3分析:先写出点A 向下平移2个单位后的坐标,再写出向左平移1个单位后的坐标.即可求出m 、n ,最后代入m +n 即可.点A 向下平移2个单位后的坐标为(m ,3−2),即(m ,1).再向左平移1个单位后的坐标为(m −1,1).∴{m−1=11=n ,即{m=2n=1.∴m+n=2+1=3.所以答案是:3.小提示:本题考查坐标的平移变换以及代数式求值.根据坐标的平移变换求出m、n的值是解答本题的关键.13、若a+b=1,则a2−b2+2b−2=________.答案:-1分析:将原式变形为(a+b)(a−b)+2b−2,再将a+b=1代入求值即可.解:a2−b2+2b−2=(a+b)(a−b)+2b−2将a+b=1代入,原式=a−b+2b−2=a+b−2=1-2=-1所以答案是:-1.小提示:本题考查了代数式求值,其中解题的关键是利用平方差公式将原式变形为(a+b)(a−b)+2b−2.14、已知a+b=4,a−b=2,则a2−b2的值为__________.答案:8分析:根据平方差公式直接计算即可求解.解:∵a+b=4,a−b=2,∴a2−b2=(a+b)(a−b)=4×2=8所以答案是:8小提示:本题考查了因式分解的应用,掌握平方差公式是解题的关键.15、若a2−b2=−116,a+b=−14,则a−b的值为______.答案:14分析:由平方差公式进行因式分解,再代入计算,即可得到答案.解:∵a2−b2=(a+b)(a−b)=−116,∵a+b=−14,∴a−b=−116÷(−14)=14.故答案是:14.小提示:本题考查了公式法因式分解,解题的关键是熟练掌握因式分解的方法.解答题16、分解因式:2x3−2x2y+8y−8x答案:2(x−y)(x−2)(x+2)分析:先分组,然后利用提公因式法和平方差公式因式分解即可.解:2x3−2x2y+8y−8x=2x2(x−y)+8(y−x)=2x2(x−y)−8(x−y)=2(x−y)(x2−4)=2(x−y)(x−2)(x+2).小提示:此题考查的是因式分解,掌握利用分组分解法、提公因式法和公式法因式分解是解题关键.17、小邢同学在计算(x+a)(x+b)中的“b”看成了“6”,算的结果为x2+3x−18,而且小颖同学在计算(x+a)(x+b)时将“+a”看成了“−a”,算的结果为x2−x−12.(1)求出a、b的值;(2)计算出(x+a)(x+b)的正确结果,答案:(1)a=-3,b=-4(2)x2-7x+12分析:(1)根据题意得出(x+a)(x+6)=x2+(6+a)x+6a=x2+3x-18,(x﹣a)(x+b)=x2+(﹣a+b)x﹣ab=x2-x﹣12,得出6+a=3,﹣a+b=-1,求出a、b即可;(2)把a、b的值代入,再根据多项式乘以多项式法则求出即可.(1)根据题意得:(x+a)(x+6)=x2+(6+a)x+6a=x2+3x-18,(x﹣a)(x+b)=x2+(﹣a+b)x﹣ab=x2−x−12,所以6+a=3,﹣a+b=-1,解得:a=-3,b=-4;(2)当a=-3,b=-4时,(x+a)(x+b)=(x-3)(x-4)=x2-7x+12.小提示:本题考查了多项式乘以多项式法则和解方程,能正确运用多项式乘以多项式法则进行计算是解此题的关键.18、我们知道形如x2+(a+b)x+ab的二次三项式可以分解因式为(x+a)(x+b),所以x2+6x−7=x2+ [7+(−1)]x+7×(−1)=(x+7)[x+(−1)]=(x+7)(x−1).但小白在学习中发现,对于x2+6x−7还可以使用以下方法分解因式.x2+6x−7=x2+6x+9−7−9=(x+3)2−16=(x+3)2−42=(x+3+4)(x+3−4)=(x+7)(x−1).这种在二次三项式x2+6x−7中先加上9,使它与x2+6x的和成为一个完全平方式,再减去9,整个式子的值不变,从而可以进一步使用平方差公式继续分解因式了.(1)请使用小白发现的方法把x2−8x+7分解因式;(2)填空:x2−10xy+9y2=x2−10xy+________+9y2−________=(x−5y)2−16y2=(x−5y)2−(________)2=[(x−5y)+________][(x−5y)−________]=(x−y)(x−________);(3)请用两种不同方法分解因式x2+12mx−13m2.答案:(1)(x−1)(x−7);(2)25y2;25y2;4y;4y;4y;9y;(3)(x+13m)(x−m)分析:(1)在x2−8x+7上加16减去16,仿照小白的解法解答;(2)在原多项式上加25y2再减去25y2,仿照小白的解法解答;(3)将−13m2分解为13m与(-m)的乘积,仿照例题解答;在原多项式上加36m2再减去36m2仿照小白的解法解答.(1)解:x2−8x+7=x2−8x+16+7−16=(x−4)2−9=(x−4)2−32=(x−4+3)(x−4−3)=(x−1)(x−7);(2)解:x2−10xy+9y2=x2−10xy+25y2+9y2−25y2=(x−5y)2−16y2=(x−5y)2−(4y)2=[(x−5y)+4y][(x−5y)−4y]=(x-y)(x-9y)所以答案是:25y2;25y2;4y;4y;4y;9y;(3)解法1:原式=x2+[13m+(−m)]x+13m⋅(−m)=(x+13m)(x−m).解法2:原式=x2+12mx+36m2−13m2−36m2=(x+6m)2−49m2=[(x+6m)+7m][(x+6m)−7m]=(x+13m)(x−m).小提示:此题考查多项式的因式分解,读懂例题及小白的解法,掌握完全平方公式、平方差公式的结构特征是解题的关键.。
可编辑修改精选全文完整版Array第十四章、整式乘除与因式分解14.1 整式的乘法(1)(-3x)2(x+1)(x+3)+4x(x-1)(x2+x+1),其中x=-1;解:原式=9x2(x2+3x+x+3)+4x(x3+x2+x-x2-x-1)=9x2(x2+4x+3)+4x(x3-1)=9x4+36x3+27x2+4x4-4x=13x4+36x3+27x2-4x当x=-1时原式=13×(-1)4+36×(-1)3+27×(-1)2-4×(-1)=13-36+27+4=8(2)y n(y n+3y-2)-3(3y n+1-4y n),其中y=-2,n=2.解:原式=y2n+3y n+1-2y n-9y n+1+12y n=y2n-6y n+1+10y n当y=-2,n=2时原式=(-2)2×2-6×(-2)2+1+10×(-2)2=16+48+40=10415、已知不论x、y为何值时(x+my)(x+ny)=x2+2xy-8y2恒成立.求(m+n)mn的值.解:x2+nxy+mxy+mny2=x2+2xy-8y2x2+(m+n)xy+mny2=x2+2xy-8y2∴m+n=2,mn=-8∴(m+n)mn=2×(-8)=-166、已知31=+a a,则221a a +=( B ) A .5 B .7 C .9 D .117、如果x 2+kx +81是一个完全平方式,则k 的值是( D )A .9B .-9C .±9D .±188、下列算式中不正确的有( C )①(3x 3-5)(3x 3+5)=9x 9-25②(a +b +c +d)(a +b -c -d)=(a +b)2-(c +d)2③22)31(5032493150-=⨯ ④2(2a -b)2·(4a +2b)2=(4a -2b)2(4a -2b)2=(16a 2-4b 2)2A .0个B .1个C .2个D .3个9、代数式2)(2y x +与代数式2)(2y x -的差是( A ) A .xy B .2xy C .2xy D .0 10、已知m 2+n 2-6m +10n +34=0,则m +n 的值是( A )A .-2B .2C .8D .-8二、解答题11、计算下列各题:(1)(2a +3b)(4a +5b)(2a -3b)(5b -4a)(2)(x +y)(x -y)+(y -z)(y +z)+(z -x)(z +x);(3)(3m 2+5)(-3m 2+5)-m 2(7m +8)(7m -8)-(8m)2(1) 解:原式=(2a +3b)(2a -3b)(4a +5b)(5b -4a)=(4a 2-9b 2)(25b 2-16a 2)=100a 2b 2-64a 4-225b 4+144a 2b 2=-64a 4+244a 2b 2-225b 4(2) 解:原式=x 2-y 2+y 2-z 2+z 2-x 2=0(3) 解:原式=25-9m 4-m 2(49m 2-64)-64m 2=-58m 4+2512、化简求值:(1)4x(x 2-2x -1)+x(2x +5)(5-2x),其中x =-1(2)(8x 2+4x +1)(8x 2+4x -1),其中x =21 (3)(3x +2y)(3x -2y)-(3x +2y)2+(3x -2y)2,其中x =31,y =-21 (1) 解:原式=4x 3-8x 2-4x +x(25-4x 2)=4x 3-8x 2-4x +25x -4x 3=-8x 2+21x当x =-1时原式=-8×(-1)2+21×(-1)=-8-21=-29(2) 解:原式=(8x 2+4x)2-1当x =时,原式=[8×()2+4×]2-1=(2+2)2-1=15(3) 解:原式=9x 2-4y 2-9x 2-12xy -4y 2+9x 2-12xy +4y 2=9x 2-24xy -4y 2当x =,y =-时原式=9×()2-24××(-)-4×(-)2=1+4-1=413、解下列方程:(1)(3x)2-(2x +1)2=5(x +2)(x -2)解:9x 2-4x 2-4x -1=5x 2-205x 2-4x -1=5x 2-204x =19∴x =419(2)6x +7(2x +3)(2x -3)-28(x -21)(x +21)=4解:6x +28x 2-63-28x 2+7=46x -56=46x =60∴x =1014、解不等式:(1-3x)2+(2x -1)2>13(x -1)(x +1)解:1-6x +9x 2+4x 2-4x +1>13x 2-1313x 2-10x +2>13x 2-13-10x>-15∴x<2315、若n 满足(n -2004)2+(2005-n)2=1,求(2005-n)(n -2004)的值.解:(n -2004)2+2·(n -2004)·(2005-n)+(2005-n)2=1+2(n -2004)(2005-n)(n -2004+2005-n)2=1+2(n -2004)(2005-n)1=1+2(2005-n)(n -2004)∴(2005-n)(n -2004)=014.3 因式分解一、选择题1、下列各式,从左到右的变形是因式分解的为( B )A .x 2-9+5x =(x +3)(x -3)+5xB .x 2-4x +4=(x -2)2C .(x -2)(x -3)=x 2-5x +6D .(x -5)(x +2)=(x +2)(x -5)2、把多项式x 2-mx -35分解因式为(x -5)(x +7),则m 的值是( B)A .2B .-2C .12D .-123、分解因式:x 2-2xy +y 2+x -y 的结果是( A )A .(x -y )(x -y +1)B .(x -y )(x -y -1)C .(x +y )(x -y +1)D .(x +y )(x -y -1)4、若9x 2-12xy +m 是一个完全平方公式,那么m 的值是( B )。
整式的乘除与因式分解一、选择题:1.下列计算正确的是( )A .105532a a a =+B .632a a a =⋅C .532)(a a =D . 8210a a a =÷2.下列计算结果正确的是( )A .4332222y x xy y x -=⋅-B .2253xy y x -=y x 22-C .xy y x y x 4728324=÷D .49)23)(23(2-=---a a a3.两个三次多项式相加,结果一定是 ( )A .三次多项式B .六次多项式C .零次多项式D .不超过三次的多项式4.把多项式()()()111---+x x x 提取公因式()1-x 后,余下的部分是( )A .()1+xB .()1+-xC .xD .()2+-x5.计算24(1)(1)(1)(1)x x x x -++--的结果是 ( )A 、2B 、0C 、-2D 、-56.已知代数式12x a -1y 3与-3x -b y 2a+b 是同类项,那么a 、b 的值分别是( )A .2,1a b =-⎧⎨=-⎩B .2,1a b =⎧⎨=⎩C .2,1a b =⎧⎨=-⎩D .2,1a b =-⎧⎨=⎩7.已知2239494b b a b a n m =÷,则( )A .3,4==n mB .1,4==n mC .3,1==n mD .3,2==n m8.如图,是一个正方形与一个直角三角形所拼成的图形,则该图形的面积为()A .m 2+12mnB .22mn n -C .22m mn+ D .222m n +9.若2()9a b +=,2()4a b -=,则ab 的值是( )A 、54B 、-54C 、1D 、-1 二、填空题: 1.分解因式2233ax ay -= .2.分解因式ab b a 8)2(2+- =_______.3.分解因式221218x x -+= .4.若22210a b b -+-+=,则a = ,b = .5.代数式4x 2+3mx +9是完全平方式,则m =___________.6. 已知a+b=5,ab=3,求下列各式的值:(1)a 2+b 2= ;(2)-3a 2+ab-3b 2= .7. 已知522=+b a ,()()223232a b a b --+=-48,则a b +=________. 8. 已知正方形的面积是2269y xy x ++ (x >0,y >0),利用分解因式,写出表示该正方形的边长的代数式 .9.观察下列等式: 第一行 3=4-1第二行 5=9-4第三行 7=16-9第四行 9=25-16… …按照上述规律,第n 行的等式为____________ .三、解答题:1.计算题(1)(-3xy 2)3·(61x 3y )2 (2)4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2)(3)222)(4)(2)x y x y x y --+( (4)221(2)(2))x x x x x-+-+-(2.因式分解(1)3123x x - (2)2222)1(2ax x a -+(3)xy y x 2122--+ (4))()3()3)((22a b b a b a b a -+++-3.解方程:41)8)(12()52)(3(=-+--+x x x x4.已知x 2+x -1=0,求x 3+2x 2+3的值5.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.四.综合拓展:1.已知c b a 、、是△ABC 的三边的长,且满足0)(22222=+-++c a b c b a ,试判断此三角形的形状.2.已知2006x+2006y=1,x+3y=2006,试求2x 2+8xy+6y 2的值五.巩固练习:1.若n221623=÷,则n 等于( )A .10B .5C .3D .62.计算:xy xy y x y x 2)232(2223÷+--的结果是( ) A .xy y x 232- B .22322+-xy y x C .1232+--xy y x D .12322+--xy y x3.下列计算正确的是( )A .x y x y x 221222223=⋅÷ B .57222257919n m n m m n n m =÷⋅ C .mn mn n m n m =⋅÷24322)(2 D .22242231043)3012(y x y x y x y x +=÷+4.已知一个多项式与单项式457y x -的积为2234775)2(72821y x y y x y x +-,则这个多项式为___5.若(a+b )2=13(a-b )2=7求a 2+b 2和ab 的值。
八年级数学整式的乘法与因式分解(培优篇)(Word 版 含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.将多项式24x +加上一个整式,使它成为完全平方式,则下列不满足条件的整式是( ) A .4-B .±4xC .4116xD .2116x 【答案】D【解析】【分析】分x 2是平方项与乘积二倍项,以及单项式的平方三种情况,根据完全平方公式讨论求解.【详解】解:①当x 2是平方项时,4士4x+x ²=(2士x )2,则可添加的项是4x 或一4x ; ②当x 2是乘积二倍项时,4+ x 2+4116x =(2+214x )2,则可添加的项是4116x ; ③若为单项式,则可加上-4.故选:D.【点睛】本题考查了完全平方式,比较复杂,需要我们全面考虑问题,首先考虑三个项分别充当中间项的情况,就有三种情况,还有就是第四种情况加上一个数,得到一个单独的单项式,也是可以成为一个完全平方式,这种情况比较容易忽略,要注意.2.(2017重庆市兼善中学八年级上学期联考)在日常生活中如取款、上网等都需要密码.有一种用“因式分解法”产生的密码方便记忆,如:对于多项式44x y -,因式分解的结果是()()()22x y x y x y -++,若取9x =, 9y =时,则各个因式的值为()0x y -=, ()18x y +=, ()22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式32x xy -,取20x, 10y =时,用上述方法产生的密码不可能...是( ) A .201030B .201010C .301020D .203010【答案】B【解析】【分析】【详解】解:x 3-xy 2=x (x 2-y 2)=x (x+y )(x-y ),当x=20,y=10时,x=20,x+y=30,x-y=10,组成密码的数字应包括20,30,10,所以组成的密码不可能是201010.故选B .3.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-5【答案】A【解析】【分析】 观察已知m 2-m-1=0可转化为m 2-m=1,再对m 4-m 3-m+2提取公因式因式分解的过程中将m 2-m 作为一个整体代入,逐次降低m 的次数,使问题得以解决.【详解】∵m 2-m-1=0,∴m 2-m=1,∴m 4-m 3-m+2=m 2 (m 2-m)-m+2=m 2-m+2=1+2=3,故选A .【点睛】本题考查了因式分解的应用,解决本题的关键是将m 2-m 作为一个整体出现,逐次降低m 的次数.4.当3x =-时,多项式33ax bx x ++=.那么当3x =时,它的值是( )A .3-B .5-C .7D .17-【答案】A【解析】【分析】首先根据3x =-时,多项式33ax bx x ++=,找到a 、b 之间的关系,再代入3x =求值即可.【详解】当3x =-时,33ax bx x ++=327333ax bx x a b ++=---= 2736a b ∴+=-当3x =时,原式=2733633a b ++=-+=-故选A.【点睛】本题考查代数式求值问题,难度较大,解题关键是找到a 、b 之间的关系.5.若(x +y )2=9,(x -y )2=5,则xy 的值为( )A .-1B .1C .-4D .4【答案】B【解析】试题分析:根据完全平方公式,两数和(或差)的平方,等于两数的平方和,加减两数积的2倍,分别化简可知(x+y )2=x 2+2xy+y 2=9①,(x ﹣y )2= x 2-2xy+y 2=5②,①-②可得4xy=4,解得xy=1.故选B点睛:此题主要考查了完全平方公式的应用,解题关键是抓住公式的特点:两数和(或差)的平方,等于两数的平方和,加减两数积的2倍,然后比较各式的特点,直接进行计算,再两式相减即可求解..6.已知实数a、b满足a+b=2,ab=34,则a﹣b=()A.1 B.﹣52C.±1 D.±52【答案】C【解析】分析:利用完全平方公式解答即可.详解:∵a+b=2,ab=34,∴(a+b)2=4=a2+2ab+b2,∴a2+b2=52,∴(a-b)2=a2-2ab+b2=1,∴a-b=±1,故选C.点睛:本题考查了完全平方公式的运用,熟记公式结构是解题的关键.7.若x2+2(m+1)x+25是一个完全平方式,那么m的值()A.4 或-6B.4C.6 或4D.-6【答案】A【解析】【详解】解:∵x2+2(m+1)x+25是一个完全平方式,∴△=b2-4ac=0,即:[2(m+1)]2-4×25=0整理得,m2+2m-24=0,解得m1=4,m2=-6,所以m的值为4或-6.故选A.8.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是()A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .22()22a a b a ab +=+D .222()2a b a ab b -=-+【答案】A【解析】【分析】 根据阴影部分面积的两种表示方法,即可解答.【详解】图1中阴影部分的面积为:22a b -,图2中的面积为:()()a b a b +-,则22()()a b a b a b +-=-故选:A.