八年级数学上册第一章勾股定理2用勾股定理解古代趣题练习(新版)北师大版
- 格式:docx
- 大小:28.18 KB
- 文档页数:2
第一章勾股定理第1课时认识勾股定理1.若△ABC中,∠C=90°,(1)若a=5,b=12,则c= ;(2)若a=6,c=10,则b= ;(3)若a∶b=3∶4,c=10,则a= ,b= .2.某农舍的大门是一个木制的矩形栅栏,它的高为2 m,宽为1.5 m,现需要在相对的顶点间用一块木棒加固,木板的长为.3.直角三角形两直角边长分别为5 cm,12 cm,则斜边上的高为.4.等腰三角形的腰长为13 cm,底边长为10 cm,则面积为().A.30 cm2B.130 cm2C.120 cm2D.60 cm25.轮船从海中岛A出发,先向北航行9km,又往西航行9 km,由于遇到冰山,只好又向南航行4 km,再向西航行6 km,再折向北航行2 km,最后又向西航行9 km,到达目的地B,求AB两地间的距离.6.一棵9 m高的树被风折断,树顶落在离树根3 m之处,若要查看断痕,要从树底开始爬多高?7.折叠长方形ABCD 的一边AD ,使点D 落在BC 边的F 点处, 若AB =8 cm ,BC =10 cm ,求EC 的长.第2课时 验证勾股定理1.在两千多年前我国古算术上记载有“勾三股四弦五”.你知道它的意思吗? 它的意思是说:如果一个直角三角形的两条直角边长分别为3和4个长度单位,那么它的斜边的长一定是5个长度单位,而且3、4、5这三个数有这样的关系:32+42=52.(1)请你动动脑筋,能否验证这个事实呢?该如何考虑呢?(2)请你观察下列图形,直角三角形ABC 的两条直角边的长分别为AC =7,BC =4,请你研究这个直角三角形的斜边AB 的长的平方是否等于42+72?2.下图甲是任意一个直角三角形ABC ,它的两条直角边的边长分别为a 、b ,斜边长为c .如图乙、丙那样分别取四个与直角三角形ABC 全等的三角形,放在边长为a +b 的正方形内. E CFB D A①图乙和图丙中(1)(2)(3)是否为正方形?为什么?②图中(1)(2)(3)的面积分别是多少?③图中(1)(2)的面积之和是多少?④图中(1)(2)的面积之和与正方形(3)的面积有什么关系?为什么?由此你能得到关于直角三角形三边长的关系吗?。
八年级上册第一章勾股定理基础知识1、勾股定理直角三角形两直角边a,b 的平方和等于斜边 c 的平方,即 a 2b2 c 22、勾股定理的逆定理(直角三角形的判定条件)如果三角形的三边长a, b, c 有关系a2b2c2,那么这个三角形是直角三角形,且最长边所对的角是直角。
3、勾股数:满足a2b2 c 2的三个正整数,称为勾股数。
常见勾股数:(3、4、5)( 5、 12、 13)( 7、 24、 25)(6、 8、 10)( 15、 20、 25)( 8、 15、 17)( 9、 40、 41)(12、 35、 37)常见平方数:112=121122=144132=169142=196152=225 162=256172=289182 =324192=361102=100 152=225252=625242 =576【基础训练】1、在△ ABC中,∠ C= 90°,( l )若 a = 5, b=12,则 c =;( 2)若 c= 15, a= 9,则 b=.2、直角三角形的斜边长为17cm,一条直角边长为15cm,则直角三角形的面积为 _________cm23、如图,在 Rt ABC 中,AB=1,则 AB 2BC 2AC 2的值为()AA、2B、4C、6D、 8BC4、如图,求等腰△ABC的面积。
5、如图,在ABC 中, B =90,AC=17,BC=15,求AB的长。
7、一个零件的形状如图所示,已知AC AB , BC BD , AC 12cm, AB 16cm , CD52cm ,求这个零件 ABCD 的面积。
b ccb8、如图,阴影长方形的面积是多少?9、有一个圆柱,它的高等于 5 厘米,底面圆的半径等于 4 厘米.在圆柱下底面 A 点有一只蚂蚁,它想吃到上底面上与 A 点相对的 B 点处的食物,沿圆柱侧面爬行的最短路程是多少?( π的值取 3) .10、如图,长方体盒子(无盖)的长、宽、高分别是12cm ,8cm,30cm, 在 AB 中点 C 处有一滴蜜糖,一只小虫从 P处爬到 C处去吃,有无数种走法,则最短路程是多少?11、如图,在棱长为10 厘米的正方体的一个顶点速度是 1 厘米 / 秒,且速度保持不变,问蚂蚁能否在A 处有一只蚂蚁,现要向顶点20 秒内从 A 爬到 B?B 处爬行,已知蚂蚁爬行的【巩固提高】一、选择题1. 下列结论错误的是().A. 三个角度之比为 1∶2∶ 3 的三角形是直角三角形B. 三条边长之比为 3∶4∶ 5 的三角形是直角三角形C. 三条边长之比为 8∶16∶ 17 的三角形是直角三角形D. 三个角度之比为 1∶1∶ 2 的三角形是直角三角形2. 小丰的妈妈买了一部 29 英寸 (74cm) 的电视机 , 下列对 29 英寸的说法中正确的是().A. 小丰认为指的是屏幕的长度B. 小丰的妈妈认为指的是屏幕的宽度C. 