离散数学第一单元练习题
- 格式:doc
- 大小:144.00 KB
- 文档页数:5
离散数学第一章测验一、下列那些是命题?是命题的指出其真值。
1.√5是无理数。
2.3是素数或4是素数。
3.2x+3<5。
4.你去图书馆吗?5.刘红与魏新是同学。
6.吸烟请到吸烟室去!7.2015年元旦下大雪。
8.只有6是偶数,3才能是2的倍数。
9.8是偶数的充分必要条件是8能被3整除。
10.圆的面积等于半径的平方乘以π。
二、将下列命题符号化。
1.只要你学习了,你考试就能及格。
P : 你学习Q : 你考试及格2.只有天下雨了,我才不去上街。
P : 天下雨Q : 我不去上街3.实函数f(x)可微当且仅当f(x)连续。
P : 实函数f(x)可微Q : f(x)连续4.除非你努力,否则你就会失败。
P : 你努力Q : 你失败5.若不是他生病或出差了,我是不会同意他不参加学习的。
P : 他生病Q : 他出差R : 我同意他不参加学习三、下列那些是重言式,哪些是矛盾是,哪些是偶然式,哪些是可满足式。
1.P∨(¬P∧Q)2.¬(P∨Q)↔(¬P∧¬Q)3.¬P∨Q→Q4.(P∧¬(Q→P))∧(Q∧R)5.(P∧Q↔P)↔(P↔Q)6.(P∧(P→Q))→Q7.¬(P→Q)∧Q8.P∧(Q∨¬R)四、不用真值表证明下列等价式并写出对偶式。
1.(P∧Q)∨¬(¬P∨Q)⇔P2.(P→Q)∧(Q→P)⇔(P∧Q)∨(¬P∧¬Q)3.P→(Q→R)⇔Q→(P→R)五、不用真值表证明下列蕴含式。
1.P→Q⇒P→(P∧Q)2.((P∨¬P)→Q)→((P∨¬P)→R)⇒Q→R3.(Q→(P∧¬P))→(R→(P∧¬P))⇒R→Q六、求下列式子的主析取范式和主合取范式。
1.(P∨Q)∧R2.P→(P∨Q∨R)3.¬(Q→¬P)∧¬P七、某单位要从张、王、马三名同志中选派一部分人外出培训,但是由于部门工作需要,必须满足以下条件:(1) 若张去,马也去。
第一章习题1.下列哪些语句是命题?(1) 黄山是在安徽省。
(2) 你会做这道题目吗?(3) 月球比地球大。
(4) 请关上窗户!(5) 如果1+2=5,我就去游泳。
(6) 只有6是偶数,3才能被2整除。
解:(1),(3) ,(5) ,(6) 是命题,(2),(4)分别是疑问句和命令句,它们不是命题。
2.给出下面命题的否定命题。
(1) 上海是一座城市。
解:该句的否定命题为:上海不是一座城市。
(2) 1+2=5并且2×3=6。
解:该句的否定命题为:1+2≠5或2×3≠6。
(3) 2是素数或3是偶数。
解:该句的否定命题为:2不是素数并且3不是偶数。
3.将下列命题符号化。
(1) 灯泡有故障或开关有故障。
解:P表示:灯泡有故障,Q表示:开关有故障,命题符号化为:P∨Q(2) 今天下大雨和3+3=6。
解:P表示:今天下大雨,Q表示:3+3=6,命题符号化为:P∧Q(3) 虽然天气炎热,老师坚持给我们上课。
解:P表示:天气炎热,Q表示:老师坚持给我们上课,命题符号化为:P∧Q(4) 他一边走路,一边看书。
解:P表示:他走路,Q表示:他看书,命题符号化为:P∧Q(5) 如果天下大雨,他就乘公共汽车上班。
解:P表示:天下大雨,Q表示:他乘公共汽车上班,命题符号化为:P→Q(6) 只有天下大雨,他才乘公共汽车上班。
解:P表示:天下大雨,Q表示:他乘公共汽车上班,命题符号化为:Q→P(7) 2+2=4当且仅当雪是白色的。
解:P表示:2+2=4,Q表示:雪是白色的,命题符号化为:P↔Q4.判断下列各蕴涵式是真是假。
(1) 若一周有八天,则3+2=5。
解:P表示:一周有八天,Q表示:3+2=5,命题符号化为:P→Q由于P为假,Q为真,P→Q为真,故该命题为真命题。
(2) 若一周有七天,则3+2≠5。
解:P表示:一周有七天,Q表示:3+2≠5,命题符号化为:P→Q由于P为真,Q为假,P→Q为假,故该命题为假命题。
华南理工大学网络教育学院《离散数学》练习题参考答案第一章命题逻辑一填空题(1)设:p:派小王去开会。
q:派小李去开会.则命题:“派小王或小李中的一人去开会" 可符号化为:(p q) (p q)。
(2)设A,B都是命题公式,A B,则A B的真值是T。
(3)设:p:刘平聪明。
q:刘平用功。
在命题逻辑中,命题:“刘平不但不聪明,而且不用功”可符号化为:p q .(4)设A , B 代表任意的命题公式,则蕴涵等值式为A B A B。
(5)设,p:径一事;q:长一智。
在命题逻辑中,命题:“不径一事,不长一智。