【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积.9.若2149x kx ++是完全平方式,则实数k 的值为( ) A .43 B .13 C .43± D .13± 【答案】C【解析】【分析】本题是已知平方项求乘积项,根据完全平方式的形式可得出k 的值.【详解】由完全平方式的形式(a±b )2=a 2±2ab+b 2可得:kx=±2•2x•13, 解得k=±43. 故选:C【点睛】本题关键是有平方项求乘积项,掌握完全平方式的形式(a±b )2=a 2±2ab+b 2是关键.10.有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的面积数据如图所示.右边场地为长方形,长为()2a b +,则宽为( )A .12B .1C .()12a b +D .+a b【答案】C【解析】【分析】用长方形的面积除以长可得.【详解】宽为:()()()()22222a ab ab ba b a b a b +++÷+=+÷+= ()12a b + 故选:C【点睛】考核知识点:整式除法与面积.掌握整式除法法则是关键.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.已知x =a 时,多项式x 2+6x+k 2的值为﹣9,则x =﹣a 时,该多项式的值为_____.【答案】27【解析】【分析】把x a =代入多项式,得到的式子进行移项整理,得22(3)a k +=-,根据平方的非负性把a 和k 求出,再代入求多项式的值.【详解】解:将x a =代入2269x x k ++=-,得:2269a a k ++=-移项得:2269a a k ++=-22(3)a k ∴+=-2(3)0a +,20k -30a ∴+=,即3a =-,0k =x a ∴=-时,222636327x x k ++=+⨯=故答案为:27【点睛】本题考查了代数式求值,平方的非负性.把a 代入多项式后进行移项整理是解题关键.12.如果实数a ,b 满足a +b =6,ab =8,那么a 2+b 2=_____.【答案】20【解析】【分析】【详解】∵6,a b +=∴222()236,a b a ab b +=++=∵ab=8,∴22a b +=36-2ab=36-2×8=20.【点睛】本题考查了完全平方公式的变形应用,熟练进行完全平方公式的变形是解题的关键.13.若26x x k -+是一个完全平方式,那么k =_______________【答案】9【解析】因为若26x k k -+是一个完全平方式,那么()222262333x k k x k x -+=-⨯+=-,那么答案是k=9.故答案为:9.14.把多项式(x -2)2-4x +8分解因式,哪一步开始出现了错误( )解:原式=(x -2)2-(4x -8)…A=(x -2)2-4(x -2)…B=(x -2)(x -2+4)…C=(x -2)(x +2)…D【答案】C【解析】根据题意,第一步应是添括号(注意符号变化),解法正确,第二步先对后面因式提公因式4,再提取公因式(x-2)这时出现符号错误,所以从C 步出现错误.故选C.15.设2m =5,82n =10,则62m n -=________. 【答案】12【解析】试题分析:将62m n - 变形为228m n ÷ ,然后结合同底数幂的除法的概念和运算法则进行求解即可.本题解析: 6621222285102m n m n m n -=÷=÷=÷= 故答案为: 12. 点睛:本题主要考查了同底数幂的除法法则的逆用,同底数幂的除法法则:同底数幂相乘,底数不变,指数相减.即m n m n a a a +÷= (m,n 是正整数).16.若a ,b 互为相反数,则a 2﹣b 2=_____.【答案】0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a ,b 互为相反数,∴a+b=0,∴a 2﹣b 2=(a+b )(a ﹣b )=0,故答案为0.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.17.若m+1m =3,则m 2+21m =_____. 【答案】7【解析】分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.详解:把m+1m =3两边平方得:(m+1m )2=m 2+21m +2=9, 则m 2+21m =7, 故答案为:7点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.18.因式分解:2()4()a a b a b ---=___.【答案】()()()22a b a a -+-【解析】分析:先提公因式,再利用平方差公式因式分解即可.详解:a 2(a-b )-4(a-b )=(a-b )(a 2-4)=(a-b )(a-2)(a+2),故答案为:(a-b )(a-2)(a+2).点睛:本题考查的是因式分解,掌握提公因式法、平方差公式进行因式分解是解题的关键.19.因式分解:x 3﹣4x=_____.【答案】x (x+2)(x ﹣2)【解析】试题分析:首先提取公因式x ,进而利用平方差公式分解因式.即x 3﹣4x=x (x 2﹣4)=x(x+2)(x ﹣2).故答案为x (x+2)(x ﹣2).考点:提公因式法与公式法的综合运用.20.已知:7a b +=,13ab =,那么 22a ab b -+= ________________.【答案】10【解析】∵(a+b ) 2 =7 2 =49,∴a 2 -ab+b 2 =(a+b ) 2 -3ab=49-39=10,故答案为10.。
一、单选题1、已知x+y=﹣5,xy=3,则x2+y2=()A. 19B. ﹣19C. 25D. ﹣25参考答案: A【思路分析】本题考查的是完全平方公式。
仔细读题,获取题中已知条件,结合完全平方公式的相关知识,即可解答此题。
【解题过程】解:x2+y2=(x+y)2﹣2xy=(﹣5)2﹣2×3=25﹣6=19。
故选A。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2、下列方程没有实数根的是()A. x2+4x=10B. 3x2+8x-3=0C. x2-2x+3=0D. (x-2)(x-3)=12参考答案: C【思路分析】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根【解题过程】解:A、方程变形为:x2+4x-10=0,△=42-4×1×(-10)=56>0,所以方程有两个不相等的实数根,故A选项不符合题意;B、△=82-4×3×(-3)=100>0,所以方程有两个不相等的实数根,故B选项不符合题意;C、△=(-2)2-4×1×3=-8<0,所以方程没有实数根,故C选项符合题意;D、方程变形为:x2-5x-6=0,△=52-4×1×(-6)=49>0,所以方程有两个不相等的实数根,故D选项不符合题意.故选:C。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -3、如果多项式p=a2+2b2+2a+4b+2008,则p的最小值是()A. 2005B. 2006C. 2007D. 2008参考答案: A【思路分析】把p重新拆分组合,凑成完全平方式的形式,然后判断其最小值.【解题过程】解:p=a2+2b2+2a+4b+2008,=(a2+2a+1)+(2b2+4b+2)+2005,=(a+1)2+2(b+1)2+2005,当(a+1)2=0,(b+1)2=0时,p有最小值,最小值最小为2005.故选:A.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -4、如果x=3m+1,y=2+9m,那么用x的代数式表示y为()A. y=2xB. y=x2C. y=(x−1)2+2D. y=x2+1参考答案: C【思路分析】根据移项,可得3m的形式,根据幂的运算,把3m代入,可得答案.【解题过程】解x=3m+1:,y=2+9m,3m=x−1,y=(x−1)2+2,故选:C.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -5、把x³-9x+8因式分解,正确的结果是()A. (x-1)(x+3)B. (x-1)(x2-x+8)C. (x-1)(x2+x-8)D. (x+1)(x2-x+8)参考答案: C【思路分析】本考点的主要内容是拆项法分解因式,在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,使多项式能用分组分解法进行因式分解。
第十四章14.3整式的乘法因式分解练习1.因式分解:a2+2a+1=.2.因式分解:﹣3x2+6xy﹣3y2=.3.分解因式:a2b+4ab+4b=______.4.分解因式:2x2﹣8=_____________5.因式分解:4ax2﹣4ay2=_____.6.计算:20182﹣2018×2017=_____.7.把多项式9x3﹣x分解因式的结果是_____.8.把16a3﹣ab2因式分解_____.9.已知x2﹣4x+3=0,求(x﹣1)2﹣2(1+x)=_____.10.已知a,b,c是△ABC的三边,且满足关系式a2+c2=2ab+2bc-2b2,则△ABC是_____三角形. 11.多项式3x﹣6与x2﹣4x+4有相同的因式是_________.12.已知m²-n²=16,m+n=5,则m-n=5 ___________________.二、解答题13.因式分解:(2x+y)2﹣(x+2y)2.14.因式分解(x﹣2y)2+8xy.15.利用因式分解计算:2022+202×196+98216.把下列多项式分解因式:(1)3a2﹣12ab+12b2 (2)m2(m﹣2)+4(2﹣m)17.分解因式:(1)3x2﹣12x (2)(3)18.已知n为整数,试说明(n+7)2﹣(n﹣3)2一定能被20整除.19.已知a=2017x+2016,b=2017x+2017,c=2017x+2018.求a2+b2+c2﹣ab﹣bc﹣ca的值.20.已知a,b,c是三角形ABC的三边的长,且满足a2+2b2+c2-2b(a+c)=0,试判断此三角形三边的大小关系.21.先化简,再求值:4xy+(2x ﹣y )(2x+y )﹣(2x+y )2,其中x=2016,y=1.22.先化简,再求值:2(x-y)2-(2x+y)(x-3y),其中x=1,y=51-.23化简,求值(1)已知代数式(x ﹣2y )2﹣(x ﹣y )(x+y )﹣2y 2①当x=1,y=3时,求代数式的值;②当4x=3y ,求代数式的值.(2)已知3a 2+2a+1=0,求代数式2a (1﹣3a )+(3a+1)(3a ﹣1)的值.24.已知x 4+y 4+2x 2y 2﹣2x 2﹣2y 2﹣15=0,求x 2+y 2的值参考答案1.(a+1)2 2.﹣3(x﹣y)2 3.b(a+2)24.2(x+2)(x﹣2)5.4a(x﹣y)(x+y)6.2018 7.x(3x+1)(3x﹣1)8.a(4a+b)(4a﹣b)9.-4 10.等边11.x﹣212. 16/513.3(x+y)(x﹣y).14.(x+2y)2.15.9000016.(1)3(a﹣2b)2;(2)(m﹣2)2(m+2).17.(1)3x(x-4) (2)-2(m-2n)2 (3)(x-1)(a+b)(a-b)18.∵(n+7)2﹣(n﹣3)2=[(n+7)+(n-3)][(n+7)﹣(n﹣3)]=20(n+2),∴(n+7)2﹣(n﹣3)2一定能被20整除.19.3.∵a=2017x+2016,b=2017x+2017,c=2017x+2018,∴a﹣b=-1,b﹣c=-1,a﹣c=-2,则原式=(2a2+2b2+2c2-2ab-2bc-2ac)=[(a-b)2+(b-c)2+(a-c)2]=×(1+1+4)=3.20.a=b,c=b21.﹣2y2,﹣2.22.,023.(1)①15;②0;(2)﹣2.24.x2+y2=5.。
一、八年级数学整式的乘法与因式分解解答题压轴题(难)1.阅读下列材料:利用完全平方公式,可以将多项式2(0)ax bx c a ++≠变形为2()a x m n ++的形式,我们把这种变形方法,叫做配方法.运用配方法及平方差公式能对一些多项式进行因式分解.例如:22222111111251151151124112422242222x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++=++-+=+-=+++- ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭根据以上材料,解答下列问题:(1)用配方法将281x x +-化成2()x m n ++的形式,则281=x x +- ________; (2)用配方法和平方差公式把多项式228x x --进行因式分解;(3)对于任意实数x ,y ,多项式222416x y x y +--+的值总为______(填序号). ①正数②非负数 ③ 0【答案】(1)2(4)17x +-;(2)(2)(4)x x +-;(3)①【解析】【分析】(1)根据材料所给方法解答即可;(2)材料所给方法进行解答即可;(3)局部进行因式分解,最后写成非负数的积的形式即可完成解答.【详解】解:(1)281x x +-=2816116x x ++--2(4)17x +-.(2)原式=22118x x -+--=2(1)9x --=(13)(13)x x -+--=(2)(4)x x +-.(3)222416x y x y +--+=()()22214411x x y y -++-++=()()221211x y -+-+>11故答案为①.【点睛】本题考查了配方法,根据材料学会配方法并灵活运用配方法解题是解答本题的关键.2.(阅读材料)因式分解:()()221x y x y ++++.解:将“x y +”看成整体,令x y A +=,则原式()22211A A A =++=+.再将“A ”还原,原式()21x y =++.上述解题用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法.(问题解决)(1)因式分解:()()2154x y x y +-+-;(2)因式分解:()()44a b a b ++-+;(3)证明:若n 为正整数,则代数式()()()21231n n n n ++++的值一定是某个整数的平方.【答案】(1)()()144x y x y +-+-1.(2)()22a b +-;(3)见解析. 【解析】【分析】(1)把(x-y )看作一个整体,直接利用十字相乘法因式分解即可;(2)把a+b 看作一个整体,去括号后利用完全平方公式即可将原式因式分解;(3)将原式转化为()()223231n n n n ++++,进一步整理为(n 2+3n+1)2,根据n 为正整数得到n 2+3n+1也为正整数,从而说明原式是整数的平方.【详解】(1)()()[][]21541()14()(1)(144)x y x y x y x y x y x y +-+-=+-+-=+-+-; (2)()()2244()4()4(2)a b a b a b a b a b ++-+=+-++=+-; (3)原式()()223231n n n n =++++()()2223231n n n n =++++ ()2231n n =++. ∵n 为正整数,∴231n n ++为正整数.∴代数()()()21231n n n n ++++的值一定是某个整数的平方. 【点睛】本题考查因式分解的应用,解题的关键是仔细读题,理解题意,掌握整体思想解决问题的方法.3.阅读下列解题过程,再解答后面的题目.例题:已知224250x y y x ++-+=,求x y +的值. 解:由已知得22(21)(44)0x x y y -++++=即22(1)(2)0x y -++=∵2(1)0x -≥,2(2)0y +≥∴有1020x y -=⎧⎨+=⎩,解得12x y =⎧⎨=-⎩∴1x y +=-. 题目:已知22464100x y x y +-++=,求xy 的值.【答案】-32 【解析】【分析】先将左边的式子写成两个完全平方的和的形式,根据非负数的性质求出x 、y 的值,再代入求出xy 的值.【详解】解:将22464100x y x y +-++=,化简得22694410x x y y -++++=,即()()223210x y -++=.∵()230x -≥,()2210y +≥,且它们的和为0,∴3x = ,12y, ∴12233xy ⎛⎫=⨯-=- ⎪⎝⎭. 【点睛】本题考查的是完全平方公式的应用,解题的关键是将左边的式子写成两个完全平方的和的形式.4.一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果x y =,那么称这个四位数为“和平数”.例如:1423,14x =+,23y =+,因为x y =,所以1423是“和平数”.(1)直接写出:最小的“和平数”是 ,最大的“和平数”是 ;(2)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.例如:1423与4132为一组“相关和平数”求证:任意的一组“相关和平数”之和是1111的倍数.(3)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;【答案】(1)1001,9999;(2)见详解;(3)2754和4848【解析】【分析】(1)根据和平数的定义,即可得到结论;(2)设任意的两个“相关和平数”为abcd,badc(a,b,c,d分别取0,1,2, (9)a≠0,b≠0),于是得到abcd badc+=1100(a+b)+11(c+d)=1111(a+b),即可得到结论.(3)设这个“和平数”为abcd,于是得到d=2a,a+b=c+d,b+c=12k,求得2c+a=12k,即a=2、4,6,8,d=4、8、12(舍去)、16(舍去);①、当a=2,d=4时,2(c+1)=12k,得到c=5则b=7;②、当a=4,d=8时,得到c=4则b=8,于是得到结论;【详解】解:(1)由题意得,最小的“和平数”1001,最大的“和平数”9999,故答案为:1001,9999;(2)设任意的两个“相关和平数”为abcd,badc(a,b,c,d分别取0,1,2,…,9且a≠0,b≠0),则+=1100(a+b)+11(c+d)=1111(a+b);abcd badc即两个“相关和平数”之和是1111的倍数.(3)设这个“和平数”为abcd,则d=2a,a+b=c+d,b+c=12k,∴2c+a=12k,即a=2、4,6,8,d=4、8、12(舍去)、16(舍去),①当a=2,d=4时,2(c+1)=12k,可知c+1=6k且a+b=c+d,∴c=5则b=7,②当a=4,d=8时,2(c+2)=12k,可知c+2=6k且a+b=c+d,∴c=4则b=8,综上所述,这个数为:2754和4848.【点睛】本题考查了因式分解的应用,正确的理解新概念和平数”是解题的关键.5.阅读下列因式分解的过程,解答下列问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3.(1)上述分解因式的方法是____________,共应用了________次;(2)若分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2019,则需要应用上述方法________次,结果是________;(3)分解因式:1+x +x (x +1)+x (x +1)2+…+x (x +1)n (n 为正整数).【答案】(1)提取公因式法,2;(2)2019,(1+x)2020;(3) (1+x)n +1.【解析】【分析】(1)根据已知计算过程直接得出因式分解的方法即可;(2)根据已知分解因式的方法可以得出答案;(3)由(1)中计算发现规律进而得出答案.【详解】(1)提取公因式法,2(因式分解的方法是提公因式法,共应用了2次)(2)2019,(1+x)2020(分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2019,则需应用上述方法2019次,结果是(1+x)2020)(3)原式=(1+x)[1+x +x(x +1)+x(x +1)2+…+x(x +1)n -1]=(1+x)2[1+x +x(x +1)+x(x +1)2+…+x(x +1)n -2]=(1+x)3[1+x +x(x +1)+x(x +1)2+…+x(x +1)n -3]=(1+x)n (1+x)=(1+x)n +1.【点睛】本题考查的知识点是因式分解-提公因式法,解题的关键是熟练的掌握因式分解-提公因式法.6.阅读理解题:定义:如果一个数的平方等于﹣1,记为i 2=﹣1,这个数i 叫做虚数单位.那么形如a+bi (a ,b 为实数)的数就叫做复数,a 叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i )+(3﹣4i )=5﹣3i .(1)填空:i 3= ,2i 4= ;(2)计算:①(2+i )(2﹣i );②(2+i )2;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知:(x+3y )+3i=(1﹣x )﹣yi ,(x ,y 为实数),求x ,y 的值.(4)试一试:请你参照i 2=﹣1这一知识点,将m 2+25(m 为实数)因式分解成两个复数的积.【答案】(1)i ;2(2)①5②3+4i (3)x=5,y=﹣3(4)m 2+25=(m+5i )(m ﹣5i )【解析】【分析】(1)根据同底数幂的乘法法则及2i 的概念直接运算;(2)利用平方差、完全平方公式把原式展开,根据21i =-计算即可;(3)根据虚数定义得出方程组,解方程组即可;(4)根据21i =- 将25转化为2(-5)i ,再利用平方差公式进行因式分解即可。