小丰的爸爸认为指的是屏幕的周长D. 售货员认为指的是屏幕对角线的长度3. 下列各组数中不能作为直角三角形的三边长的是( ).A.1.5,2,3B.7,24,25C.6,8,10D.9,12,154. 直角三角形两直角边长分别为3 和 4, 则它斜边上的高是 ( )A.3.5B.2.4C.1.2D.5.5. 长方形的一条对角线的长为 10cm ,一边长为 6cm ,它的面积是() .A.60cm 2B.64 cm 2C.24 cm2D.48 cm26. 斜边为 17cm,一条直角边长为 15cm).的直角三角形的面积是(A.60B.30C.90D.1207. 如果梯子的底端离建筑物 5 米 ,13 米长的梯子可以达到该建筑物的高度是( ).A.12 米B. 13 米 C .14 米 D. 15 米8. 小丽和小芳二人同时从公园去图书馆,都是每分钟走50米,小丽走直线用了 10分钟,小芳先去家拿了钱去图书馆,小芳到家用了 6分,从家到图书馆用了 8分,小芳从公园到图书馆拐了个 ( ) 角. A. 锐角 B. 直角 C. 钝角 D. 不能确定9. 如图 , 一圆柱高 8cm,底面半径 2cm,一只蚂蚁从点 A 爬到点 B 处吃食 , 要爬行的最短路程 ( 取 3)是() . A.20cm B.10cm C.14cm D. 无法确定10. 小刚准备测量一段河水的深度, 他把一根竹竿插到离岸边1.5m 远的水底 把竹竿的顶端拉向岸边 , 竿顶和岸边的水面刚好相齐 , 则河水的深度为 ( , 竹竿高出水面).0.5m,A .2mB. 2.5mC. 2.25mD. 3m二、填空题11. 如图,带阴影的正方形面积是.5 米3 米第11题第 12题第 13题第14题12. 如图为某楼梯 , 测得楼梯的长为 5米, 高 3米 , 计划在楼梯表面铺地毯, 地毯的长度至少需要米 .13.如图,在△ ABC中,∠ C=90°, BC=3, AC=4.以斜边 AB为直径作半圆,则这个半圆的面积是________.14. 如图,由 Rt△ ABC的三边向外作正方形,若最大正方形的边长为8cm,则正方形M与正方形 N 的面积之和为cm2.15.传说 , 古埃及人曾用"拉绳” 的方法画直角 , 现有一根长 24 厘米的绳子 , 请你利用它拉出一个周长为24 厘米的直角三角形, 那么你拉出的直角三角形三边的长度分别为_______厘米 ,______ 厘米 ,________厘米 .16.一座桥横跨一江,桥长 12m,一艘小船自桥北头出发,向正南方向驶去,由于水流原因,到达南岸以后,发现已偏离桥南头 5m,则小船实际行驶了 _________m.三、解答题17.如图,小李准备建一个蔬菜大棚,棚宽 4 米,高 3 米,长 20 米,棚的斜面用塑料布遮盖,不计墙的厚度,请计算阳光透过的最大面积 .3米4米20米18. 如图 , 长方体的长 BE=15cm,宽 AB=10cm,高 AD=20cm,点 M在 CH上 , 且 CM=5cm,一只蚂蚁如果要沿着长方体的表面从点 A 爬到点 M,需要爬行的最短距离是多少?C HMD CFAEB19. 如图,一架 2.5 米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足 B 到墙底端 C的距离为 0.7 米,如果梯子的顶端沿墙下滑0.4 米,那么梯足将向外移多少米?AA1B1B C20.如图所示的一块地,∠ ADC= 90°, AD=12m,CD= 9m, AB= 39m, BC= 36m,求这块地的面积 .21.如图,有一个直角三角形纸片,两直角边 AC=6cm,BC=8cm,现将直角边AC沿直线 AD折叠,使它落在斜边 AB上,且与 AE重合,你能求出 CD的长吗?22. 如图,A城气象台测得台风中心在 A 城正西方向320km的 B 处,以每小时 40km的速度向北偏东 60°的 BF方向移动,距离台风中心 200km的范围内是受台风影响的区域 .(1)A城是否受到这次台风的影响?为什么?(2)若 A 城受到这次台风影响,那么A城遭受这次台风影响有多长时间?23、(本小题12 分)探索与研究(方法 1)如图 5:对任意的符合条件的直角三角形绕其锐角顶点旋转且四边形 ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形90°所得,所以∠ BAE=90°,ABFE面积等于 Rt ⊿BAE和Rt ⊿ BFE的面积之和。