" 可符号化为: p q 。
(6)设A , B 代表任意的命题公式,则德摩根律为(A B)Û A B)。
(7)设,p:选小王当班长;q:选小李当班长.则命题:“选小王或小李中的一人当班长。
”可符号化为: (p q)(p q) .(8)设,P:他聪明;Q:他用功。
在命题逻辑中,命题:“他既聪明又用功。
" 可符号化为:P Q .(9)对于命题公式A,B,当且仅当 A B 是重言式时,称“A蕴含B”,并记为A B。
(10)设:P:我们划船.Q:我们跑步.在命题逻辑中,命题:“我们不能既划船又跑步.”可符号化为:(P Q) 。
(11)设P,Q是命题公式,德·摩根律为:(P Q)P Q) 。
(12)设P:你努力.Q:你失败。
在命题逻辑中,命题:“除非你努力,否则你将失败。
”可符号化为:P Q .(13)设p:小王是100米赛跑冠军。
q:小王是400米赛跑冠军。
在命题逻辑中,命题:“小王是100米或400米赛跑冠军.”可符号化为:p q。
(14)设A,C为两个命题公式,当且仅当A C为一重言式时,称C可由A逻辑地推出。
二.判断题1.设A,B是命题公式,则蕴涵等值式为A B A B。
()2.命题公式p q r是析取范式。
( √ )3.陈述句“x + y > 5”是命题。
离散数学-习题集《离散数学》习题集第⼀部分判断题⼀、第⼀章—集合1、()已知集合A的元素个数为10,则集合A的幂集的基=102。
2、()已知两个集合A、B,若A中的元素都是B中的元素,则记为A∈B。
2、()已知集合A的元素个数为n,则集合A的幂集P(A)的元素个数为n2。
3、( ) 已知两个集合A={Ф,{Ф}},B={Ф},则A∩B={Ф}。
4、()已知两个集合A={Ф,{Ф}},B={Ф},则A∩B=Ф。
5、()已知两个集合A、B,若A中的元素都是B中的元素,则记为A∈B。
6、()已知集合A的元素个数为n,则集合A的幂集P(A)的元素个数为n2。
7、()已知集合A的元素个数为n,则A×A的幂集的元素个数为n2。
8、()已知两个集合A、B,则A-B是由属于B但不属于A的元素构成的集合。
⼆、第⼆章—⼆元关系1、()若R是A上的⼆元关系,I A是A上的恒等关系,则当且仅当I A∈R时,R是A上的⾃反关系。
2、(√)若R是集合A上的⼆元关系,且当(a,b)∈R且(a,c)∈R时,就有(b,c)∈R,则R是A 上的可传递关系。
3、()设A是集合,A1、A2、...A n都是A的⾮空⼦集,令S={A1,A2,...,A n},则如果S是集合A的⼀个划分,那么S⼀定是集合A的⼀个完全覆盖;反之亦然。
5、()R是⾮空集合A上的等价⼆元关系,则A关于R的商集A/R是集合A的⼀个划分,但不是A的⼀个完全覆盖。
6、()已知集合A有4元素,易知集合A共有24个互不相同的⼦集合,所以在集合A上⼀共可定义24个互不相同的⼆元关系。
7、()若R1和R2都是集合A上的可传递⼆元关系,则R1∪R2也是A上的传递关系。
8、()设R是有限的⾮空集合A上的偏序关系,则A必有极⼤(⼩)元和最⼤(⼩)元。
9、()若R1和R2都是集合A上的相容关系,则R1∩R2也是A上的相容关系。
10、()若R1和R2都是集合A的可传递⼆元关系,则R1∩R2也是A上的传递关系。
#include<stdio.h>#include<stdlib.h>#include<malloc.h>#define MAX_STACK_SIZE 100typedef int ElemType;typedef struct{ElemType data[MAX_STACK_SIZE];int top;} Stack;void InitStack(Stack *S){S->top=-1;}int Push(Stack *S,ElemType x){if(S->top==MAX_STACK_SIZE-1){printf("\n Stack is full!");return 0;}S->top++;S->data[S->top]=x;return 1;}int Empty(Stack *S){return (S->top==-1);}int Pop(Stack *S,ElemType *x){if(Empty(S)){printf("\n Stack is free!");return 0;}*x=S->data[S->top];S->top--;return 1;}void conversion(int N){int e;Stack *S=(Stack*)malloc(sizeof(Stack));InitStack(S); while(N){Push(S,N%2);N=N/2;}while(!Empty(S)){Pop(S,&e);printf("%d ",e);}}void main(){ int n;printf("请输入待转换的值n:\n");scanf ("%d",&n);conversion(n);}习题1.判断下列语句是否是命题,为什么?若是命题,判断是简单命题还是复合命题?(1)离散数学是计算机专业的一门必修课。