第14章整式的乘法与因式分解培优卷一、单选题1. ( 3分) 某种品牌的洗面奶,外包装标明净含量为500±10g,表明了这种洗面奶的净含量x的范围是()A.490<x<510B.490≤x≤510C.490<x≤510D.490≤x<510【答案】B【考点】有理数的加法【解析】【解答】解:根据题意得:500﹣1≤x≤500+10,即490≤x≤510,故答案为:B【分析】由题意用有理数的加法法则可得490≤x≤510。
2. ( 3分) 方程3x(x﹣1)=4(x﹣1)的根是()A.43B.1 C.43和1 D.43和﹣1【答案】C【考点】因式分解﹣运用公式法,因式分解法解一元二次方程【解析】【解答】原方程变形整理后得:(x﹣1)(3x﹣4)=0,x﹣1=0或3x﹣4=0,解得:x1=1,x2=43,故答案为:C.【分析】将方程移项后进行因式分解,即可得到方程的两个根。
3. ( 3分) 下列说法错误的是()A.两条射线组成的图形叫角B.两点之间线段最短C.两点确定一条直线D.0是单项式【答案】A【考点】单项式,直线的性质:两点确定一条直线,线段的性质:两点之间线段最短,角的概念【解析】【解答】解:A、两条有公共端点的射线组成的图形叫角,此选项符合题意;B、两点之间线段最短,此选项不符合题意;C、两点确定一条直线,此选项不符合题意;D、数字0是单项式,此选项不符合题意;故答案为:A.【分析】根据角的定义、两点之间距离、直线的性质以及根据单项式的定义逐一判断即可.4. ( 3分) 任意给定一个非零数x,按下列箭头顺序执行方框里的相应运算,得出结果后,再进行下一方框里的相应运算,最后得到的结果是()→平方→→→结果A.xB.x2C.x+1D.x−1【答案】D【考点】整式的混合运算【解析】【解答】根据题意得:(x2+x)÷x-2=x2÷x+x÷x-2=x+1-2=x-1,故答案为:D.【分析】根据程序先列出算式,然后计算即可.5. ( 3分) 下列各式计算正确的是()A.(a+1)2=a2+1B.a2+a3=a5C.a8÷a2=a6D.3a2﹣2a2=1【答案】C【考点】同底数幂的除法,完全平方公式及运用【解析】【解答】解:A、(a+1)2=a2+2a+1,故本选项错误;B、a2+a3≠a5,故本选项错误;C、a8÷a2=a6,故本选项正确;D、3a2﹣2a2=a2,故本选项错误;故选C.【分析】根据同底数幂的除法法则:底数不变,指数相减,及同类项的合并进行各项的判断,继而可得出答案.是一个完全平方式,则k的值为()6. ( 3分) 已知多项式x2+kx+ 14A.±1B.﹣1C.1D.±12【答案】A【考点】完全平方公式及运用是一个完全平方式,【解析】【解答】解:∵多项式x2+kx+ 14∵x2+kx+ 14=(x± 12)2,∵k=±1,故答案为:A【分析】根据完全平方公式a2±2ab+b2=(a±b)2,得到k=±1.7. ( 3分) 关于x、y的多项式x2−4xy+5y2+8y+15的最小值为()A. -1B.0C.1D.2【答案】A【考点】完全平方公式及运用,偶次幂的非负性【解析】【解答】解:原式=x2−4xy+5y2+8y+15=x2−4xy+4y2+y2+8y+16-1=(x−2y)2+(y+4)2-1∵ (x−2y)2≥0,(y+4)2≥0,∵原式≥-1,∵原式的最小值为-1,故答案为:A.【分析】利用完全平方公式对代数式变形,再运用非负性求解即可.8. ( 3分) 下列等式由左边至右边的变形中,属于因式分解的是()A.x2+5x-1=x(x+5)-1B.x2-4+3x=(x+2)(x-2)+3xC.x2-9=(x+3)(x-3)D.(x+2)(x-2)=x2-4【答案】C【考点】因式分解的定义【解析】【解答】A.右边不是积的形式,故A错误;B.右边不是积的形式,故B错误;C.x2-9=(x+3)(x-3),故C正确.D.是整式的乘法,不是因式分解选C【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解9. ( 3分) 式子(2+1)(22+1)(24+1)(28+1)⋅⋅⋅(21010+1)化简的结果为()A.21010−1B.21010+1C.22020−1D.22020+1【答案】C【考点】平方差公式及应用【解析】【解答】解:设S= (2+1)(22+1)(24+1)(28+1)⋅⋅⋅(21010+1),∵(2—1)S=(2—1)(2+1)(22+1)(24+1)(28+1)⋅⋅⋅(21010+1)∵S= (22−1)(22+1)(24+1)(28+1)⋅⋅⋅(21010+1)= (24−1)(24+1)(28+1)⋅⋅⋅(21010+1)= (21010−1)(21010+1)= 22020−1,故答案为:C.【分析】利用添项法,构造平方差公式计算即可.10. ( 3分)2×(3+1)(32+1)(34+1)(38+1)(316+1)的计算结果的个位数字是()A.8B.6C.2D.0【答案】D【考点】平方差公式及应用【解析】【解答】解:(3−1)(3+1)(32+1)(34+1)…(316+1)=(32−1)(32+1)(34+1)…(316+1)=(34−1)(34+1)…(316+1)=332−1∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…∴3n的个位是以指数1到4为一个周期,幂的个位数字重复出现,∵32÷4=8,故332与34的个位数字相同即为1,∵ 332−1的个位数字为0,∵ 2×(3+1)(32+1)(34+1)(38+1)(316+1)的个位数字是0.故答案为:D.【分析】先将2变形为(3-1),再根据平方差公式求出结果,根据规律得出答案即可.二、填空题目11. ( 4分) 若m a=2,m b=3,m c=4,则m2a+b﹣c=________.【答案】 3【考点】同底数幂的乘法,同底数幂的除法,幂的乘方【解析】【解答】解:∵m a=2,m b=3,m c=4,∵m2a+b﹣c=(m a)2•m b÷m c=4×3÷4=3.故答案为:3.【分析】根据同底数幂的乘法与除法法则则及幂的乘方与积的乘方法则进行计算即可.12. ( 4分) 比较大小: 2√2________ √7. (填“>”、“<"或“=")【答案】>【考点】实数大小的比较【解析】【解答】解:(2√2)2=8,(√7)2=7,∵8>7,∴2√2>√7.故答案为:>.【分析】首先分别求出两个数的平方的大小;然后根据:两个正实数,平方大的这个数也大,判断出两个数的大小关系即可.13. ( 4分) 若x+y=1,xy=-7,则x2y+xy2=________.【答案】-7【考点】提公因式法因式分解【解析】【解答】解:∵x+y=1,xy=-7,∵原式=xy(x+y)=-7,故答案为:-7【分析】先将多项式提取公因式xy,将多项式分解成xy(x+y),再将已知条件中的值代入计算出即可。
八年级数学上册整式的乘法与因式分解(培优篇)(Word版含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.若A=(2+1)(22+1)(24+1)(28+1)+1,则A的末位数字是( )A.2 B.4 C.6 D.8【答案】C【解析】【分析】【详解】试题分析:根据题意可得A=(2-1)(2+1)(22+1)(24+1)(28+1)+1=(22-1)(22+1)(24+1)(28+1)+1=(24-1)(24+1)(28+1)+1=(28-1)(28+1)+1=216根据21=2;22=4;23=8;24=16;25=32;···因此可由16÷4=4,所以216的末位为6故选C点睛:此题是应用平方差公式进行计算的规律探索题,解题的关键是通过添加式子,使原式变化为平方差公式的形式;再根据2的n次幂的计算总结规律,从而可得到结果.2.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc 的值是( )A.0B.1C.2D.3【答案】D【解析】【分析】把已知的式子化成12[(a-b)2+(a-c)2+(b-c)2]的形式,然后代入求解即可.【详解】原式=12(2a2+2b2+2c2-2ab-2ac-2bc)=12[(a2-2ab+b2)+(a2-2ac+c2)+(b2-2bc+c2)]=12[(a-b)2+(a-c)2+(b-c)2]=12×(1+4+1)=3,故选D.【点睛】本题考查了因式分解的应用,代数式的求值,正确利用因式分解的方法把所求的式子进行变形是关键.3.已知20192019a x =+,20192020b x =+,20192021c x =+,则222a b c ab ac bc ++---的值为( )A .0B .1C .2D .3【答案】D【解析】【分析】根据20192019a x =+,20192020b x =+,20192021c x =+分别求出a-b 、a-c 、b-c 的值,然后利用完全平方公式将题目中的式子变形,即可完成.【详解】∵20192019a x =+,20192020b x =+,20192021c x =+, 20192019201920201a b x x -=+--=-20192019201920212a c x x -=+--=-20192020201920211b c x x -=+--=-∴222a b c ab ac bc ++---2221(222222)2a b c ab ac bc =++--- 2222221(222)2a ab b a ac c b bc c =-++-++-+ 222111()()()222a b a c b c =-+-+- 222111(1)(2)(1)222=⨯-+⨯-+⨯- 11222=++ 3=故选D【点睛】本题考查完全平方公式的应用,熟练掌握完全平方公式是解题关键.4.利用平方差公式计算(25)(25)x x ---的结果是A .245x -B .2425x -C .2254x -D .2425x +【答案】C【解析】【分析】平方差公式是(a+b )(a-b )=a 2-b 2.【详解】解:()()()()()2225252525425254x x x x x x ---=--+=--=-, 故选择C.【点睛】本题考查了平方差公式,应牢记公式的形式.5.如果多项式29x kx -+能用公式法分解因式,那么k 的值是( )A .3B .6C .3±D .6±【答案】D【解析】由于可以利用公式法分解因式,所以它是一个完全平方式222a ab b ±+,所以236k =±⨯=±.故选D.6.把多项式(3a-4b )(7a-8b )+(11a-12b )(8b-7a )分解因式的结果( )A .8(7a-8b )(a-b )B .2(7a-8b )2C .8(7a-8b )(b-a )D .-2(7a-8b )【答案】C【解析】把(3a-4b)(7a-8b)+(11a-12b)(8b-7a)运用提取公因式法因式分解即可得(3a-4b)(7a-8b)+(11a-12b)(8b-7a)=(7a-8b)(3a-4b-11a+12b)=(7a-8b)(-8a+8b)=8(7a-8b)(b-a).故选C.7.下列计算正确的是( )A .3x 2 ·4x 2 =12x 2B .(x -1)(x —1)=x 2—1C .(x 5)2 =x 7D .x 4 ÷x =x 3【答案】D【解析】试题分析:根据单项式乘以单项式的法则,可知3x 2 ·4x 2 =12x 4,故A 不正确; 根据乘法公式(完全平方公式)可知(x -1)(x —1)=x 2—2x+1,故B 不正确; 根据幂的乘方,底数不变,指数相乘,可得(x 5)2 =x 10,故C 不正确;根据同底数幂的相除,可知x 4 ÷x =x 3,故D 正确. 故选:D.8.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .22()22a a b a ab +=+D .222()2a b a ab b -=-+【答案】A【解析】【分析】 根据阴影部分面积的两种表示方法,即可解答.【详解】图1中阴影部分的面积为:22a b -,图2中的面积为:()()a b a b +-,则22()()a b a b a b +-=-故选:A.【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积.9.若(x 2-x +m )(x -8)中不含x 的一次项,则m 的值为( )A .8B .-8C .0D .8或-8【答案】B【解析】(x 2-x +m )(x -8)=322328889(8)8x x mx x x m x x m x m -+-+-=-++-由于不含一次项,m+8=0,得m=-8.10.已知a =96,b =314,c =275,则a 、b 、c 的大小关系是( )A .a >b >cB .a >c >bC .c >b >aD .b >c >a【答案】C【解析】【分析】根据幂的乘方可得:a =69=312,c =527=315,易得答案.【详解】因为a =69=312,b =143,c =527=315,所以,c>b>a故选C【点睛】本题考核知识点:幂的乘方. 解题关键点:熟记幂的乘方公式.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.“元旦”期间小明去永辉超市购物,恰逢永辉超市“满1400减99元”促销活动,小明准备提前购置一些年货A 和B ,已知A 和B 的单价总和是100到200之间的整数,小明粗略测算了一下发现自己所购年货总价为1305元,不能达到超市的促销活动金额. 于是小明又购买了A 、B 各一件,这样就能参加超市的促销活动,最后刚好付款1305元. 小明经仔细计算发现前面粗略测算时把A 和B 的单价看反了,那么小明实际总共买了______件年货.【答案】22【解析】【分析】设A 单价为a 元,实际购买x 件,B 单价为b 元,实际购买y 元,根据题意列出方程组130599(1)(1)1305ax by a y b x +=+⎧⎨-+-=⎩,将两个方程相加得到(1)(1)2709a x y b x y +-++-=,分解因式得()(1)33743a b x y ++-=⨯⨯⨯,由A 和B 的单价总和是100到200之间的整数得到()(1)12921a b x y ++-=⨯,由此求得答案.【详解】设A 单价为a 元,实际购买x 件,B 单价为b 元,实际购买y 元,130599(1)(1)1305ax by a y b x +=+⎧⎨-+-=⎩, ∴(1)(1)2709a x y b x y +-++-=,∴()(1)33743a b x y ++-=⨯⨯⨯,∵A 和B 的单价总和是100到200之间的整数,即100a b 200<+<,∴()(1)12921a b x y ++-=⨯,即129a b +=, 121x y +-=,∴x+y=22,故答案为:22.【点睛】此题考查因式分解,设未知数列出方程组后将两个方程相加再因式分解是关键的步骤,根据A 和B 的单价总和确定出x+y 的值.12.如果关于x 的二次三项式24x x m -+在实数范围内不能因式分解,那么m 的值可以是_________.(填出符合条件的一个值)【答案】5【解析】【分析】根据前两项,此多项式如用十字相乘方法分解,m 应是3或-5;若用完全平方公式分解,m 应是4,若用提公因式法分解,m 的值应是0,排除3、-5、4、0的数即可.【详解】当m=5时,原式为245x x -+,不能因式分解,故答案为:5.【点睛】此题考查多项式的因式分解方法,熟记每种分解的因式的特点及所用因式分解的方法,掌握技巧才能熟练运用解题.13.(1)已知32m a =,33n b =,则()()332243mn m n m a b a b a +-⋅⋅=______. (2)对于一切实数x ,等式()()212x px q x x -+=+-均成立,则24p q -的值为______.(3)已知多项式2223286x xy y x y +--+-可以分解为()()22x y m x y n ++-+的形式,则3211m n +-的值是______. (4)如果2310x x x +++=,则232016x x x x +++⋅⋅⋅+=______.【答案】(1)5-; (2)9; (3)78-; (4)0. 【解析】【分析】(1)根据积的乘方和幂的乘方,将32m a =整体代入即可;(2)将等式后面部分展开,即可求出p 、q 的值,代入即可;(3)根据多项式乘法法则求出()()22x y m x y n ++-+,即可得到关于m 、n 的方程组,解之即可求得m 、n 、的值,代入计算即可;(4)4个一组提取公因式,整体代入即可.【详解】(1)32m a =,33n a =,()()()()332222343333m n m n m m n m n a b a b a a b a b ∴+-⋅⋅=+-22232343125=+-⨯=+-=-(2)222x px q x x -+=--对一切实数x 均成立,1p ∴=,2q =-249p q ∴-=(3)()()222223286x y m x y n x xy y x y ++-+=+--+-,()()22222322223286x xy y m n x n m y mn x xy y x y ∴+-+++-+=+--+-21,28,6,m n n m mn +=-⎧⎪∴-=⎨⎪=-⎩解得2,3.m n =-⎧⎨=⎩ 321718m n +∴=-- (4)2310x x x +++=,232016x x x x ∴+++⋅⋅⋅+()()2320132311x x x x x x x x =++++⋅⋅⋅++++000=+⋅⋅⋅+=故答案为: −5;9;78-;0. 【点睛】本题主要考察幂的运算及整式的乘法,掌握其运算法则是关键.14.分解因式212x 123y xy y -+-=___________【答案】()232x 1y --【解析】根据因式分解的方法,先提公因式-3y ,再根据完全平方公式分解因式为:()()22212x 12334x 41321y xy y y x y x -+-=--+=--. 故答案为()232x 1y --.15.若4x 2+20x + a 2是一个完全平方式,则a 的值是 __ .【答案】±5【解析】 225,5a a ==±16.若m+1m =3,则m 2+21m =_____. 【答案】7【解析】分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.详解:把m+1m =3两边平方得:(m+1m )2=m 2+21m+2=9,则m 2+21m =7, 故答案为:7 点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.17.因式分解:2()4()a a b a b ---=___.【答案】()()()22a b a a -+-【解析】分析:先提公因式,再利用平方差公式因式分解即可.详解:a 2(a-b )-4(a-b )=(a-b )(a 2-4)=(a-b )(a-2)(a+2),故答案为:(a-b )(a-2)(a+2).点睛:本题考查的是因式分解,掌握提公因式法、平方差公式进行因式分解是解题的关键.18.因式分解:3222x x y xy +=﹣__________. 【答案】()2x x y -【解析】【分析】先提取公因式x ,再对余下的多项式利用完全平方公式继续分解.【详解】解:原式()()2222x x xy y x x y =-+=-, 故答案为:()2x x y -【点睛】本题考查提公因式,熟练掌握运算法则是解题关键.19.分解因式6xy 2-9x 2y -y 3 = _____________.【答案】-y(3x -y)2【解析】【分析】先提公因式-y ,然后再利用完全平方公式进行分解即可得.【详解】6xy 2-9x 2y -y 3=-y(9x 2-6xy+y 2)=-y(3x-y)2,故答案为:-y(3x-y)2.【点睛】本题考查了利用提公因式法与公式法分解因式,熟练掌握因式分解的方法及步骤是解题的关键.因式分解的一般步骤:一提(公因式),二套(套用公式),注意一定要分解到不能再分解为止.20.已知(2x 21)(3x 7)(3x 7)(x 13)-----可分解因式为(3x a)(x b)++,其中a 、b 均为整数,则a 3b +=_____.【答案】31-.【解析】首先提取公因式3x ﹣7,再合并同类项即可根据代数式恒等的条件得到a 、b 的值,从而可算出a+3b 的值:∵()()()()(2x 21)(3x 7)(3x 7)(x 13)3x 72x 21x 133x 7x 8-----=---+=--, ∴a=-7,b=-8.∴a 3b 72431+=--=-.。