第一章勾股定理分节练习第 1 节探究勾股定理一、求边长问题.★★★题型一:已知直角三角形的两边,求第三边.1、【基础题】求出以下两个直角三角形中x 和y 边的长度.1.1、【基础题】( 1)求斜边长为( 2)已知一个17 cm,一条直角边长为Rt△的两边长分别为 3 和15 cm 的直角三角形的面积.4,则第三边长的平方是________.1.2、【综合Ⅰ】已知一个等腰三角形的两腰长为 5 cm,底边长 6 cm,求这个等腰三角形的面积.1.3、【综合Ⅰ】如图,有两棵树,一棵高10 米,另一棵高 4 米,两树相距8 米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟起码飞翔()A.8 米B.10 米C. 12 米D.14 米1.4、【综合Ⅰ】强盛的台风使得一根旗杆在离地面9 米处折断倒下,旗杆顶部落在离旗杆底部12 米处,求旗杆折断以前有多高?1.5、【综合Ⅱ】如图,某储蓄室进口的截面是一个半径为 1.2 m 的半圆形,一个长、宽、高分别是 1.2 m、 1 m、 0.8m的箱子能放进储蓄室吗?题型二:用“勾股定理+ 方程”来求边长.2、【综合Ⅱ】一个直角三角形的斜边为20 cm,且两直角边的长度比为3∶ 4,求两直角边的长.2.1【综合Ⅱ】如图,小明想知道学校旗杆的高,他发现旗杆顶端的绳索垂到地面还多拉开 5 米后,下端恰巧接触地面,求旗杆AC 的高度 .1 米,当他把绳索的下端2.2、【综合Ⅱ】在我国古代数学著作《九章算术》中记录了一个风趣的问趣,这个问题的意思是:如左以下图,有一个边长是 10 尺的正方形水池,在水池正中央有一根芦苇,它超出水面 1 尺,假如把这根芦苇垂直拉向岸边,它的顶端恰巧抵达岸边中点的水面,请问这个水池的深度和这根芦苇的长度各是多少?2.3【综合Ⅲ】如右上图,有一块直角三角形纸片,两直角边 AC = 6 cm , BC = 8 cm ,现将直角边 AC 沿直线 AD 折叠,使它落在斜边 AB 上,且与 AE 重合,求 CD 的长.2.4【提升题】( 2011 年北京市比赛题)两张大小同样的纸片,每张都分红7 个大小同样的矩形,搁置如下图,重合的极点记作 A ,极点 C 在另一张纸的分开线上,若BC = 28 ,则 AB 的长是 ______ .种类三: “方程 + 等面积” 求直角三角形斜边上的高 .3、 直角三角形两直角边分别为5、 12,则这个直角三角形斜边上的高为() .(A )6( B ) 8.5(C )20(D )601313二、面积问题 . ★4、【基础题】求出左以下图中A 、B 字母所代表的正方形的面积 .4.1、【综合Ⅰ】如右上图,全部的四边形都是正方形,全部的三角形都是直角三角形,请在图中找出若干图形,使它们的面积之和等于最大正方形 1 的面积,试试给出两种方案 .4.2、【综合Ⅰ】如左以下图,全部的四边形都是正方形,全部的三角形都是直角三角形,此中最大的正方形的边长为7cm ,则正方形 A , B ,C ,D 的面积之和为 ___________cm 2.4.3 、【综合题】如右上图 2,以 Rt △ ABC 的三边为斜边分别向外作等腰直角三角形.若斜边AB = 3,则图中暗影部分的面积为() .(A )9(B )3(C )9(D )9425、【综合Ⅲ】如图,在直线l 上挨次摆放着七个正方形,已知斜搁置的三个正方形的面积分别是 1、 2、 3,正搁置的四个正方形的面积挨次是S 1、 S 2 、 S 3 、 S 4 ,则 S 1+ S 2 + S 3+ S 4 =________三、证明问题6、【综合Ⅲ】 1876 年,美国总统加菲尔德利用右图考证了勾股定理,你能利用左以下图考证勾股定理吗?说一说这个 方法和本节的探究方法的联系.7 、【提升题】 如右上图,在 △ 中,∠ A = 90 , D 为斜边 BC 的中点,⊥,求证: EF 2= BE 2+CF 2 .Rt ABC DE DF8、【提升题】 如图, AD 是△ ABC 的中线,证明: AB 2+ AC 2=(2 AD 2+ CD 2)第 2 节必定是直角三角形吗9、【基础题】一个部件的形状如下图,按规定这个部件中∠ A 和∠ DBC 都应为直角,工人师傅量得这个部件各边的尺寸如下图,这个部件切合要求吗?并求出四边形ABCD 的面积.9.1、【综合Ⅰ】如左以下图, 6 个三角形分别标号,哪些三角形是直角三角形,哪些不是,请说明原由.9.2、【综合Ⅰ】如右上图,在正方形ABCD 中,AB=4 , AE=2 , DF =1 ,图中有几个直角三角形,说明原由.10、【基础题】以下各组中,不可以构成直角三角形三边长度的是( A ) 9, 12, 15(B)15,32,39(C)16,30,34 ()( D) 9, 40, 4110.1、【基础题】( 1)假如将直角三角形的三条边长同时扩大一个同样的倍数,获得的三角形仍是直角三角形吗?(2)下表中第一列每组数都是勾股数,补全下表,这些勾股数的2 倍、 3 倍、 4 倍、 10 倍仍是勾股数吗?随意正整数倍呢?谈谈你的原由。
第1章 勾股定理一.知识归纳 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五〞形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGHS S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCBA方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a bcc baE D CBA3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,那么c =b,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形〞来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比拟,假设它们相等时,以a ,b ,c 为三边的三角形是直角三角形;假设222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;假设222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如假设三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+〔2,n ≥n 为正整数〕; 2221,22,221n n n n n ++++〔n 为正整数〕 2222,2,m n mn m n -+〔,m n >m ,n 为正整数〕 7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线〔通常作垂线〕,构造直角三角形,以便正确使用勾股定理进行求解. 8.勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比拟,切不可不加思考的用两边的平方和与第三边的平方比拟而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:ABC30°D CB A ADB CCB DA题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒. ⑴6AC =,8BC =.求AB 的长 ⑵17AB =,15AC =,求BC 的长 分析:直接应用勾股定理222a b c +=解:⑴10AB =⑵8BC = 题型二:应用勾股定理建立方程 例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵直角三角形的两直角边长之比为3:4,斜边长为15,那么这个三角形的面积为 ⑶直角三角形的周长为30cm ,斜边长为13cm ,那么这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解 解:⑴4AC =, 2.4AC BCCD AB⋅==⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,那么17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21EDCBA分析:此题将勾股定理与全等三角形的知识结合起来 解:作DE AB ⊥于E ,12∠=∠,90C ∠=︒∴ 1.5DECD == 在BDE ∆中90,2BED BE ∠=︒=Rt ACD Rt AED ∆≅∆ AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影局部面积答案:6题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mABCD E分析:根据题意建立数学模型,如图8AB =m ,2CD =m ,8BC =m ,过点D 作DE AB ⊥,垂足为E ,那么6AE =m ,8DE =m在Rt ADE ∆中,由勾股定理得10AD 答案:10m题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6.三角形的三边长为a ,b ,c ,判定ABC ∆是否为Rt ∆ ① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c = 解:①22221.52 6.25a b +=+=,222.5 6.25c == ∴ABC ∆是直角三角形且90C ∠=︒②22139b c +=,22516a =,222bc a +≠ABC ∴∆不是直角三角形 例7.三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状? 解:此三角形是直角三角形理由:222()264a b a b ab +=+-=,且264c = 222a b c ∴+= 所以此三角形是直角三角形题型五:勾股定理与勾股定理的逆定理综合应用例8.ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =证明:D CBAAD 为中线,5BD DC ∴==cm在ABD ∆中,22169AD BD +=,2169AB =222AD BD AB ∴+=,90ADB ∴∠=︒,222169AC AD DC ∴=+=,13AC =cm ,AB AC ∴=一、 选择题1、在Rt △ABC 中,∠C=90°,三边长分别为a 、b 、c ,那么以下结论中恒成立的是 ( )A 、2ab<c 2B 、2ab ≥c 2C 、2ab>c 2D 、2ab ≤c22、x 、y 为正数,且│x 2-4│+〔y 2-3〕2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为〔 〕A 、5B 、25C 、7D 、153、直角三角形的一直角边长为12,另外两边之长为自然数,那么满足要求的直角三角形共有〔 〕A 、4个B 、5个C 、6个D 、8个4、以下命题①如果a 、b 、c 为一组勾股数,那么4a 、4b 、4c 仍是勾股数;②如果直角三角形的两边是3、4,那么斜边必是5;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a 、b 、c ,〔a>b=c 〕,那么a 2∶b 2∶c 2=2∶1∶1。
八年级数学上册《第一章探索勾股定理》练习题-带答案(北师大版)一、选择题1.下列三角形中,可以构成直角三角形的有( )A.三边长分别为2,2,3B.三边长分别为3,3,5C.三边长分别为4,5,6D.三边长分别为1.5,2,2.52.如图,直角△ABC的周长为24,且AB:AC=5:3,则BC=( )A.6B.8C.10D.123.下列各组数为勾股数的是( )A.6,12,13B.3,4,7C.4,7.5,8.5D.8,15,164.在下列四组数中,不是勾股数的一组数是( )A.a=15,b=8,c=17B.a=9,b=12,c=15C.a=7,b=24,c=25D.a=3,b=5,c=75.若直角三角形的三边长分别为6、10、m,则m2的值为( )A.8B.64C.136D.136或646.直角三角形的一条直角边长是另一条直角边长的13,斜边长为10,则它的面积为( )A.10B.15C.20D.307.如图是边长为10 cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确的是( )8.直角三角形的三边为a﹣b,a,a+b且a、b都为正整数,则三角形其中一边长可能为( )A.61B.71C.81D.91二、填空题9.若三角形三边之比为3:4:5,周长为24,则三角形面积.10.在Rt△ABC中,∠C=90o, AC=6,BC=8,则AB边的长是 .11.已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的面积分别4cm2和15cm2,则正方形③的面积为.12.如图,直线上有三个正方形a,b,c,若a,c的面积分别为5和12,则b的面积为____.13.若直角三角形的两小边为5、12,则第三边为.14.如图是一株美丽的勾股树,所有四边形都是正方形,所有三角形是直角三角形,若正方形A、B、C面积为2、8、5,则正方形D的面积为______.三、解答题15.观察下列勾股数:3,4,5;5,12,13;7,24,25;9,40,41…a,b,c根据你发现的规律,请写出(1)当a=19时,求b、c的值;(2)当a=2n+1时,求b、c的值;(3)用(2)的结论判断15,111,112是否为一组勾股数,并说明理由.16.如图,在△ABC中,AB=AC=26,边BC上的中线AD=24.求BC的长度.17.如图,已知Rt△ABC中,∠ACB=90°.请完成以下任务.(1)尺规作图:①作∠A的平分线,交CB于点D;②过点D作AB的垂线,垂足为点E.请保留作图痕迹,不写作法,并标明字母.(2)若AC=3,BC=4,求CD的长.18.如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点(1)求证:△ACE≌△BCD;(2)若DE=13,BD=12,求线段AB的长.19.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.20.如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边中点,过D点做DE⊥DF,交AB于E,交BC于F.若AE=4,FC=3,求EF长.参考答案1.D.2.B3.D4.D5.D.6.B7.A.8.C.9.答案为:24.10.答案为:10.11.答案为:19.12.答案为:1713.答案为:13.14.答案为:1515.解:(1)观察得给出的勾股数中,斜边与较大直角边的差是1,即c﹣b=1 ∵a=19,a2+b2=c2∴192+b2=(b+1)2∴b=180∴c=181;(2)通过观察知c﹣b=1∵(2n+1)2+b2=c2∴c2﹣b2=(2n+1)2(b+c)(c﹣b)=(2n+1)2∴b+c=(2n+1)2又c=b+1∴2b+1=(2n+1)2∴b=2n2+2n,c=2n2+2n+1;16.解:∵在△ABC中,AB=AC,AD是边BC上的中线∴AD⊥BC,BD=DC.∴AD2+BD2=AB2∵AD=24,AB=26∴BD2=100∵BD>0∴BD=10∴DC=10∴BC=BD+DC=20.17.解:(1)如图所示:①AD是∠A的平分线;②DE是AB的垂线;(2)在Rt△ABC中,由勾股定理得:AB=5由作图过程可知:DE=DC,∠AED=∠C=90°∵S△ACD +S△ABD=S△ABC∴12AC•CD+12AB•DE=12AC•BC∴12×3×CD+12×5×CD=12×3×4,解得:CD=32.18.