一、选择题1.多项式291x 加上一个单项式后﹐使它成为一个整式的完全平方,那么加上的单项式可以是( )A .6x ±B .-1或4814xC .29x -D .6x ±或1-或29x - D解析:D【分析】根据完全平方公式计算解答.【详解】解:添加的方法有4种,分别是:添加6x ,得9x 2+1+6x=(3x+1)2;添加﹣6x ,得9x 2+1﹣6x=(3x ﹣1)2;添加﹣9x 2,得9x 2+1﹣9x 2=12;添加﹣1,得9x 2+1﹣1=(3x )2,故选:D .【点睛】此题考查添加一个整式得到完全平方式,熟记完全平方式的特点是解题的关键. 2.如果多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,则a 的值为( )A .52-B .52C .5D .-5B解析:B 【分析】 把多项式的乘积展开,合并同类项,令含y 的一次项的系数为0,可求出a 的值.【详解】()2y a +()5y -=5y-y 2+10a-2ay=-y 2+(5-2a)y+10a ,∵多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,∴5-2a=0,∴a=52. 故选B .【点睛】 本题考查了多项式乘多项式,解答本题的关键在于将多项式的乘积展开,令含y 的一次项的系数为0,得到关于a 的方程.3.计算()201920180.52-⨯的值( )A .2B .2-C .12D .12- D 解析:D【分析】 将原式变形为201920181-22⎛⎫⨯ ⎪⎝⎭,再利用同底数幂的乘法逆运算变为2018201811--222⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭,然后运用乘法交换律及积的乘方的逆运算计算即可. 【详解】 解:原式=201920181-22⎛⎫⨯ ⎪⎝⎭=2018201811--222⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭=2018201811-2-22⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭=201811-2-22⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭ =()20181-1-2⎛⎫⨯ ⎪⎝⎭=1×1-2⎛⎫ ⎪⎝⎭=12- 故选:D .【点睛】本题主要考查了整式的乘法,熟练掌握同底数幂的乘法、积的乘方的逆运算是解题的关键.4.将11n n x x +--因式分解,结果正确的是( )A .()121n xx -- B .()11n x x -- C .()1n x x x -- D .()()111n x x x -+- D解析:D【分析】先提公因式x n-1,再用平方差公式进行分解即可.【详解】x n+1−x n-1=x n-1(x 2-1)=x n−1(x+1)(x−1),故选:D【点睛】此题考查了提公因式法和公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键. 5.化简()2003200455-+所得的值为( ) A .5-B .0C .20025D .200345⨯ D 解析:D【分析】首先把52004化为(-5)2004,然后再提公因式(-5)2003,继而可得答案.【详解】解:()2003200455-+=(-5)2003+(-5)2004=(-5)2003(1-5)=4×52003,故选:D .【点睛】此题主要考查了提公因式分解因式,关键是正确确定公因式.6.下列运算正确是( )A .b 5÷b 3=b 2B .(b 5)3=b 8C .b 3b 4=b 12D .a (a ﹣2b )=a 2+2ab A解析:A【分析】根据幂的乘方,同底数幂乘法和除法,单项式乘多项式运算法则判断即可.【详解】A 、b 5÷b 3=b 2,故这个选项正确;B 、(b 5)3=b 15,故这个选项错误;C 、b 3•b 4=b 7,故这个选项错误;D 、a (a ﹣2b )=a 2﹣2ab ,故这个选项错误;故选:A .【点睛】本题考查了幂的乘方,同底数幂乘法和除法,以及单项式乘多项式,重点是掌握相关的运算法则.7.当2x =时,代数式31ax bx ++的值为6,则2x =-时,31ax bx ++的值为( ) A .6-B .5-C .4D .4- D 解析:D【分析】根据已知把x=2代入得:8a+2b+1=6,变形得:-8a-2b=-5,再将x=-2代入这个代数式中,最后整体代入即可.【详解】解:当x=2时,代数式ax 3+bx+1的值为6,则8a+2b+1=6,即8a+2b=5,∴-8a-2b=-5,则当x=-2时,ax 3+bx+1=(-2)3a-2b+1=-8a-2b+1=-5+1=-4,故选:D .【点睛】本题考查了求代数式的值,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.8.已知1x =,1y =,则代数式222x xy y ++的值为( ). A .20B .10 C.D.解析:A【分析】利用完全平方公式计算即可得到答案.【详解】∵1x =,1y =,∴x+y=∴222x xy y ++=2()x y +=2=20,故选:A .【点睛】此题考查完全平方公式,熟记完全平方公式并运用解决问题是解题的关键.9.计算()()202020213232 -⨯的结果是( ) A .32- B .23- C .23 D .32D 解析:D【分析】利用积的乘方的逆运算解答.【详解】()()202020213232 -⨯ =20202020233322⎛⎫⎛⎫-⨯⨯ ⎪ ⎪⎝⎭⎝⎭=2020233322⎛⎫-⨯⨯ ⎪⎝⎭=32. 故选:D .【点睛】此题考查积的乘方的逆运算,掌握积的乘方的计算公式是解题的关键.10.下列各式运算正确的是( )A .235a a a +=B .1025a a a ÷=C .()32626b b =D .2421a a a -⋅= D 解析:D【分析】根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;合并同类项的法则,对各选项计算后利用排除法求解.【详解】解:A 、a 2与3a 不是同类项,不能合并,故本选项错误;B 、1028a a a ÷=,故本选项错误;C 、()32628b b =,故本选项错误; D 、24221a a a a --⋅==,正确. 故选:D .【点睛】本题考查了幂的乘方的性质,同底数幂的乘法,合并同类项的法则,熟练掌握运算性质是解题的关键,合并同类项时,不是同类项的不能合并.二、填空题11.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为______.870【分析】将n =3代入数值运算程序计算判断结果与30大小小于或等于30再代入计算大于30输出即可得到输出结果【详解】解:当n =3时根据数值运算程序得:32−3=9−3=6<30当n =6时根据数值解析:870【分析】将n =3代入数值运算程序计算,判断结果与30大小,小于或等于30再代入计算,大于30输出,即可得到输出结果.【详解】解:当n =3时,根据数值运算程序得:32−3=9−3=6<30,当n =6时,根据数值运算程序得:62−6=36−6=30,当n =30时,根据数值运算程序得:302−30=900−30=870>30,则输出结果为870.故答案为:870【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.12.若x 、y 为有理数,且22(2)0x y ++-=,则2021()xy的值为____.﹣1【分析】根据绝对值的非负性及偶次方的非负性求出x=-2y=2代入求值即可【详解】∵且∴x+2=0y-2=0∴x=-2y=2∴=-1故答案为:-1【点睛】此题考查代数式的求值计算正确掌握绝对值的非解析:﹣1【分析】根据绝对值的非负性及偶次方的非负性求出x=-2,y=2,代入求值即可.【详解】 ∵22(2)0x y ++-=,且220,(2)0x y +≥-≥,∴x+2=0,y-2=0,∴x=-2,y=2, ∴2021()x y=-1, 故答案为:-1.【点睛】此题考查代数式的求值计算,正确掌握绝对值的非负性及偶次方的非负性求出x=-2,y=2是解题的关键.13.计算:2221111112310⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⋯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭________【分析】运用平方差公式进行计算即可【详解】解:====故答案为:【点睛】此题主要考查了有理数的混合运算以及平方差公式的应用熟练掌握运算法则以及平方差公式是解答此题的关键 解析:1120【分析】运用平方差公式进行计算即可.【详解】 解:2221111112310⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⋯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=1111111+1111122331010⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯+⨯-⨯⨯+⨯- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=132491122331010⨯⨯⨯⨯⨯⨯ =111210⨯ =1120. 故答案为:1120. 【点睛】 此题主要考查了有理数的混合运算以及平方差公式的应用,熟练掌握运算法则以及平方差公式是解答此题的关键.14.若23x =,25y =,则22x y +=____________.75【分析】逆用积的乘方可得再逆用幂的乘方即可求解【详解】解:故答案为:75【点睛】本题考查积的乘方和幂的乘方的逆用掌握积的乘方和幂的乘方是解题的关键解析:75【分析】逆用积的乘方可得22222x y x y +=⋅,再逆用幂的乘方即可求解.【详解】解:()2222222223575x y x y x y +=⋅=⋅=⨯=,故答案为:75.【点睛】本题考查积的乘方和幂的乘方的逆用,掌握积的乘方和幂的乘方是解题的关键. 15.已知25m =,2245m n +=,则2n =_______.【分析】将变形整体代入即可求解【详解】解:∵=∴故答案为:【点睛】本题主要考察了同底数幂的乘法幂的乘方解题的关键是熟练掌握同底数幂的乘法幂的乘方的逆运算解析:95. 【分析】 将2245m n +=变形()222=22222m n n n m m+⋅=⋅,整体代入即可求解. 【详解】解:∵()222=22222m n n n m m+⋅=⋅=25245n ⋅= ∴9245255n =÷=. 故答案为:95. 【点睛】 本题主要考察了同底数幂的乘法、幂的乘方,解题的关键是熟练掌握同底数幂的乘法、幂的乘方的逆运算.16.若21202x y ⎛⎫++-= ⎪⎝⎭,则20202021x y 的值为_________.【分析】根据绝对值和平方式的非负性求出x 和y 的值再由幂的运算法则进行计算【详解】解:∵且∴即∴故答案是:【点睛】本题考查幂的运算解题的关键是掌握幂的运算法则 解析:12 【分析】根据绝对值和平方式的非负性求出x 和y 的值,再由幂的运算法则进行计算.【详解】解:∵20x +≥,2102y ⎛⎫-≥ ⎪⎝⎭,且21202x y ⎛⎫++-= ⎪⎝⎭, ∴20x +=,102y -=,即2x =-,12y =, ∴()202120202020202020211111222222x y ⎛⎫⎛⎫=-=-⨯⨯= ⎪ ⎪⎝⎭⎝⎭. 故答案是:12. 【点睛】本题考查幂的运算,解题的关键是掌握幂的运算法则.17.若2249x mxy y -+是一个完全平方式,则m =______【分析】利用完全平方公式的结构特征判断即可确定出m 的值【详解】∵是一个完全平方式∴故答案为:【点睛】本题考查了完全平方公式的简单应用明确完全平方公式的基本形式是解题的关键解析:12±【分析】利用完全平方公式的结构特征判断即可确定出m 的值.【详解】∵2249x mxy y -+是一个完全平方式,∴22312m =±⨯⨯=±.故答案为:12±.【点睛】本题考查了完全平方公式的简单应用,明确完全平方公式的基本形式是解题的关键. 18.已知香蕉,苹果,梨的价格分别为a ,b ,c (单位:元/千克)、用20元正好可以买三种水果各1千克:买1千克香蕉,2千克苹果,3千克梨正好花去42元,若买b 千克香需w 元,则w =___________.(结果用含c 的代数式表示)【分析】根据题意得:通过计算得到b 和c 的关系式;再将b 和c 的关系式代入到得a 和c 的关系式经计算即可得到答案【详解】根据题意得:∴∴∴∴故答案为:【点睛】本题考查了三元一次方程组整式运算的知识;解题的解析:222644c c -+-【分析】根据题意得:20a b c ++=,2342a b c ++=,通过计算得到b 和c 的关系式;再将b 和c 的关系式代入到20a b c ++=,得a 和c 的关系式,经计算即可得到答案.【详解】根据题意得:20a b c ++=,2342a b c ++=∴204223a b c b c =--=--∴222b c =-∴20202222a b c c c c =--=-+-=-∴()()2222222644w a b c c c c =⨯=--=-+- 故答案为:222644c c -+-.【点睛】本题考查了三元一次方程组、整式运算的知识;解题的关键是熟练掌握三元一次方程组、整式乘法运算的性质,从而完成求解.19.分解因式:2221218ax axy ay -+=_________.【分析】先提取公因式再利用完全平方公式继续分解即可【详解】故答案为:2a(x-3y)2【点睛】本题考查了用提公因式法和公式法进行因式分解一个多项式有公因式首先提取公因式然后再用其他方法进行因式分解同解析:22(3)a x y -【分析】先提取公因式2a ,再利用完全平方公式继续分解即可.【详解】222ax 12axy 18ay -+222(6)9a x xy y =-+22(3)a x y =-,故答案为:2a(x-3y)2.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 20.若9m =4,27n =2,则32m ﹣3n =__.2【分析】根据指数的运算把32m ﹣3n 改写成同底数幂除法再用幂的乘方的逆运算即可【详解】解:32m ﹣3n =32m÷33n ==9m÷27n =4÷2=2;故答案为:2【点睛】本题考查了幂的乘方与同底数幂 解析:2【分析】根据指数的运算,把32m ﹣3n 改写成同底数幂除法,再用幂的乘方的逆运算即可.【详解】解:32m ﹣3n ,=32m ÷33n ,=23(3)(3)m n=9m ÷27n ,=4÷2,=2;故答案为:2.【点睛】本题考查了幂的乘方与同底数幂的除法的逆运算,根据指数的运算特点,把原式改写成对应的幂的运算是解题关键. 三、解答题21.计算(1)(65x 2y -4xy 2)•13xy (2)[(x +3y )•(x -3y )-(x -y )2]÷(-2y ) 解析:(1)25x 3y 2-43x 2y 3;(2)5y -x 【分析】(1)按照多项式乘单项式的计算法则进行计算求解;(2)整式的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:(1)(65x 2y -4xy 2)•13xy =25x 3y 2-43x 2y 3 (2)[(x +3y )•(x -3y )-(x -y )2]÷(-2y )=[x 2-9y 2-(x 2-2xy +y 2)]÷(-2y )=(x 2-9y 2-x 2+2xy-y 2)÷(-2y )=(-10y 2+2xy )÷(-2y )=5y -x【点睛】本题考查整式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.22.如图1,将一个长为4a ,宽为2b 的长方形,沿图中虚线均匀分成4个小长方形,然后按图2形状拼成一个正方形.(1)图2的空白部分的边长是多少?(用含a ,b 的式子表示)(2)若2a+b=7,且ab=6,求图2中的空白正方形的面积;(3)观察图2,用等式表示出(2a-b )2,ab 和(2a+b )2的数量关系.解析:(1)2a-b ;(2)1;(3)22(2)(2)8a b a b ab +=-+【分析】(1)观察由已知图形,求出小长方形的长为2 a ,宽为b ,那么图2中的空白部分的正方形的边长是小长方形的长—小长方形的宽;(2)通过观察图形,大正方形的边长为小长方形的长和宽的和.图2中空白部分的正方形的面积为大正方形的面积 - 四个小长方形的面积;(3)通过观察图形知:(2 a +b )2 ,(2 a -b )2 , 8 a b .分别表示的是大正方形、空白部分的正方形及小长方形的面积,据此即可解答.【详解】解:()1长为4a ,宽为2b 的长方形分成四个小长方形,则小长方形的长为422a a ÷=,宽为22b b ÷=,图2的空白部分的边长=小长方形的长 - 小长方形的宽,即图2的空白部分的边长是2a b -;()2由图2可知,S 空白小正方形=()()222=28a b a b ab -+-, 27a b +=,且6ab =,∴S 空白小正方形=()()222=28a b a b ab -+-=()2786=1-⨯; ()3由图2可以看出,大正方形面积=空白部分的正方形的面积+四个小长方形的面积, 即:22(2)(2)8a b a b ab +=-+.【点睛】此题考查了学生观察、分析图形解答问题的综合能力,以及对列代数式、代数式求值的理解与掌握.关键是通过观察图形找出各图形之间的关系.23.如图,将一张长方形铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为acm 的大正方形,两块是边长都为bcm 的小正方形,五块是长、宽分别是acm bcm 、的全等小长方形,且a b >.(1)用含a b 、的代数式表示切痕的总长为_ cm ;(2)若每块小长方形的面积为212cm ,四块正方形的面积和为280cm ,试求+a b 的值. 解析:(1)()66a b +;(2)8【分析】(1)根据切痕长有两横两纵列出算式,再根据合并同类项法则整理即可;(2)根据小矩形的面积和正方形的面积列出算式,再利用完全平方公式整理求出a+b 的值,即可得到结论.【详解】解:(1)切痕总长=2[(b+2a )+(2b+a )],=6a+6b ;故答案为:()66a b +;(2)依题意得,222280,12a b ab +==,2240,a b ∴+=()2222,a b a ab b +=++()24021264a b ∴+=+⨯=, 0,a b +>8a b +=.【点睛】本题考查对完全平方公式几何意义的理解,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形周长和面积展开分析.24.化简求值:()()()2262x y x y y y x x ⎡⎤⎣++⎦--÷,其中2,3x y ==-. 解析:2x-3y ,13【分析】先根据整式的运算法则进行化简,然后将a 与b 的值代入原式即可求出答案.【详解】解:原式()222462x y y xy x =-+-÷()2462x xy x =-÷ 23x y =-当2,3x y ==-时,原式()2233=⨯-⨯-4913=+=.【点睛】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解题的关键. 25.在日历上,我们可以发现其中某些数满足一定规律,如图是2020年12月份的日历,我们选择其中被框起的部分,将每个框中三个位置上的数作如下计算: 281156415497-⨯=-==2241731576527497-⨯=-==不难发现,结果都是7.(1)请你再在图中框出一个类似的部分并加以验证;(2)请你利用代数式的运算对以上规律加以证明.解析:(1)见解析;(2)见解析【分析】(1)答案不唯一,如选择6,13,20这三个数,按照已知等式方法计算即可; (2)设中间那个数为n 2(7)(7)n n n --+,根据平方差公式及合并同类项法则计算即可.【详解】解:(1)答案不唯一,如:在图中框出如图,213620169120497-⨯=-=;(2)证明:设中间那个数为n ,则:2(7)(7)497n n n --+==∴2(7)(7)7n n n --+..【点睛】此题考查数字计算规律探究,掌握有理数混合运算法则,整式的混合运算法则以及化简算术平方根是解题的关键.26.已知多项式35ax bx +-,当2x =-时,该多项式的值是7,则当2x =时,该多项式的值是多少?解析:-17【分析】首先把x=-2代入多项式35ax bx +-,整理成关于a 、b 的等式,再把x=2代入,观察两个式子的联系,进一步求得数值即可.【详解】解:x =-2时, 35ax bx +-=7,即-8a -2b -5=7,所以8a+2b =-12,当x=2时,35ax bx +-=8a+2b -5=-12-5=-17,所以该多项式的值是-17.【点睛】本题考查了代数式求值,注意代入数值的特点,发现前后式子的联系,整体代入解决问题. 27.计算:(1)2(1)(1)(2)x x x +--+ (2)(34)(34)x y x y -++- 解析:(1)3x +;(2)229816-+-x y y .【分析】(1)先分别利用完全平方公式和多项式乘多项式运算法则计算,再去括号、合并同类项即可得到结果;(2)原式变形后,运用平方差公式和完全平方公式计算即可求出结果.【详解】计算:⑴ 原式2221(2)x x x x =++-+- 22212x x x x =++--+3x =+,(2)原式[3(4)][3(4)]x y x y =--+-229(4)x y =--229816=-+-x y y .【点睛】本题主要考查了整式的混合运算,掌握运算法则及灵活运用乘法公式是解题的关键. 28.化简:(1)()34322223x y x y z x y -÷;(2)2(4)3(1)(3)x x x x -+-+.解析:(1)223xy xz -;(2)2529x x --【分析】(1)按照多项式除以单项式的法则计算即可;(2)先按整式乘法法则去括号,再合并同类项即可.【详解】解:(1)原式3422322223x y x y x y z x y =÷-÷ 223xy xz =-.(2)原式()2228323x x x x =-++- 2228369x x x x =-++-2529x x =--.【点睛】本题考查了整式的混合运算,准确掌握并运用法则是解题关键.。