证明:(1)∵△ACB与△ECD都是等腰直角三角形∴CE=CD,AC=BC,∠ACB=∠ECD=90°,∠B=∠BAC=45°∴∠ACE=∠BCD=90°﹣∠ACD在△ACE和△BCD中∴△ACE≌△BCD;(2)解:∵△ACE≌△BCD∴AE=BD,∠EAC=∠B=45°∵BD=12∴∠EAD=45°+45°=90°,AE=12在Rt△EAD中,∠EAD=90°,DE=13,AE=12 由勾股定理得:AD=5∴AB=BD+AD=12+5=17.19.解:(1)在Rt△ABC中,∠C=90°∴AC⊥CD.又∵AD平分∠CAB,DE⊥AB∴DE=CD又∵CD=3∴DE=3;(2)在Rt△ABC中,∠C=90°,AC=6,BC=8 ∴AB=AC2+BC2=62+82=10∴S△ADB =12AB·DE=12×10×3=15.20.解:连接BD.∵D是AC中点∴∠ABD=∠CBD=45°,BD=AD=CD,BD⊥AC ∵∠EDB+∠FDB=90°,∠FDB+∠CDF=90°∴∠EDB=∠CDF在△BED和△CFD中∠EBD=∠C,BD=CD,∠EDB=∠CDF∴△BED≌△CFD(ASA)∴BE=CF;∵AB=BC,BE=CF=3 ∴AE=BF=4在Rt△BEF中,EF= 5.。
八年级数学上册_第一章勾股定理练习题_北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册_第一章勾股定理练习题_北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册_第一章勾股定理练习题_北师大版的全部内容。
八年级数学练习题一.选择题(12×3′=36′)1.已知一个Rt△的两边长分别为3和4,则第三边长的平方是( )A、25B、14C、7D、7或252.下列各组数中,以a,b,c为边的三角形不是Rt△的是()A、a=1.5,b=2,c=3B、a=7,b=24,c=25C、a=6,b=8,c=10D、a=3,b=4,c=53.若线段a,b,c组成Rt△,则它们的比为( )A、2∶3∶4B、3∶4∶6C、5∶12∶13D、4∶6∶74.Rt△一直角边的长为11,另两边为自然数,则Rt△的周长为()A、121B、120C、132D、不能确定5.如果Rt△两直角边的比为5∶12,则斜边上的高与斜边的比为( )A、60∶13B、5∶12C、12∶13D、60∶1696.如果Rt△的两直角边长分别为n2-1,2n(n〉1),那么它的斜边长是()A、2nB、n+1C、n2-1D、n2+17.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是() A、24cm2B、36cm2C、48cm2D、60cm28.等腰三角形底边上的高为8,周长为32,则三角形的面积为()A、56B、48C、40D、329.三角形的三边长为(a+b)2=c 2+2ab ,则这个三角形是( )A. 等边三角形; B 。
2021年北师大新版八年级上册第1章勾股定理勾股定理的证明练习题(含答案)一.选择题(共4小题)1.我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.2.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连接EG,BD相交于点O,BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.3.如图,四个全等的直角三角形围成正方形ABCD和正方形EFGH,即赵爽弦图.连接AC,分别交EF、GH于点M,N,连接FN.已知AH=3DH,且S =21,则图中阴影部分的面积之和为()正方形ABCDA.B.C.D.4.如图,“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成大正方形,若小正方形边长为1,大正方形边长为5,则一个直角三角形的周长是()A.6B.7C.12D.15二.填空题(共2小题)5.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,如果大正方形的面积为16,小正方形的面积为3,直角三角形的两直角边分别为a和b,那么(a+b)2的值为.6.公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=9,小正方形ABCD的面积是9,则弦c长为.三.解答题(共2小题)7.如图,在△ABD中,AC⊥BD于C,点E为AC上一点,连接BE、DE,DE 的延长线交AB于F,已知DE=AB,∠CAD=45°.(1)求证:DF⊥AB;(2)利用图中阴影部分面积完成勾股定理的证明,已知:如图,在△ABC中,∠ACB=90°,BC=a,AC=b,AB=c,求证:a2+b2=c2.8.知识探究:如图1是两直角边长分别为m,n(m>n)的直角三角形,如果用四个与图1完全一样的直角三角形可以拼成如图2和图3的几何图形.其中图2和图3的四边形ABCD、四边形EFGH都是正方形.请你根据几何图形部分与整体的关系完成第(1)(2)题.