初二整式的乘法与因式分解所有知识点总结和常考题知识点:1.基本运算:⑴同底数幂的乘法:m n m n a a a +⨯=⑵幂的乘方:()nm mn a a = ⑶积的乘方:()nn n ab a b =2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式.⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加.3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+4.整式的除法:⑴同底数幂的除法:m n m n a a a -÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式. ⑶多项式÷单项式:用多项式每个项除以单项式后相加.⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式 子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:()()22a b a b a b -=+-②完全平方公式:()2222a ab b a b ±+=±③立方和:3322()()a b a b a ab b +=+-+④立方差:3322()()a b a b a ab b -=-++⑶十字相乘法:()()()2x p q x pq x p x q +++=++⑷拆项法 ⑸添项法常考题: 一.选择题(共12小题)1.下列运算中,结果正确的是( )A.x3•x3=x6 B.3x2+2x2=5x4C.(x2)3=x5D.(x+y)2=x2+y22.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5 D.a3b63.计算2x2•(﹣3x3)的结果是()A.﹣6x5B.6x5C.﹣2x6D.2x64.下列各式由左边到右边的变形中,是分解因式的为()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+3x=(x﹣4)(x+4)+3x5.下列多项式中能用平方差公式分解因式的是()A.a2+(﹣b)2 B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+96.下列各式中能用完全平方公式进行因式分解的是()A.x2+x+1 B.x2+2x﹣1 C.x2﹣1 D.x2﹣6x+97.下列因式分解错误的是()A.x2﹣y2=(x+y)(x﹣y)B.x2+6x+9=(x+3)2C.x2+xy=x(x+y)D.x2+y2=(x+y)28.把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()A.a(x﹣2)2B.a(x+2)2C.a(x﹣4)2D.a(x+2)(x﹣2)9.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.110.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+2b)(a﹣b)=a2+ab﹣2b211.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.ab B.(a+b)2 C.(a﹣b)2D.a2﹣b212.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A.(2a2+5a)cm2B.(6a+15)cm2C.(6a+9)cm2D.(3a+15)cm2二.填空题(共13小题)13.分解因式:3x2﹣27= .14.分解因式:a2﹣1= .15.因式分解:x2﹣9y2= .16.分解因式:x3﹣4x= .17.因式分解:a3﹣ab2= .18.分解因式:x2+6x+9= .19.分解因式:2a2﹣4a+2= .20.分解因式:x3﹣6x2+9x= .21.分解因式:ab2﹣2ab+a= .22.分解因式:2a3﹣8a2+8a= .23.分解因式:3a2﹣12ab+12b2= .24.若m2﹣n2=6,且m﹣n=2,则m+n= .25.如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为.三.解答题(共15小题)26.计算:(x﹣y)2﹣(y+2x)(y﹣2x)27.若2x+5y﹣3=0,求4x•32y的值.28.已知:a+b=3,ab=2,求下列各式的值:(1)a2b+ab2(2)a2+b2.29.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.30.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.31.若a2﹣2a+1=0.求代数式的值.32.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.33.(2a+b+1)(2a+b﹣1)34.分解因式:x3﹣2x2y+xy2.35.分解因式:(1)a4﹣16;(2)x2﹣2xy+y2﹣9.36.分解因式x2(x﹣y)+(y﹣x).37.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.38.因式分解(1)﹣8ax2+16axy﹣8ay2;(2)(a2+1)2﹣4a2.39.因式分解:(1)3x﹣12x3(2)6xy2+9x2y+y3.40.若x2+2xy+y2﹣a(x+y)+25是完全平方式,求a的值.初二整式的乘法与因式分解所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共12小题)1.(2015•甘南州)下列运算中,结果正确的是()A.x3•x3=x6 B.3x2+2x2=5x4C.(x2)3=x5D.(x+y)2=x2+y2【分析】A、利用同底数幂的乘法法则计算得到结果,即可做出判断;B、合并同类项得到结果,即可做出判断;C、利用幂的乘方运算法则计算得到结果,即可做出判断;D、利用完全平方公式展开得到结果,即可做出判断.【解答】解:A、x3•x3=x6,本选项正确;B、3x2+2x2=5x2,本选项错误;C、(x2)3=x6,本选项错误;D、(x+y)2=x2+2xy+y2,本选项错误,故选A【点评】此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及幂的乘方,熟练掌握公式及法则是解本题的关键.2.(2008•南京)计算(ab2)3的结果是()A.ab5B.ab6C.a3b5 D.a3b6【分析】根据积的乘方的性质进行计算,然后直接选取答案即可.【解答】解:(ab2)3=a3•(b2)3=a3b6.故选D.【点评】本题考查积的乘方,把积中的每一个因式分别乘方,再把所得的幂相乘.3.(2011•呼和浩特)计算2x2•(﹣3x3)的结果是()A.﹣6x5B.6x5C.﹣2x6D.2x6【分析】根据单项式乘单项式的法则和同底数幂相乘,底数不变,指数相加计算后选取答案.【解答】解:2x2•(﹣3x3),=2×(﹣3)•(x2•x3),=﹣6x5.故选:A.【点评】本题主要考查单项式相乘的法则和同底数幂的乘法的性质.4.(2005•茂名)下列各式由左边到右边的变形中,是分解因式的为()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+3x=(x﹣4)(x+4)+3x【分析】根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.【解答】解:A、是多项式乘法,故A选项错误;B、右边不是积的形式,x2﹣4x+4=(x﹣2)2,故B选项错误;C、提公因式法,故C选项正确;D、右边不是积的形式,故D选项错误;故选:C.【点评】这类问题的关键在于能否正确应用分解因式的定义来判断.5.(2017春•薛城区期末)下列多项式中能用平方差公式分解因式的是()A.a2+(﹣b)2 B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+9【分析】能用平方差公式分解因式的式子特点是:两项平方项,符号相反.【解答】解:A、a2+(﹣b)2符号相同,不能用平方差公式分解因式,故A选项错误;B、5m2﹣20mn两项不都是平方项,不能用平方差公式分解因式,故B选项错误;C、﹣x2﹣y2符号相同,不能用平方差公式分解因式,故C选项错误;D、﹣x2+9=﹣x2+32,两项符号相反,能用平方差公式分解因式,故D选项正确.故选:D.【点评】本题考查用平方差公式分解因式的式子特点,两平方项的符号相反.6.(2013•张家界)下列各式中能用完全平方公式进行因式分解的是()A.x2+x+1 B.x2+2x﹣1 C.x2﹣1 D.x2﹣6x+9【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项分析判断后利用排除法求解.【解答】解:A、x2+x+1不符合完全平方公式法分解因式的式子特点,故A错误;B、x2+2x﹣1不符合完全平方公式法分解因式的式子特点,故B错误;C、x2﹣1不符合完全平方公式法分解因式的式子特点,故C错误;D、x2﹣6x+9=(x﹣3)2,故D正确.故选:D.【点评】本题考查了用公式法进行因式分解,能用公式法进行因式分解的式子的特点需熟记.7.(2009•眉山)下列因式分解错误的是()A.x2﹣y2=(x+y)(x﹣y)B.x2+6x+9=(x+3)2C.x2+xy=x(x+y)D.x2+y2=(x+y)2【分析】根据公式特点判断,然后利用排除法求解.【解答】解:A、是平方差公式,故A选项正确;B、是完全平方公式,故B选项正确;C、是提公因式法,故C选项正确;D、(x+y)2=x2+2xy+y2,故D选项错误;故选:D.【点评】本题主要考查了对于学习过的两种分解因式的方法的记忆与理解,需熟练掌握.8.(2015•菏泽)把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()A.a(x﹣2)2B.a(x+2)2C.a(x﹣4)2D.a(x+2)(x﹣2)【分析】先提取公因式a,再利用完全平方公式分解即可.【解答】解:ax2﹣4ax+4a,=a(x2﹣4x+4),=a(x﹣2)2.故选:A.【点评】本题先提取公因式,再利用完全平方公式分解,分解因式时一定要分解彻底.9.(2016秋•南漳县期末)如(x+m)与(x+3)的乘积中不含x的一次项,则m 的值为()A.﹣3 B.3 C.0 D.1【分析】先用多项式乘以多项式的运算法则展开求它们的积,并且把m看作常数合并关于x的同类项,令x的系数为0,得出关于m的方程,求出m的值.【解答】解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故选:A.【点评】本题主要考查了多项式乘多项式的运算,根据乘积中不含哪一项,则哪一项的系数等于0列式是解题的关键.10.(2009•内江)在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+2b)(a﹣b)=a2+ab﹣2b2【分析】第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积,等于a2﹣b2;第二个图形阴影部分是一个长是(a+b),宽是(a﹣b)的长方形,面积是(a+b)(a﹣b);这两个图形的阴影部分的面积相等.【解答】解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.【点评】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.11.(2013•枣庄)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.ab B.(a+b)2 C.(a﹣b)2D.a2﹣b2【分析】中间部分的四边形是正方形,表示出边长,则面积可以求得.【解答】解:中间部分的四边形是正方形,边长是a+b﹣2b=a﹣b,则面积是(a﹣b)2.故选:C.【点评】本题考查了列代数式,正确表示出小正方形的边长是关键.12.(2012•枣庄)如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A.(2a2+5a)cm2B.(6a+15)cm2C.(6a+9)cm2D.(3a+15)cm2【分析】大正方形与小正方形的面积的差就是矩形的面积,据此即可求解.【解答】解:矩形的面积是:(a+4)2﹣(a+1)2=(a+4+a+1)(a+4﹣a﹣1)=3(2a+5)=6a+15(cm2).故选B.【点评】本题考查了平方差公式的几何背景,理解大正方形与小正方形的面积的差就是矩形的面积是关键.二.填空题(共13小题)13.(2015•黄石)分解因式:3x2﹣27= 3(x+3)(x﹣3).【分析】观察原式3x2﹣27,找到公因式3,提出公因式后发现x2﹣9符合平方差公式,利用平方差公式继续分解.【解答】解:3x2﹣27,=3(x2﹣9),=3(x+3)(x﹣3).故答案为:3(x+3)(x﹣3).【点评】本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次分解因式.14.(2013•上海)分解因式:a2﹣1= (a+1)(a﹣1).【分析】符合平方差公式的特征,直接运用平方差公式分解因式.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a2﹣1=(a+1)(a﹣1).故答案为:(a+1)(a﹣1).【点评】本题主要考查平方差公式分解因式,熟记公式是解题的关键.15.(2013•邵阳)因式分解:x2﹣9y2= (x+3y)(x﹣3y).【分析】直接利用平方差公式分解即可.【解答】解:x2﹣9y2=(x+3y)(x﹣3y).【点评】本题主要考查利用平方差公式分解因式,熟记公式结构是解题的关键.16.(2017•大庆)分解因式:x3﹣4x= x(x+2)(x﹣2).【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.17.(2016•乐山)因式分解:a3﹣ab2= a(a+b)(a﹣b).【分析】观察原式a3﹣ab2,找到公因式a,提出公因式后发现a2﹣b2是平方差公式,利用平方差公式继续分解可得.【解答】解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).【点评】本题是一道典型的中考题型的因式分解:先提取公因式,然后再应用一次公式.本题考点:因式分解(提取公因式法、应用公式法).18.(2013•三明)分解因式:x2+6x+9= (x+3)2.【分析】直接用完全平方公式分解即可.【解答】解:x2+6x+9=(x+3)2.【点评】本题考查了公式法分解因式,熟记完全平方公式法的结构特点是解题的关键.19.(2017•咸宁)分解因式:2a2﹣4a+2= 2(a﹣1)2.【分析】原式提取2,再利用完全平方公式分解即可.【解答】解:原式=2(a2﹣2a+1)=2(a﹣1)2.故答案为:2(a﹣1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.20.(2015•西藏)分解因式:x3﹣6x2+9x= x(x﹣3)2.【分析】先提取公因式x,再对余下的多项式利用完全平方公式继续分解.【解答】解:x3﹣6x2+9x,=x(x2﹣6x+9),=x(x﹣3)2.故答案为:x(x﹣3)2.【点评】本题考查提公因式法分解因式和利用完全平方公式分解因式,关键在于需要进行二次分解因式.21.(2008•大庆)分解因式:ab2﹣2ab+a= a(b﹣1)2.【分析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解.【解答】解:ab2﹣2ab+a,=a(b2﹣2b+1),=a(b﹣1)2.【点评】考查提公因式法分解因式和利用完全平方公式分解因式,难点在于提取公因式后利用完全平方公式进行二次因式分解.22.(2013•安顺)分解因式:2a3﹣8a2+8a= 2a(a﹣2)2.【分析】先提取公因式2a,再对余下的多项式利用完全平方公式继续分解.【解答】解:2a3﹣8a2+8a,=2a(a2﹣4a+4),=2a(a﹣2)2.故答案为:2a(a﹣2)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.23.(2013•菏泽)分解因式:3a2﹣12ab+12b2= 3(a﹣2b)2.【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解即可求得答案.【解答】解:3a2﹣12ab+12b2=3(a2﹣4ab+4b2)=3(a﹣2b)2.故答案为:3(a﹣2b)2.【点评】本题考查了用提公因式法和公式法进行因式分解的知识.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,注意因式分解要彻底.24.(2013•内江)若m2﹣n2=6,且m﹣n=2,则m+n= 3 .【分析】将m2﹣n2按平方差公式展开,再将m﹣n的值整体代入,即可求出m+n 的值.【解答】解:m2﹣n2=(m+n)(m﹣n)=(m+n)×2=6,故m+n=3.故答案为:3.【点评】本题考查了平方差公式,比较简单,关键是要熟悉平方差公式(a+b)(a﹣b)=a2﹣b2.25.(2014•西宁)如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为70 .【分析】应把所给式子进行因式分解,整理为与所给周长和面积相关的式子,代入求值即可.【解答】解:∵a+b=7,ab=10,∴a2b+ab2=ab(a+b)=70.故答案为:70.【点评】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.三.解答题(共15小题)26.(2006•江西)计算:(x﹣y)2﹣(y+2x)(y﹣2x)【分析】利用完全平方公式,平方差公式展开,再合并同类项.【解答】解:(x﹣y)2﹣(y+2x)(y﹣2x),=x2﹣2xy+y2﹣(y2﹣4x2),=x2﹣2xy+y2﹣y2+4x2,=5x2﹣2xy.【点评】本题考查完全平方公式,平方差公式,属于基础题,熟记公式是解题的关键,去括号时要注意符号的变化.27.(2013春•苏州期末)若2x+5y﹣3=0,求4x•32y的值.【分析】由方程可得2x+5y=3,再把所求的代数式化为同为2的底数的代数式,运用同底数幂的乘法的性质计算,最后运用整体代入法求解即可.【解答】解:4x•32y=22x•25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=8.【点评】本题考查了同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.28.(2009•十堰)已知:a+b=3,ab=2,求下列各式的值:(1)a2b+ab2(2)a2+b2.【分析】(1)把代数式提取公因式ab后把a+b=3,ab=2整体代入求解;(2)利用完全平方公式把代数式化为已知的形式求解.【解答】解:(1)a2b+ab2=ab(a+b)=2×3=6;(2)∵(a+b)2=a2+2ab+b2∴a2+b2=(a+b)2﹣2ab,=32﹣2×2,=5.【点评】本题考查了提公因式法分解因式,完全平方公式,关键是将原式整理成已知条件的形式,即转化为两数和与两数积的形式,将a+b=3,ab=2整体代入解答.29.(2015•张家港市模拟)若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.【分析】(1)先去括号,再整体代入即可求出答案;(2)先变形,再整体代入,即可求出答案.【解答】解:(1)∵x+y=3,(x+2)(y+2)=12,∴xy+2x+2y+4=12,∴xy+2(x+y)=8,∴xy+2×3=8,∴xy=2;(2)∵x+y=3,xy=2,∴x2+3xy+y2=(x+y)2+xy=32+2=11.【点评】本题考查了整式的混合运算和完全平方公式的应用,题目是一道比较典型的题目,难度适中.30.(2014秋•德惠市期末)先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.【分析】首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.【解答】解:3a(2a2﹣4a+3)﹣2a2(3a+4)=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.【点评】本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.31.(2007•天水)若a2﹣2a+1=0.求代数式的值.【分析】根据完全平方公式先求出a的值,再代入求出代数式的值.【解答】解:由a2﹣2a+1=0得(a﹣1)2=0,∴a=1;把a=1代入=1+1=2.故答案为:2.【点评】本题考查了完全平方公式,灵活运用完全平方公式先求出a的值,是解决本题的关键.32.(2012春•郯城县期末)分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.【分析】(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.【解答】解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.【点评】本题考查了提公因式法与公式法分解因式,是因式分解的常用方法,难点在(3),提取公因式﹣y后,需要继续利用完全平方公式进行二次因式分解.33.(2011春•乐平市期中)(2a+b+1)(2a+b﹣1)【分析】把(2a+b)看成整体,利用平方差公式和完全平方公式计算后整理即可.【解答】解:(2a+b+1)(2a+b﹣1),=(2a+b)2﹣1,=4a2+4ab+b2﹣1.【点评】本题考查了平方差公式和完全平方公式的运用,构造成公式结构是利用公式的关键,需要熟练掌握并灵活运用.34.(2009•贺州)分解因式:x3﹣2x2y+xy2.【分析】先提取公因式x,再利用完全平方公式分解因式.完全平方公式:a2±2ab+b2=(a±b)2;【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.【点评】主要考查提公因式法分解因式和利用完全平方公式分解因式,本题难点在于要进行二次分解.35.(2011•雷州市校级一模)分解因式:(1)a4﹣16;(2)x2﹣2xy+y2﹣9.【分析】(1)两次运用平方差公式分解因式;(2)前三项一组,先用完全平方公式分解因式,再与第四项利用平方差公式进行分解.【解答】解:(1)a4﹣16=(a2)2﹣42,=(a2﹣4)(a2+4),=(a2+4)(a+2)(a﹣2);(2)x2﹣2xy+y2﹣9,=(x2﹣2xy+y2)﹣9,=(x﹣y)2﹣32,=(x﹣y﹣3)(x﹣y+3).【点评】(1)关键在于需要两次运用平方差公式分解因式;(2)主要考查分组分解法分解因式,分组的关键是两组之间可以继续分解因式.36.(2008春•利川市期末)分解因式x2(x﹣y)+(y﹣x).【分析】显然只需将y﹣x=﹣(x﹣y)变形后,即可提取公因式(x﹣y),然后再运用平方差公式继续分解因式.【解答】解:x2(x﹣y)+(y﹣x),=x2(x﹣y)﹣(x﹣y),=(x﹣y)(x2﹣1),=(x﹣y)(x﹣1)(x+1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.37.(2009秋•三台县校级期末)分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.【分析】(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.【解答】解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.38.(2009春•扶沟县期中)因式分解(1)﹣8ax2+16axy﹣8ay2;(2)(a2+1)2﹣4a2.【分析】(1)先提取公因式﹣8a,再用完全平方公式继续分解.(2)先用平方差公式分解,再利用完全平方公式继续分解.【解答】解:(1)﹣8ax2+16axy﹣8ay2,=﹣8a(x2﹣2xy+y2),=﹣8a(x﹣y)2;(2)(a2+1)2﹣4a2,=(a2+1﹣2a)(a2+1+2a),=(a+1)2(a﹣1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.39.(2011秋•桐梓县期末)因式分解:(1)3x﹣12x3(2)6xy2+9x2y+y3.【分析】(1)先提取公因式3x,再对余下的多项式利用平方差公式继续分解;(2)先提取公因式y,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a±b)2..【解答】解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)6xy2+9x2y+y3=y(6xy+9x2+y2)=y(3x+y)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.40.(2003•黄石)若x2+2xy+y2﹣a(x+y)+25是完全平方式,求a的值.【分析】先把前三项根据完全平方公式的逆用整理,再根据两平方项确定出这两个数,利用乘积二倍项列式求解即可.【解答】解:原式=(x+y)2﹣a(x+y)+52,∵原式为完全平方式,∴﹣a(x+y)=±2×5•(x+y),解得a=±10.【点评】本题考查了完全平方式,需要二次运用完全平方式,熟记公式结构是求解的关键,把(x+y)看成一个整体参与运算也比较重要.Welcome !!! 欢迎您的下载,资料仅供参考!。
第14章 整式的乘法与因式分解(培优篇)一、单选题(本大题共10小题,每小题3分,共30分)1.下列计算正确的是( )A .a 2•a 3=a 6B .a 6÷a 3=a 2C .4x 2﹣3x 2=1D .(﹣2a 2)3=﹣8a 62.计算20206060(0.125)(2)-⨯的结果是( )A .1B .1-C .8D .8-3.若3x y -=,则226x y y --=( )A .3B .6C .9D .124.下列运算中,结果正确的是( )A .235a b ab+=B .()2a a b a b -+=-C .()222a b a b +=+D .236a a a ⋅=5.已知553a =,444b =,335c =,则a 、b 、c 的大小关系为( )A .c a b <<B .c b a <<C .a b c <<D .a c b <<6.若220x x +-=,则3222016x x x +-+等于( )A .2020B .2019C .2018D .-20207.观察等式(2a ﹣1)a +2=1,其中a 的取值可能是( )A .﹣2B .1或﹣2C .0或1D .1或﹣2或08.若(b ﹣c )2=4(1﹣b )(c ﹣1),则b +c 的值是( )A .﹣1B .0C .1D .29.已知(2x ﹣3)7=a 0x 7+a 1x 6+a 2x 5+……+a 6x +a 7,则a 0+a 1+a 2+……+a 7=( )A .1B .﹣1C .2D .010.我国南宋数学家杨辉用“三角形”解释二项和的乘方规律,称之为“杨辉三角”,这个“三角形”给出了()(1,2,3,4,)n a b n += 的展开式的系数规律(按n 的次数由大到小的顺序)1 1 1()a b a b+=+1 2 1 222()2a b a ab b +=++1 3 3 1 +=+++33223()33a b a a b ab b 1 4 6 4 1 4322344()464a b a a b a b ab b +=++++… … 请依据上述规律,写出20212x x ⎛⎫- ⎪⎝⎭展开式中含2019x 项的系数是( )A .-2021B .2021C .4042D .-4042二、填空题(本大题共8小题,每小题4分,共32分)11.若34x =,97y =,则3x ﹣2y 的值为__.12.因式分解:22421x y y -+-=________.13.如果实数a ,b 满足a+b =6,ab =8,那么a 2+b 2=_____.14.若实数a ,b 满足1a b -=,则代数式2225a b b --+的值为_______________.15.多项式2222627a ab b b -+-+的最小值为________.16.计算:(2+1)(22+1)(24+1)…(232+1)+1=_____.17.设123,,a a a K K 是一列正整数,其中1a 表示第一个数,2a 表示第二个数,依此类推,n a 表示第n 个数(n 是正整数),已知11a =,2214(1)(1)n n n a a a +=---,则2018a =___________.18.如图,用大小相同的小正方形拼图形,第1个图形是一个小正方形;第2个图形由9个小正方形拼成;第3个图形由25个小正方形拼成,依此规律,若第n 个图形比第(n -1)个图形多用了72个小正方形,则n 的值是___________.三、解答题(本大题共6小题,共58分)19.(8分)已知a+b=-8 , ab=10,求22a b +和 2()a b -的值.20.(8分)爱动脑筋的小明在学习《幂的运算》时发现:若(0m n a a a =>,且1a ≠,m 、n 都是正整数),则m n =,例如:若455m =,则4m =.小明将这个发现与老师分享,并得到老师确认是正确的,请您和小明一起用这个正确的发现解决下面的问题:(1)如果3624322x x ⨯⨯=,求x 的值;(2)如果2133108x x +++=,求x 的值.21.(10分)阅读材料:若2222440m mn n n -+-+=,求m ,n 的值.解:∵2222440m mn n n -+-+=,∴()()2222440m mn n n n -++-+=,∴22()(2)0m n n -+-=,∴2()0m n -=,2(2)0n -=,∴2n =,2m =.根据你的观察,探究下面的问题:(1)已知22228160x y xy y +-++=,则x =________,y =________;(2)已知ABC V 的三边长a 、b 、c 都是正整数,且满足22248180a b a b +--+=,求ABC V 的周长.22.(10分)观察以下等式:第1个等式:42+32=52;第2个等式82+152=172;第3个等式:122+352=372;第4个等式:162+632=652;……;按照以上规律,解决下列问题:(1)写出第5个等式: ;(2)写出你猜想的第n 个等式: ______(用含n 的等式表示),并证明.23.(10分)图1是一个长为2m ,宽为2n 的长方形,将该长方形沿图中虚线用剪刀均分成四块小长方形,然后按照图2所示拼成一个正方形.(1)使用不同方法计算图2中小正方形的面积,可推出(m+n )2,(m-n )2,mn 之间的等量关系为: ;(2)利用(1)中的结论,解决下列问题:①已知a -b =4,ab =5,求a +b 的值;②已知a >0,a -3a =2,求a +3a的值.24.(12分)如果一个自然数M 能分解成A ×B ,其中A 和B 都是两位数,且A 与B 的十位数字之和为10,个位数字之和为9,则称M 为“十全九美数”,把M 分解成A ×B 的过程称为“全美分解”,例如:∵2838=43×66,4+6=10,3+6=9,∴2838是“十全九美数”;∵391=23×17,2+1≠10,∴391不是“十全九美数”.(1)判断2100和168是否是“十全九美数”?并说明理由;(2)若自然数M 是“十全九美数”,“全美分解”为A ×B ,将A 的十位数字与个位数字的差,与B 的十位数字与个位数字的和求和记为()S M :将A 的十位数字与个位数字的和,与B 的十位数字与个位数字的差求差记为()T M .当()()S M T M 能被5整除时,求出所有满足条件的自然数M .参考答案1.D解:试题分析:根据同底数幂相乘,底数不变,指数相加,可知a 2·a 3=a 5,故不正确;根据同底数幂相除,底数不变,指数相减,可知a 6÷a 3=a 3,故不正确;根据合并同类项法则,可知4x 2-3x 2=x 2,故不正确;根据积的乘方,可知(-2a 2)3=-8a 6,故正确.故选D.2.A【分析】将6060(2)化为2020(8)使两个幂的指数相同,再利用积的乘方逆运算进行计算.解:20206060202022020002(0.125)(2)(0.125)(8)(01.1258)-⨯-⨯-⨯===,故选:A.【点拨】此题考查幂的乘方逆运算,积的乘方逆运算,熟记公式是解题的关键.3.C【分析】由3x y -=得x=3+y ,然后,代入所求代数式,即可完成解答.解:由3x y -=得x=3+y代入()2222369669y y y y y y y +--=++--=故答案为C.【点拨】本题主要考查了完全平方公式的应用,灵活对代数式进行变形是解答本题的关键.4.B【分析】A .不是同类项,不能合并;B.去括号合并同类项直接得答案判断即可;C.利用完全平方公式运算即可;D.利用同底数幂乘法进行运算即可.解:A. 2a+3b 不是同类项,不能合并,故此选项错误;B. 2a-(a+b)=2a-a-b=a-b ,故此选项正确;C. (a+b)2=a 2+2ab+b 2,故此选项错误;D.235a a a ⋅=,故此选项错误故选:B【点拨】本题考查了整式运算,涉及合并同类项、同底数幂乘法、完全平方公式;熟练掌握这些知识点并能灵活运用是解题的关键.5.A【分析】把a 、b 、c 三个数变成指数相同的幂,通过底数可得出a 、b 、c 的大小关系.解:∵a =(35)11=24311,b =(44)11=25611,c =(53)11=12511,又∵125243256<<,∴c a b <<.故选:A .【点拨】本题考查了幂的乘方的逆运算,解答本题关键是掌握幂的乘方法则,把各数的指数变成相同.6.C【分析】将220x x +-=变形为22x x =-+,22x x +=,代入3222016x x x +-+即可求解.解:∵220x x +-=,∴22x x =-+,22x x +=,∴3222016x x x +-+2222016x x x x =+-+g ()2222016x x x x =-++-+g 22016x x =++22016=+=2018.故选:C【点拨】本题考查了根据已知代数式的值求新代数式的值,将已知条件适当变形,代入所求代数式求解是解题关键.7.D【分析】存在3种情况:一种是指数为0,底数不为0;第二种是底数为1,指数为任意值;第三种是底数为-1,指数为偶数,分别求解可得.解:情况一:指数为0,底数不为0即:a +2=0,2a -1≠0解得:a =-2情况二:底数为1,指数为任意值即:2a -1=1解得:a =1情况三:底数为-1,指数为偶数即:2a -1=-1,解得a =0代入a +2=2,为偶数,成立故答案为:D【点拨】本题考查0指数和底数为±1的指数的特点,本题底数为-1的情况容易遗漏,需要关注.8.D【分析】先将等式的右边展开并移项到左边,然后再根据完全平方公式可以分解因式,即可得到b +c 的值.解:∵(b ﹣c )2=4(1﹣b )(c ﹣1),∴b 2﹣2bc +c 2=4c ﹣4﹣4bc +4b ,∴(b 2+2bc +c 2)﹣4(b +c )+4=0,∴(b +c )2﹣4(b +c )+4=0,∴(b +c ﹣2)2=0,∴b +c =2,故选:D .【点拨】本题考查因式分解的应用,掌握运用完全平方公式进行因式分解是解答本题的关键.9.B【分析】根据等式的性质,只有当x =1时,才表示系数之和,故代入x =1计算即可.解:当x =1时,(2﹣3)7=a 0+a 1+a 2+……+a 6+a 7,则a 0+a 1+a 2+……+a 7=﹣1,故选B .【点拨】本题主要考查方程的解,关键在于x =1的确定,要使出现所以系数之和,则必须使得x =1.10.D【分析】先观察规律,再按照规律写出第一项、第二项,其中第二项2019x ,写出系数即可解:根据规律可以发现:20212x x ⎛⎫- ⎪⎝⎭第一项的系数为1,第二项的系数为2021,∴第一项为:x 2021,第二项为:20202020201922202120214042xx x x x ⎛⎫-=-=- ⎪⎝⎭g g g g 故选:D【点拨】本题考查杨辉三角多项式乘法找规律的问题,观察发现式子中的规律是关键11.47【分析】根据2233339x y x y x y ÷÷﹣==即可代入求解.解:2233339x y x y x y ÷÷﹣==47=.故答案是:47.【点拨】本题考查了同底数的幂的除法运算,正确理解2233339x y x y x y ÷÷﹣==是关键.12.(21)(21)x y x y +--+【分析】根据多项式特点,进行分组,两次运用公式法分解因式即可.解:22421x y y -+-()22=421x y y --+()22=41x y --=(21)(21)x y x y +--+故答案为:(21)(21)x y x y +--+【点拨】本题无法直接提公因式或运用乘法公式进行分解因式,结合式子特点,对多项式分组,两次运用公式法进行分解,要注意符号问题,正确分组是解题关键.13.20解:∵6,a b +=∴222()236,a b a ab b +=++=∵ab=8,∴22a b +=36-2ab=36-2×8=20.【点拨】本题考查了完全平方公式的变形应用,熟练进行完全平方公式的变形是解题的关键.14.6.【分析】将所求代数式中的22a b -因式分解,再把1a b -=代入,化简即可.解:2225()()25a b b a b a b b --+=+--+,把1a b -=代入得()25255a b b a b b a b +-+=+-+=-+,再把1a b -=代入得5156a b -+=+=;故答案为:6.【点拨】本题考查了求代数式的值和因式分解以及整式计算,解题关键是熟练利用因式分解把所求代数式变形,然后整体代入求值.15.18.【分析】利用公式法进行因式分解,根据非负性确定最小值.解:2222627a ab b b -+-+,=222)((269)18a ab b b b -+-+++,=22()(3)18a b b -+-+,∵22()(3)00a b b --≥≥,,∴22()(3)18a b b -+-+的最小值为18;故答案为:18.【点拨】本题考查了因式分解和非负数的性质,解题关键是熟练运用乘法公式进行因式分解,根据非负数的性质确定最值.16.264【分析】在原式前面乘以(2﹣1)构造能用平方差公式的结构,连续使用平方差公式即可.解:原式=()()()()232212121211-++++g g g ,=()()()22322121211-+++g g g ,=()()()44322121211-+++g g g ,=264﹣1+1,=264;故本题答案为264.【点拨】此题主要考查平方差公式的应用,解题的关键是将原式变形为平方差的形式.17.4035解:【分析】()()22n n 1n 4a a 1a 1+=---整理得()()22n n 1a 1a 1++=-,从而可得a n+1-a n =2或a n =-a n+1,再根据题意进行取舍后即可求得a n 的表达式,继而可得a 2018.解:∵()()22n n 1n 4a a 1a 1+=---,∴()()22n n n 14a a 1a 1++-=-,∴()()22n n 1a 1a 1++=-,∴a n +1=a n+1-1或a n +1=-a n+1+1,∴a n+1-a n =2或a n =-a n+1,又∵123a ,a ,a ⋯⋯是一列正整数,∴a n =-a n+1不符合题意,舍去,∴a n+1-a n =2,又∵a 1=1,∴a 2=3,a 3=5,……,a n =2n-1,∴a 2018=2×2018-1=4035,故答案为4035.【点拨】本题考查了完全平方公式的应用、平方根的应用、规律型题,解题的关键是通过已知条件推导得出a n+1-a n =2.18.10【分析】依次观察前几个图形以及正方形的个数,进而归纳得到拼成第n 个图形需要2(21)n -个正方形,即可得出结论.解:第1个图形是一个小正方形;第2个图形由29(221)=⨯-个小正方形拼成;第3个图形由225(231)=⨯-个小正方形拼成,……拼成第1n -个图形需要2(23)n -个正方形,拼成第n 个图形需要2(21)n -个正方形,2(21)n -2(23)72n --=,解得:10n =;故答案为:10.