请选择(m+n)2,(m﹣n)2,mn中的有关代数式表示:图2中正方形ABCD的面积:.图3中正方形ABCD的面积:.(2)请你根据题(1),写出下列三个代数式:(m+n)2,(m﹣n)2,mn之间的等量关系.知识应用:(3)根据(2)题中的等量关系,解决如下问题:①已知:a﹣b=5,ab=﹣6,求:(a+b)2的值;②已知:a>0,a﹣=,求:a+的值.2021年北师大新版八年级上册第1章勾股定理勾股定理的证明练习题(含答案)参考答案一.选择题(共4小题)1.D;2.B;3.B;4.C;二.填空题(共2小题)5.29;6.15;三.解答题(共2小题)7.;8.(m﹣n)2+2mn;(m+n)2﹣2mn;(m﹣n)2=(m+n)2﹣4mn 或者(m+n)2=(m﹣n)2+4mn.;。
第一章 勾股定理 分类提升训练 2024--2025学年 北师大版 八年级数学上册一、单选题1.学了“勾股定理”后,甲、乙两位同学的观点如下:甲:如果是直角三角形,那么一定成立;乙:在中,如果,那么不是直角三角形.对于两人的观点,下列说法正确的是( )A .甲对,乙错B .甲错,乙对C .两人都错D .两人都对2.如图,在中,,分别以,为边向外作正方形,面积分别为,,若,,则的长为( )A .4B .2CD .33.为预防新冠疫情,民生大院入口的正上方处装有红外线激光测温仪(如图所示),测温仪离地面的距离米,当人体进入感应范围内时,测温仪就会自动测温并报告人体体温.当身高为米的市民正对门缓慢走到离门米的地方时(即米),测温仪自动显示体温,则人头顶离测温仪的距离等于( )A .米B .米C .米D .米4.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠ABO =60°,若矩形的对角线长为6.则线段AD 的长是( )ABC V 222a b c +=ABC V 222a b c +≠ABC V ABC V 90ACB ∠=︒AC AB 1S 2S 13S =27S =BC A 3AB = 1.8CD 1.6 1.6BC =AD 2.0 2.2 2.25 2.5A .3B .4C .2D .35.如图是一圆柱玻璃杯,从内部测得底面半径为,高为,现有一根长为的吸管任意放入杯中,则吸管露在杯口外的长度最少是( )A .B .C .D .6.如图,已知矩形纸片,,,点在边上,将沿折叠,点落在点处,,分别交于点,,且,则的长为( )A.B .C .D .7. 如图,在Rt △ABC 中,∠ACB=90°,BC=3,AC=4,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( )A .B .C .D .28.如图,有一个水池,水面是一个边长为尺的正方形,在水池正中央有一根芦苇,它高出水面6cm 16cm 25cm 6cm 5cm 9cm (25cm -ABCD 4AB =3BC =P BC CDP V DP C E PE DE AB O F OP OF =DF 3911451317557173276256101尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面、求这根芦苇的长度是多少尺?设芦苇的长度是尺,根据题意,可列方程为( )A .B .C .D .9.如图,过矩形对角线的交点,作对角线的垂线,交于点,交于点,若,,则的长等于( )A .B .CD .10.在Rt 中,.以为圆心,AM 的长为半径作弧,分别交AC ,AB 于点M ,N.再分别以M ,N 为圆心,适当长度为半径画弧,两弧交于点.连接AP ,并延长AP 交BC 于点.过点作于点,垂足为,则DE 的长度为( )A .B .C .2D .1二、填空题11.小明想知道学校旗杆有多高,他发现旗杆上的绳子垂到地面还余1米,当他把绳子下端拉开5米后,发现下端刚好接触地面,则旗杆高度为 米.12.下图是公园的一角,有人为了抄近道而避开横平竖直的路的拐角 ,而走“捷径 ”,于是在草坪内走出了一条不该有的“路 ”.已知 米, 米,只为少走 米的路. x 222510x +=()2221015x -+=()22215x x -+=()22251x x +=-ABCD O BD AD E BC F 3AE =5BF =EF 48ABC V B ∠=90,8,10AB AC ︒==A P D D DE AC ⊥E E 8345ABC ∠AC AC 40AB =30BC =13.若的三边,,满足,则的面积是 .14.如图,矩形ABCD 中, , ,CB 在数轴上,点C 表示的数是 ,若以点C 为圆心,对角线CA 的长为半径作弧交数轴的正半轴于点P ,则点P 表示的数是 .15.有一根长7cm 的木棒,要放进长、宽、高分别为5cm 、4cm 、3cm 的木箱, (填“能”或“不能”)放进去。
第一章 勾股定理1、勾股定理(性质定理)直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2、勾股定理的逆定理(判定定理)如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