【点拨】本题主要考查了图形类规律探索,根据图形得出小正方形的变化规律是解题的关键.19.44,24.【分析】运用完全平方公式给a+b=-8左右两边平方,然后结合ab=10,求出22a b +;再展开2()a b -,代入22a b +和ab 的值即可.解:(a+b )2=(-8)222a b ++2ab=6422a b +=64-2ab22a b +=64-2×10=442()a b -=22a b +-2ab=44-2×10=24【点拨】本题考查了完全平方公式的应用,掌握并灵活应用完全平方公式是解答本题的关键.20.(1)x =5(2)x =2【分析】(1)利用幂的乘方的法则及同底数幂的乘法的法则对式子进行整理,从而可求解;(2)利用同底数幂的乘法的法则及幂的乘方的法则对式子进行整理,即可求解.解:(1)因为2×4x ×32x =236,所以2×22x ×25x =236,即21+7x =236,所以1+7x =36,解得:x =5;(2)因为3x +2+3x +1=108,所以3×3x +1+3x +1=4×27,4×3x +1=4×33,即3x +1=33,所以x +1=3,解得:x =2.【点拨】本题主要考查幂的乘方,同底数幂的乘法,解答的关键是对相应的运算法则的掌握与运用.21.(1)-4,-4;(2)ABC V 的周长为9.【分析】(1)利用完全平方公式配方,再根据非负数的性质即可得出x 和y 的值;(2)利用完全平方公式配方,再根据非负数的性质即可得出a 和b 的值,从而得出c 的取值范围,根据c 为整数即可得出c 的值,从而求得三角形的周长.解:(1)由22228160x y xy y +-++=得222)((2816)0x xy y y y -+++=+,22()(4)0x y y -++=,∴0x y -=,40y +=,∴4x y ==-,故答案为:-4,-4;(2)由22248180a b a b +--+=得:222428160a a b b -++-+=,222(1)(4)0a b -+-=,∴a -1=0,b -4=0,∴a =1,b =4,∴3<c <5,∵△ABC 的三边长a 、b 、c 都是正整数,∴c =4,∴ABC V 的周长为9.【点拨】本题主要考查了配方法的应用及偶次方的非负性,同时考查了三角形的三边关系,本题难度中等.22.(1)202+992=1012; (2)(4n )2+[(2n -1)(2n +1)]2=[(2n -1)(2n +1)+2]2;证明见分析.【分析】(1)观察等式中的3个数中的数字与等式的序号的关系,第一个数是序号的4倍的平方,第二个数是从1开始的连续两个奇数的乘积的平方,第三个数是连续两个奇数乘积+2的平方,以此规律可得结论;(2)依据(1)中找到的规律得到第n个式子,通过计算式子的左边和右边来证明猜想的正确.解:(1)观察等式中的3个数中的数字与等式的序号的关系,第一个数是序号的4倍的平方,第二个数是从1开始的连续两个奇数的乘积的平方,第三个数是连续两个奇数乘积+2的平方,∴第5个等式为(4×5)2+[9×11]2=202+992=1012;故答案为202+992=1012;(2)依据(1)中找到的规律得到第n个式子为:(4n)2+[(2n-1)(2n+1)]2=[(2n-1)(2n+1)+2]2;证明:左边=16n2+16n4-8n2+1=(4n2+1)2;右边=(4n2+1)2;∴左=右,即原等式成立.【点拨】本题考查了数字的变化规律,列代数式,积的乘方,多项式乘多项式.准确找出等式中的数字与等式序号的关系是解题的关键.23.(1)(m-n)2=(m+n)2-4mn;(2)①6或-6;②4.【分析】(1)由题意知,阴影部分小正方形的边长为m-n.根据正方形的面积公式即可求出图中阴影部分的面积,也可以用大正方形的面积减去四个小长方形的面积求图中阴影部分的面积,利用两种求法确定出所求关系式即可;(2)①利用(1)的结论,可知(a-b)2=(a+b)2-4ab,把已知数值整体代入即可;②先利用完全平方公式进行变形,即将a-3a=2两边同时平方,然后求出(a+3a)2的值,从而得出结果.解:(1)阴影部分的面积可以看作是边长m-n的正方形的面积,也可以看作边长m+n 的正方形的面积减去4个小长方形的面积,∴(m-n)2=(m+n)2-4mn,故答案为:(m-n)2=(m+n)2-4mn;(2)①∵a-b=4,ab=5,且由(1)知(a-b)2=(a+b)2-4ab,∴(a+b)2=16+20=36,∴a+b=6或-6;②∵a -3a =2,∴(a -3a )2= a 2-6+29a=4,∴a 2+6+29a =16,∴(a +3a)2=16,又a >0,∴a +3a =4.【点拨】本题考查了完全平方公式的几何背景,整式的混合运算以及分式的求值等知识,熟练掌握运算法则是解本题的关键.24.(1)2100是“十全九美数” , 168不是“十全九美数”,理由见分析;(2)满足“十全九美数”条件的M 有:1564或1914或1164.【分析】(1)根据“十全九美数”的定义直接判定即可;(2)设A 的十位数字为m ,个位数字为n ,得出S (M )=19-2n ,T (M )=2m -1,当()()S M T M 能被5整除时,设值为k ,再分类进行讨论即可求解.(1)解:2100是“十全九美数” , 168不是“十全九美数”,理由如下:∵2100=25×84,2+8=10,5+4=9,∴2100是“十全九美数”;∵168=14×12,1+1≠10,∴168不是“十全九美数”;(2)解:设A 的十位数字为m ,个位数字为n ,则A =10m +n ,∵M 是“十全九美数”, M=A ×B ,∴B 的十位数字为10-m ,个位数字为9-n ,则B =10(10-m )+9-n =109-10m -n ,由题知:S (M )=m -n +10-m +9-n =19-2n ,T (M )=m +n -()109m n ⎡⎤---⎣⎦=2m -1,根据题意令()()192521S M n k T M m -==-(k 为整数),由题意知:1≤m ≤9,0≤n ≤9,且都为整数,∴1≤19-2n ≤19,1≤2m -1≤17,当k =1时,19221n m --=5,∴1925211n m -=⎧⎨-=⎩或19210212n m -=⎧⎨-=⎩或19215213n m -=⎧⎨-=⎩,解得17mn=⎧⎨=⎩或3292mn⎧=⎪⎪⎨⎪=⎪⎩(舍去)或22mn=⎧⎨=⎩;当k=2时,19221nm--=10,∴19210211nm-=⎧⎨-=⎩,解得192mn=⎧⎪⎨=⎪⎩(舍去),当k=3时,19221nm--=15,∴19215211nm-=⎧⎨-=⎩,解得12mn=⎧⎨=⎩,∴A=10m+n=17,B=109-10m-n=92;或A=10m+n=22,B=109-10m-n=87;或A=10m+n=12,B=109-10m-n=97;∵M=A×B=17×92=1564或M=A×B=22×87=1914或M=A×B=12×97=1164,综上,满足“十全九美数”条件的M有:1564或1914或1164.【点拨】本题是新定义题,主要考查了列代数式,以及因式分解的应用,一元一次方程的应用,关键是准确理解“十全九美数”含义.。
一、选择题1.对于①2(2)(1)2x x x x +-=+-,②4(14)x xy x y -=-,从左到右的变形,表述正确的是( )A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解D解析:D【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式判断即可.将多项式×多项式变得多项式,是乘法运算.【详解】解:①2(2)(1)2x x x x +-=+-,从左到右的变形是整式的乘法;②4(14)x xy x y -=-,从左到右的变形是因式分解;所以①是乘法运算,②因式分解.故选:D .【点睛】此题考查了因式分解与乘法运算的定义的认识,解题的关键是掌握因式分解及乘法运算的定义.2.如表,已知表格中竖直、水平、对角线上的三个数的和都相等,则m +n =( )A .1B .2C .5D .7D 解析:D【分析】 由题意竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),即可解出n =5,从而求出m 值即可.【详解】解:由题意得竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),整理得n =5,则有m ﹣3+4=﹣3+1+5,解得m =2,∴m +n =5+2=7,故选:D .【点睛】此题主要考查列一元一次方程解决实际问题,理解题意,找出等量关系是解题关键. 3.已知3a b -=、4b c -=、5c d -=,则()()a c d b --的值为( )A .7B .9C .-63D .12C 解析:C【分析】由3a b -=与4b c -=两式相加可得7a c -=,由4b c -=与5c d -=两式相加得9b d -=,即9d b -=-,然后整体代入求解即可.【详解】解:由3a b -=与4b c -=两式相加可得7a c -=,由4b c -=与5c d -=两式相加得9b d -=,即9d b -=-,∴()()()7963a c d b --=⨯-=-;故选C .【点睛】本题主要考查求代数式的值,关键是根据题意利用整体思想进行求解.4.下列多项式中,不能用完全平方公式分解因式的是( )A .214m m ++ B .222x xy y -+- C .221449x xy y -++D .22193x x -+ C 解析:C【分析】直接利用完全平方公式分解因式得出答案.【详解】 A 、222111(44)(2)444m m m m m ++=++=+能用完全平方公式分解因式,不符合题意; B 、222222(2)()x xy y x xy y x y -+-=--+=--能用完全平方公式分解因式,不符合题意;C 、221449x xy y -++不能用完全平方公式分解因式,符合题意;D 、2222111(69)(3)9399x x x x x -+=-+=-能用完全平方公式分解因式,不符合题意; 故选:C .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握完全平方公式是解本题的关键. 5.下列运算正确的是( )A .3m ·4m =12mB .m 6÷m 2= m 3(m≠0)C .236(3)27m m -=D .(2m+1)(m-1)=2m 2-m-1D解析:D【分析】利用同底数幂的乘法和除法,积的乘方、幂的乘方,多项式乘多项式的运算法则计算即可判断.【详解】A 、 347·m m m =,该选项错误;B 、624m m m ÷=,该选项错误;C 、236(3)27m m -=-,该选项错误;D 、(()221)121m m m m +-=--,该选项正确; 故选:D .【点睛】本题考查了同底数幂的乘法和除法,积的乘方、幂的乘方,多项式乘多项式,熟练掌握运算法则是解题的关键.6.已知552a =,443b =,334c =,则a ,b ,c 的大小关系是( )A .a b c >>B .b c a >>C .c a b >>D .a c b >> B解析:B【分析】由552a =,443b =,334c =,比较5432,3,4的大小即可.【详解】解:∵555112=(2)a =,444113(3)b == ,333114(4)c == ,435342>> , ∴411311511(3)(4)(2)>>,即b c a >>,故选B .【点睛】本题考查了幂的乘方的逆运算及数的大小的比较,解题的关键是熟练掌握幂的乘方运算法则.7.下列计算正确的是( )A .()222x y x y +=+B .()32626m m =C .()2224x x -=-D .()()2111x x x +-=- D 解析:D【分析】根据完全平方公式,平方差公式和积的乘方公式分别判断即可.【详解】A. ()2222x y x xy y +=++,故原选项错误;B.()32628m m =,故原选项错误;C.()22244x x x -=-+,故原选项错误;D. ()()2111x x x +-=-,故选项正确.故选:D .【点睛】本题考查完全平方公式,平方差公式和积的乘方公式.熟记公式是解题关键.8.下列各多项式中,能用平方差公式分解因式的是( )A .21x -+B .21x +C .21x --D .221x x -+ A 解析:A【分析】根据平方差公式:两个数平方的差,等于这两个数的和与差的平方解答.【详解】A 、21x -+,能用平方差公式分解因式;B 、21x +,不能用平方差公式分解因式;C 、21x --,不能用平方差公式分解因式;D 、221x x -+,不能用平方差公式分解因式;故选:A .【点睛】此题考查平方差公式:22()()a b a b a b -=+-,掌握公式中多项式的特点是解题的关键.9.若()()()248(21)2121211A =+++++,则A 的末位数字是( )A .4B .2C .5D .6D 解析:D【分析】在原式前面加(2-1),利用平方差公式计算得到结果,根据2的乘方的计算结果的规律得到答案.【详解】 ()()()248(21)2121211A =+++++=()()()248(21)(21)2121211-+++++=()()()2248(21)2121211-++++=()()448(21)21211-+++ =()88(21)211-++ =162,∵2的末位数字是2,22的末位数字是4,32的末位数字是8,42的末位数字是6,52的末位数字是2,,∴每4次为一个循环,∵1644÷=,∴162的末位数字与42的末位数字相同,即末位数字是6,故选:D .【点睛】此题考查利用平方差公式进行有理数的简便运算,数字类规律的探究,根据2的乘方末位数字的规律得到答案是解题的关键.10.下列各式计算正确的是( )A .5210a a a =B .()428=a aC .()236a b a b =D .358a a a += B解析:B【分析】根据同底数幂相乘、幂的乘方、积的乘方、合并同类项法则逐一计算即可判断.【详解】解:A 、a 5•a 2=a 7,此选项计算错误,故不符合题意;B 、(a 2)4=a 8,此选项计算正确,符合题意;C 、(a 3b )2=a 6b 2,此选项计算错误,故不符合题意;D 、a 3与a 5不能合并,此选项计算错误,故不符合题意.故选:B .【点睛】本题主要考查幂的运算,合并同类项,解题的关键是熟练掌握同底数幂相乘、幂的乘方与积的乘方的运算法则. 二、填空题11.因式分解()()26x mx x p x q +-=++,其中m 、p 、q 都为整数,则m 的最大值是______.5【分析】根据整式的乘法和因式分解的逆运算关系按多项式乘以多项式法则把式子变形然后根据pq 的关系判断即可【详解】解:∵(x +p)(x +q)=x2+(p+q )x+pq=x2+mx-6∴p+q=mpq=解析:5【分析】根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p 、q 的关系判断即可.【详解】解:∵(x +p)(x +q)= x 2+(p+q )x+pq= x 2+mx-6∴p+q=m ,pq=-6,∴pq=1×(-6)=(-1)×6=(-2)×3=2×(-3)=-6,∴m=-5或5或1或-1,∴m 的最大值为5,故答案为:5.【点睛】此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.12.历史上数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式()35f x mx nx =++,当3x =时,多项式的值为()32735f m n =++,若()36f =,则()3f -的值为__________.4【分析】由得到整体代入求出结果【详解】解:∵∴即∴故答案是:4【点睛】本题考查代数式求值解题的关键是掌握整体代入求值的思想解析:4【分析】由()36f =得到2731m n +=,整体代入()32735f m n -=--+求出结果.【详解】解:∵()36f =,∴27356m n ++=,即2731m n +=,∴()()327352735154f m n m n -=--+=-++=-+=.故答案是:4.【点睛】本题考查代数式求值,解题的关键是掌握整体代入求值的思想.13.因式分解269x y xy y -+-=______.-y (x-3)2【分析】提公因式-y 再利用完全平方公式进行因式分解即可;【详解】解:-x2y+6xy-9y=-y (x2-6x+9)=-y (x-3)2故答案为:-y (x-3)2;【点睛】本题考查了因式解析:-y (x-3)2【分析】提公因式-y ,再利用完全平方公式进行因式分解即可;【详解】解:-x 2y+6xy-9y=-y (x 2-6x+9)=-y (x-3)2,故答案为:-y (x-3)2;【点睛】本题考查了因式分解的方法,掌握提公因式法、公式法是正确解答的关键.14.若26x x m ++为完全平方式,则m =____.9【分析】完全平方式可以写为首末两个数的平方则中间项为x 和积的2倍即可解得m 的值【详解】解:根据题意是完全平方式且6>0可写成则中间项为x 和积的2倍故∴m=9故答案填:9【点睛】本题是完全平方公式的【分析】 完全平方式可以写为首末两个数的平方()2x m +,则中间项为x 和m 积的2倍,即可解得m 的值.【详解】解:根据题意,26x x m ++是完全平方式,且6>0,可写成()2x m +,则中间项为x 和m 积的2倍,故62x x m =,∴m =9,故答案填:9.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意中间项的符号,避免漏解.15.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)探究:上述操作能验证的等式是:__________;(请选择正确的一个)A .2222()a ab b a b -+=-B .22()()a b a b a b -=+-C .2()a ab a a b +=+(2)应用:利用所选(1)中等式两边的等量关系,完成下面题目:若46x y +=,45x y -=,则221664x y -+的值为__________.B ;【分析】(1)先求出图1中剩余部分的面积为a2-b2再求出图2中图形的面积即可列得等式;(2)利用平方差公式分解因式后代入求值即可【详解】(1)图1中边长为a 的正方形的面积为:a2边长为b 的正方解析:B ; 94(1)先求出图1中剩余部分的面积为a 2-b 2,再求出图2中图形的面积即可列得等式; (2)利用平方差公式分解因式后代入求值即可.【详解】(1)图1中,边长为a 的正方形的面积为:a 2,边长为b 的正方形的面积为:b 2,∴图1中剩余部分面积为:a 2-b 2,图2中长方形的长为:a+b ,长方形的宽为:a-b ,∴图2长方形的面积为:(a+b )(a-b ),故选:B ;(2)∵46x y +=,45x y -=,∴221664x y -+=(4)(4)64x y x y +-+=6564⨯+=94,故答案为:94.【点睛】此题考查几何图形中平方差公式的应用,利用平方差公式进行计算,掌握平方差计算公式是解题的关键.16.如图所示,在这个运算程序当中,若开始输入的x 是2,则经过2021次输出的结果是________.4【分析】根据第一次输出的结果是1第二次输出的结果是6…总结出每次输出的结果的规律求出2021次输出的结果是多少即可【详解】解:把x=2代入得:2÷2=1把x=1代入得:1+5=6把x=6代入得:6解析:4【分析】根据第一次输出的结果是1,第二次输出的结果是6,…,总结出每次输出的结果的规律,求出2021次输出的结果是多少即可.【详解】解:把x=2代入得:2÷2=1,把x=1代入得:1+5=6,把x=6代入得:6÷2=3,把x=3代入得:3+5=8,把x=8代入得:8÷2=4,把x=4代入得:4÷2=2,把x=2代入得:2÷2=1,以此类推,∵2021÷6=336…5,∴经过2021次输出的结果是4.故答案为:4.【点睛】本题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.17.如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第6个图形需要黑色棋子的个数是______,第n 个图形需要的黑色棋子的个数是______.(n 为正整数)【分析】根据题意分析可得第一个图形需要黑色棋子的个数为2×3-3第二个图形需要黑色棋子的个数为3×4-4第三个图形需要黑色棋子的个数为4×5-5依此类推可得第n 个图形需要黑色棋子的个数为计算可得答案解析:()2n n +【分析】根据题意分析可得第一个图形需要黑色棋子的个数为2×3-3,第二个图形需要黑色棋子的个数为3×4-4,第三个图形需要黑色棋子的个数为4×5-5,依此类推可得第n 个图形需要黑色棋子的个数为()()()122n n n ++-+,计算可得答案.【详解】解:观察图形可得:第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋子2×3-3个,第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子3×4-4个,第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子4×5-5个,按照这样的规律下去:则第n 个图形需要黑色棋子的个数是()()()()1222n n n n n ++-+=+,∴当n=6时,()26848n n +=⨯=;故答案为48;()2n n +.【点睛】本题主要考查图形规律及整式乘法的应用,关键是根据图形得到一般规律,然后问题可求解.18.若2249x mxy y -+是一个完全平方式,则m =______【分析】利用完全平方公式的结构特征判断即可确定出m 的值【详解】∵是一个完全平方式∴故答案为:【点睛】本题考查了完全平方公式的简单应用明确完全平方公式的基本形式是解题的关键解析:12±【分析】利用完全平方公式的结构特征判断即可确定出m 的值.【详解】∵2249x mxy y -+是一个完全平方式,∴22312m =±⨯⨯=±.故答案为:12±.【点睛】本题考查了完全平方公式的简单应用,明确完全平方公式的基本形式是解题的关键. 19.计算:32(2)a b -=________.【分析】积的乘方等于积中每个因式分别乘方再把所得的幂相乘根据法则计算即可【详解】=故答案为:【点睛】此题考查积的乘方:等于积中每个因式分别乘方再把所得的幂相乘解析:624a b【分析】积的乘方等于积中每个因式分别乘方,再把所得的幂相乘,根据法则计算即可.【详解】32(2)a b -=624a b ,故答案为:624a b .【点睛】此题考查积的乘方:等于积中每个因式分别乘方,再把所得的幂相乘.20.已知22m mn -=,25mn n -=,则22325m mn n +-=________.31【分析】由然后把代入求解即可【详解】解:由题意得:∴把代入得:原式=;故答案为31【点睛】本题主要考查代数式的值及整式的加减关键是对于所求代数式进行拆分然后整体代入求解即可解析:31【分析】由()()222232535m mn n m mn mn n+-=-+-,然后把22m mn -=,25mn n -=,代入求解即可.【详解】解:由题意得: ()()222232535m mn n m mn mn n +-=-+-,∴把22m mn -=,25mn n -=代入得:原式=325531⨯+⨯=;故答案为31.【点睛】本题主要考查代数式的值及整式的加减,关键是对于所求代数式进行拆分,然后整体代入求解即可. 三、解答题21.(1)因式分解:()222224x y x y +- (2)计算:()()()233323a b a b a b a b ⎡⎤----++÷-⎣⎦解析:(1)()()22x y x y -+;(2)9a【分析】 (1)先用平方差公式进行因式分解,然后再用完全平方公式进行因式分解;(2)整式的混合运算,注意先算乘方,然后算乘除,最后算加减,如果有小括号先算小括号里面的.【详解】解:(1)()222224x y x y +- =()()222222x y xyx y xy +-++ =()()22x y x y -+(2)()()()233323a b a b a b a b ⎡⎤----++÷-⎣⎦=()222296923a ab b b a a b ⎡⎤++--÷-⎣⎦ =2222(96+9)23a ab b b a a b ++-÷-=2(186)23a ab a b +÷-=933a b b +-=9a【点睛】本题考查因式分解和整式的混合运算,掌握运算法则正确计算是解题关键.22.图1是一个长为2a 、宽为2b 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的周长等于________.(2)观察图2,请你写出下列三个代数式2()a b +,2()a b -,ab 之间的等量关系为________.(3)运用你所得到的公式,计算:若m 、n 为实数,且3=-mn ,4m n -=,试求m n +的值.(4)如图3,点C 是线段AB 上的一点,以AC 、BC 为边向两边作正方形,设8AB =,两正方形的面积和1226S S +=,求图中阴影部分面积.解析:(1)44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)2或2-;(4)192. 【分析】(1)直接写出边长:长边减短边=a-b ,进而可得周长; (2)根据阴影正方形的面积=大正方形的面积-4个长方形的面积解答,或利用大正方形的面积=阴影方形的面积+4个长方形的面积解答,或利用4个长方形的面积=大正方形的面积-阴影方形的面积解答;(3)根据22()()4a b a b ab +=-+求解即可;(4)设AC x =,BC y =,则21S x =,22S y =,由1226S S +=可得,2226x y +=,然后把8x y +=的两边平方求解即可.【详解】解:(1)由图可知,阴影部分正方形的边长为:a-b ,∴阴影部分的正方形的周长等于44a b -或者4()a b -,故答案为:44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或(22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)∵3=-mn ,4m n -=,∴222()()444(3)16124m n m n mn +=-+=+⨯-=-=,∴2m n +=±,∴m n +的值为2或2-.(4)设AC x =,BC y =,则21S x =,22S y =,由1226S S +=可得,2226x y +=,而8x y AB +==, 而12S xy =阴影部分, ∵8x y +=,∴22264x xy y ++=,又∴2226x y +=,∴238xy =,∴13819242S xy ===阴影部分, 即,阴影部分的面积为192. 【点睛】本题主要考查完全平方公式的几何背景,利用图形的面积是解决此题的关键,利用数形结合的思想,注意观察图形.23.阅读下面材料,完成任务.多项式除以多项式可以类比于多位数的除法进行计算,先把多项式按照某个字母的降幂进行排列,缺少的项可以看做系数为零,然后类比多位数的除法利用竖式进行计算.∴26445123215÷= ∴()()32223133x x x x x +-÷-=++ 请用以上方法解决下列问题:(计算过程要有竖式)(1)计算:()()3223102x x x x +--÷- (2)若关于x 的多项式43225x x ax b +++能被二项式2x +整除,且a ,b 均为自然数,求满足以上条件的a ,b 的值.解析:(1)()()3222310245x x x x x x +--÷-=++;(2)0a =,8b =;1a =,4b =;2a =,0b =【分析】(1)直接利用竖式计算即可;(2)竖式计算,根据整除的意义,利用对应项的系数对应倍数求得答案即可.【详解】解:(1)列竖式如下:()()3222310245x x x x x x +--÷-=++ (2)列竖式如下:∵多项式43225x x ax b +++能被二项式2x +整除∴余式()420b a +-=∵a ,b 均为自然数∴0a =,8b =;1a =,4b =;2a =,0b =【点睛】此题考查利用竖式计算整式的除法,解题时要注意同类项的对应.24.材料:数学兴趣一小组的同学对完全平方公式进行研究:因2()0a b -≥,将左边展开得到2220a ab b -+≥,移项可得222a b ab +≥.(当且仅当a b =时,取“=”)数学兴趣二小组受兴趣一小组的启示,继续研究发现:对于任意两个非负数m ,n ,都存在2m n mn +≥m n =时,取“=”)并进一步发现,两个非负数m ,n 的和一定存在着个最小值.根据材料,解答下列问题:(1)22(3)(4)x y +≥________(0x >,0y >);221x x ⎛⎫+≥ ⎪⎝⎭________(0x >);(2)求312(0)4x x x+>的最小值; (3)已知2x >,当x 为何值时,代数式43201036x x ++-有最小值?并求出这个最小值.解析:(1)24xy ,2;(2)6;(3)83x =,最小值为2020 【分析】(1)根据阅读材料可得结论; (2)根据阅读材料介绍的方法即可得出结论;(3)把已知代数式变形为4(36)201636x x -++-,再利用阅读材料介绍的方法即可得出结论.【详解】解:(1)∵0x >,0y >∴22(3)(4)x y +≥23424x y xy ⨯⨯=∵0x > ∴221x x ⎛⎫+≥ ⎪⎝⎭122x x ⨯⨯= 故答案为:24xy ,2(2)∵0x >时,12x ,34x 均为正数,∴31264x x +≥= ∴3124x x+的最小值是6 (3)当2x >时,3x ,36x -,436x -均为正数 ∴43201036x x ++-4(36)2016201636x x =-++≥-2016=2020= 当43636x x -=-时,即8433x =或(舍去)时,有最小值, ∴当83x =时,代数式43201036x x ++-的最小值是2020.【点睛】此题主要考查了完全平方公式的变形应用,解答本题的关键是理解阅读材料所介绍的方法.25.已知2,3x y a a ==,求23x y a +的值解析:108【分析】首先根据已知条件可得a 2x 、a 3y 的值,然后利用同底数幂的乘法运算法则求出代数式的值.【详解】 解:2,3x y a a ==,∴()()23232323108x y xy a a a +=⨯=⨯=. 【点睛】 本题主要考查了幂的乘方和同底数幂的乘法,利用性质转化为已知条件的形式是解题的关键.26.因式分解:(1)322242a a b ab -+(2)4481x y -解析:(1)22()a a b -;(2)22((3)(3)9)x y x y x y +-+.【分析】(1)先提公因式2a ,再利用完全平方公式进行分解222a ab b -+,即可得出结果;(2)原多项式先利用平方差公式分解为2222(9)(9)x y x y +-,再次利用平方差公式对229x y -进行分解即可.【详解】解:(1)322242a a b ab -+222(2)a a ab b =-+22()a a b =-,(2)4481x y -2222(9)(9)x y x y =+-22(93(3))()x y x y x y =+-+.【点睛】本题考查了因式分解,掌握因式分解的基本方法并能结合多项式的特点准确分解是解题的关键.27.如果2()()41x m x n x x ++=+-.①填空:m n +=______,mn =______.②根据①的结果,求下列代数式的值:(1)225m mn n ++;(2)2()m n -.解析:①4,−1;②(1)13;(2)20【分析】①据多项式乘多项式的运算法则求解即可;②根据完全平方公式计算即可.【详解】①∵(x +m )(x +n )=x 2+(m +n )x +mn =x 2+4x−1,∴m +n =4,mn =−1.故答案为:4,−1;②(1)m 2+5mn +n 2=(m +n )2+3mn =42+3×(−1)=16−3=13;(2)(m−n )2=(m +n )2−4mn =42−4×(−1)=16+4=20.【点睛】本题主要考查了完全平方公式以及多项式乘多项式,熟记相关公式与运算法则是解答本题的关键.28.如图,在长8cm ,宽5cm 的长方形塑料板的四个角剪去4个边长为 cm x 的小正方形,按折痕做一个无盖的长方体盒子,求盒子的容积(塑料板的厚度忽略不计).解析:()32342640cm x x x -+ 【分析】这个盒子的容积=边长为8-2x,5-2x 的长方形的底面积乘高 x ,把相关数值代入即可.【详解】解:由题意,得()()8252x x x --()24016104x x x x =--+()242640x x x =-+3242640x x x =-+,答:盒子的容积是()32342640cm x x x -+.【点睛】本题主要考查单项式乘多项式,多项式乘多项式,解决本题的关键是找到表示长方体容积的等量关系.。
人教版八年级数学上册 整式的乘法与因式分解(培优篇)(Word版 含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.将多项式24x +加上一个整式,使它成为完全平方式,则下列不满足条件的整式是( ) A .4-B .±4xC .4116xD .2116x 【答案】D【解析】【分析】分x 2是平方项与乘积二倍项,以及单项式的平方三种情况,根据完全平方公式讨论求解.【详解】解:①当x 2是平方项时,4士4x+x ²=(2士x )2,则可添加的项是4x 或一4x ;②当x 2是乘积二倍项时,4+ x 2+4116x =(2+214x )2,则可添加的项是4116x ; ③若为单项式,则可加上-4.故选:D.【点睛】本题考查了完全平方式,比较复杂,需要我们全面考虑问题,首先考虑三个项分别充当中间项的情况,就有三种情况,还有就是第四种情况加上一个数,得到一个单独的单项式,也是可以成为一个完全平方式,这种情况比较容易忽略,要注意.2.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-5【答案】A【解析】【分析】观察已知m 2-m-1=0可转化为m 2-m=1,再对m 4-m 3-m+2提取公因式因式分解的过程中将m 2-m 作为一个整体代入,逐次降低m 的次数,使问题得以解决.【详解】∵m 2-m-1=0,∴m 2-m=1,∴m 4-m 3-m+2=m 2 (m 2-m)-m+2=m 2-m+2=1+2=3,故选A .【点睛】本题考查了因式分解的应用,解决本题的关键是将m 2-m 作为一个整体出现,逐次降低m 的次数.3.若代数式x 2+ax +64是一个完全平方式,则a 的值是( )A.-16 B.16 C.8 D.±16【答案】D【解析】试题分析:根据完全平方式的意义,首平方,尾平方,中间加减积的2倍,可知a=±2×8=16.故选:D点睛:此题主要考查了完全平方式的意义,解题关键是明确公式的特点,即:完全平方式分两种,一种是完全平方和公式,就是两个整式的和括号外的平方。
因式分解小结
因式分解小结 【知识精读知识精读】】
因式分解是把一个多项式分解成几个整式乘积的形式,
它和整式乘法互为逆运算,在初中代数中占有重要的地位和作用,
在其它学科中也有广泛应用,学习本章知识时,应注意以下几点。
1. 因式分解的对象是多项式;
2. 因式分解的结果一定是整式乘积的形式;
3. 分解因式,必须进行到每一个因式都不能再分解为止;
4. 公式中的字母可以表示单项式,也可以表示多项式;
5. 结果如有相同因式,应写成幂的形式;
6. 题目中没有指定数的范围,一般指在有理数范围内分解;
7. 因式分解的一般步骤是:
(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。
即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;
(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;
下面我们一起来回顾本章所学的内容。
【分类解析分类解析】】
1. 通过基本思路达到分解多项式的目的
例1. 分解因式x x x x x 54321
-+-+-分析:这是一个六项式,很显然要先进行分组,此题可把x x x x x 54321-+-+-和分
别看成一组,此时六项式变成二项式,提取公因式后,再进一步分解;也可把
x x 54-,x x 32-,x -1分别看成一组,此时的六项式变成三项式,提取公因式后再进行分解。
解一:原式=-+--+()()x x
x x x 54321=-+--+=--+=--+++x x
x x x x x x x x x x x 32232221111111()()()()
()()()
解二:原式=()()()x x x
x x 54321-+-+-=-+-+-=-++=-++-=--+++2x x x x x x x x
x x x
x x x x x x 4244222211111121111()()()
()()()[()]()()()
2. 通过变形达到分解的目的
例1. 分解因式x x
3234+-解一:将32x 拆成222x x +,则有
原式=++-=+++-=++-=-+x x x x x x x x x x x x 3222
22242222212()
()()()
()()
()()解二:将常数-4拆成--13,则有
原式=-+-=-+++-+=-++=-+x x
x x x x x x x x x x 322
22
1331113314412()()()()()()()
()()3. 在证明题中的应用
例:求证:多项式()()x x x 2241021100--++的值一定是非负数
分析:现阶段我们学习了两个非负数,它们是完全平方数、绝对值。
本题要证明这个多项式是非负数,需要变形成完全平方数。
证明:()()x x x 2241021100
--++=+---+=+---+=---++()()()()()()()()()()x x x x x x x x x
x x x 2237100
2723100
5145610022设y x x =-25,则
原式无论取何值都有的值一定是非负数
=-++=-+=--≥∴--++()()()()()()y y y y y y y x x x 1461008164404102110022
222∵
4. 因式分解中的转化思想
例:分解因式:()()()a b c a b b c ++-+-+2333
分析:本题若直接用公式法分解,过程很复杂,观察
a+b ,b+c 与a+2b+c 的关系,努力寻找一种代换的方法。
解:设a+b=A ,b+c=B ,a+2b+c=A+B
∴=+--=+++--=+=+=++++原式()()
()()()
A B A B
A A
B AB
B A B A B AB
AB A B a b b c a b c 333322333223333332说明:在分解因式时,灵活运用公式,对原式进行“代换”是很重要的。
中考点拨中考点拨::
例1.在?ABC 中,三边a,b,c 满足a b c ab bc 222166100
--++=求证:a c b
+=2证明:∵a b c ab bc 222166100
--++=∴++-+-=+--=+--+=+>∴+>+->-+=+=a ab b c bc b a b c b a b c a b c a b c
a b c a b c a b c a c b
222222
6910250
350820
880
20
2即,即于是有即()()()()∵说明:此题是代数、几何的综合题,难度不大,学生应掌握这类题不能丢分。
例2. 已知:x x x x +
=+=12133,则__________ 解:x x x x
x x 33211
11+=+-+()()=+
+--=×=()[()]
x x x x 1
12121
22
说明:利用x x x x 222
112+=+-()等式化繁为易。
题型展示题型展示::
1. 若x 为任意整数,求证:()()()7342---x x x 的值不大于100。
解:100
)4)(3)(7(2----x x x ∵=--+---=----+-=----+=---≤∴---≤()()()()()()[()()]
()()()()x x x x x x x x x x x x x x x x x 7232100
51456100
58516540
734100
2222222说明:代数证明问题在初二是较为困难的问题。
一个多项式的值不大于100,即要求它们的差小于零,把它们的差用因式分解等方法恒等变形成完全平方是一种常用的方法。
2. 将a a a a 222222216742++++++()()分解因式,并用分解结果计算。
解:a a a a 2222
1++++()()=+++++=++++=++a a a a a a a a a a a 2222
222
22
21211()()()()∴++=++==67423661431849
22222()说明:利用因式分解简化有理数的计算。
【实战模拟实战模拟】】
1. 分解因式:
()()131083108
233315
543222x x x x x a a a a ---+++-++-()()()()323352
476
223x xy y x y x x --+-+-+
2. 已知:x y xy x y +==-+6133
,,求:的值。
3. 矩形的周长是28cm ,两边x,y 使x x y xy y 3223
0+--=,求矩形的面积。
4. 求证:n n 35+是6的倍数。
(其中n 为整数)
5. 已知:a 、b 、c 是非零实数,且a b c a b c b c a c a b 2221111111
3++=+++++=-,(
)()(),求a+b+c 的值。
6. 已知:a 、b 、c 为三角形的三边,比较a b c a b 222224+-和的大小。