要点诠释:用勾股定理的逆定理判定一个三角形是否是直角三角形应注意 (1)首先确定最大边,不妨设最长边长为c ;(2)验证c 2和a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形(若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2<a 2+b 2,则△ABC 为锐角三角形)。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
经典的勾股数:3、4、5(3n 、4n 、5n ) 5、12、13(5n 、12n 、13n ) 7、24、25(7n 、24n 、25n ) 8、15、17(8n 、15n 、17n ) 9、40、41(9n 、40n 、41n ) 11、60、61(11n 、60n 、61n ) 13、84、85(13n 、84n 、85n )例1. 如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C点与A 点重合,则EB 的长是( ). A .3 B .4 C 5 D .5练习1:如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C'处,BC'交AD 于E ,AD=8,AB=4,则DE 的长为( )A.3B.4C.5D.6FEDCBAC A B ED 练习2:如图,有一个直角三角形纸片,两直角边AC=6,BC=8,现将直角边AC 沿直线AD 折叠,使其落在斜边AB 上,且与AE 重合,则CD 的长为例2. 三角形的三边长a,b,c满足2ab=(a+b)2-c2,则此三角形是 ( ). A 、钝角三角形 B 、锐角三角形 C 、直角三角形 D 、等边三角形练习1:已知a 、b 、c 是三角形的三边长,如果满足2(6)8100a b c ---=,则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形练习2:已知a 、b 、c 是△ABC 的三边,且a 2c 2-b 2c 2=a 4-b 4,试判断三角形的形状.例3. 将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm ,则h 的取值范围是( ). A .h ≤17cm B .h ≥8cm C .15cm ≤h ≤16cm D .7cm ≤h ≤16cm练习:如图,圆柱形玻璃容器高20cm ,底面圆的周长为48cm ,在外侧距下底1cm 的 点A 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距上口1cm 的点B 处有一只CABDS 3S 2S 1C B A 苍蝇,则蜘蛛捕获苍蝇所走的最短路线长度为________.例4. a 2+b 2+c 2=10a +24b +26c -338,试判定△ABC 的形状,并说明你的理由练习:已知直角三角形的周长是62+,斜边长2,求它的面积.例5. 已知,如图,四边形ABCD 中,AB=3cm ,AD=4cm ,BC=13cm ,CD=12cm ,且∠A=90°, 求四边形ABCD 的面积。
2、用勾股定理解古代趣题
一、古代趣题
1、12世纪印度著名数学家婆什迦罗给出了一个歌谣式的问题:波平如镜一湖面,3尺高处出红莲。
亭亭多姿湖中立,突遭狂风吹一边。
离开原处6尺远,花贴湖面像睡莲。
请君动脑想一想,湖水在此深若干尺?
2、《九章算术》中的“折竹抵地”问题上:今有竹高一丈,末折抵地,去本四尺。
问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远。
问折断后的竹子有多高?
3、苍鹰与蛇的问题:树根下有一蛇洞,树高15米,树顶有一只苍鹰,它看见一条蛇迅速向洞口爬去,与洞口的距离还有三倍树高时,鹰向蛇直扑过去。
如果鹰、蛇的速度相等,鹰扑击蛇的路线是直线段,请说出,鹰向何处扑击才能恰好抓住蛇?
4、有一棵古树直立在地上,树高2丈,粗3尺,有一根藤条从根处缠绕而上,缠绕5周到达树顶,请问这根藤条有多长?(注:古树可以看成圆柱体;树粗3尺指的是圆柱底面周长为3尺。
1丈=10尺)
二、最短距离问题
5、如图,有一个底面半径为6cm,高为24cm的圆柱,在圆柱下底面的点A有一只蚂蚁,它想吃到上底面上与点A相对的点B处的食物后再返回到A点处休息,请问它需爬行的最短路程约是多少?(π取整数3)
6、有一个长宽高分别为2cm,1cm,3cm的长方体,如图,有一只小蚂蚁想从点A爬到点C1处,请你帮它设计爬行的最短路线,并说明理由。
7、一个零件的形状如图所示,工人师傅按规定做得AB=3,BC=4,AC=5,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?
8、若△ABC的三边长为a、b、c,根据下列条件判断△ABC的形状。
(1)a2+b2+c2+200=12a+16b+20c
(2) a3-a2b+ab2-ac2+bc2-b3=0 B C
A
D。