离散数学习题解答第一章命题逻辑习题1.1(P2)1 、a. 是命题b. 是命题c.是命题d .是命题e .是命题f .不是命题疑问句2 、a. A: 我是大学生。
b. B: 你是我的玫瑰花。
c. P: 明天是个艳阳天。
d. Q: 3+2>8。
e.R: 我喜欢离散数学这门课。
f.不是命题。
3、解:三个真命题如:8是偶数;2+8>5;太阳从东边升起;三个假命题如:3+2>8;雪是黑色的;太阳从西边升起;三个非命题如:请勿抽烟!; 春天多美好; 我正在说慌;习题 1.2(P5)1、 a. 复合命题设P :李子是酸的。
Q:李子是甜的。
则命题可表示为P∧Q。
b 简单命题设P: 张一和陈一是好朋友。
2、设P: 天下雨。
Q: 我不去游泳。
R: 我有时间。
a. P→Q。
b. P∧⌝R。
c.⌝Q↔R。
3、 a. 设P: 6是偶数。
Q: 8是奇数。
否定命题表示为:⌝P∨⌝Q。
b. 设P:北京的春天会刮沙尘暴。
否定命题表示为:⌝P 。
4、 a. 设P:王燕学过英语。
Q:王燕学过法语。
命题表示为: (⌝P∧Q)∨(P∧⌝Q) QP⊕。
b. 设P:王成在教室看书。
Q:王成在图书馆看书。
命题表示为: (⌝P∧Q)∨(P∧⌝Q)。
5、(⌝P∧Q)∨(P∧⌝Q)。
习题 1.3(P9)1、 a. 不是命题公式。
b.是命题公式。
c. 不是命题公式。
d. 是命题公式。
2、 a.b.c.3、 a.由表可知命题公式P∨P的真值均为真,所以此公式为重言式。
b.由表可知命题公式P∧c.由表可知命题公式P→(P∨Q)的真值均为真,所以此公式为重言式。
d.由表可知命题公式P→P)的真值均为真,所以此公式为重言式。
e.4 、5、从上述真值表可看出合取和析取是可结合的,条件和双条件不是可结合的。
习题1.4 (P13)⌝(⌝P)⇔P→P1、 a. P→⇔⌝P∨P⇔1 因为公式与1等价,所以此公式是重言式。
b.⌝(P∧Q)↔(⌝P∨⌝Q)⇔(⌝(P∧Q)→(⌝P∨⌝Q))∧((⌝P∨⌝Q)→⌝(P∧Q))⇔((P∧Q)∨⌝(P∧Q))∧((P∧Q)∨⌝(P∧Q))⇔1∧1⇔1 因为公式与1等价,所以此公式是重言式。
第一单元练习题一、单项选择题(每小题2分,共12分)1.若集合A ={a ,b },B ={ a ,b ,{ a ,b }},则( ) A .A ⊂B ,且A ∈B B .A ∈B ,但A ⊄B C .A ⊂B ,但A ∉B D .A ⊄B ,且A ∉B 2. 若集合A 的元素个数为10,则其幂集的元素个数为( ) A .100 B .10 C .1024 D .1 3. 设R 为实数集,函数f :R →R ,f(x)= 2x ,则f 是( ) A .满射函数B .单射函数C .双射函数D .非单射非满射4. 设A={1,2,3},则A 上的二元关系有( )个。
A .32 ; B .23; C . 332⨯; D . 223⨯5.设B = { {2}, 3, 4, 2},那么下列命题中错误的是( ).A .{2}∈B B .{2, {2}, 3, 4}⊂BC .{2}⊂BD .{2, {2}}⊂B 6. 集合}}}{,{},{,{ΦΦΦΦ=B 的幂集为( )。
A 、}},},{{},{{ΦΦΦΦ;B 、}}}},{,{},{{}}},{,{,{}},{,{}}},{,{{}},{{},{,{B ΦΦΦΦΦΦΦΦΦΦΦΦΦ;C 、}}}},{,{},{{}}},{,{,{}},{,{}},{,{}},{{},{,{B ΦΦΦΦΦΦΦΦΦΦΦΦΦ;D 、},}}},{,{},{{}}},{{,{}},{,}{{{B ΦΦΦΦΦΦΦΦΦΦ,二、填空题(每小题4分,共20分)7.设有集合A={a,b,c,d,e},B={d,e,f,g,h},则A/B=______________ ,A △B=________________.8.设集合A B12312,则A B= ,=={,,},{,}A B= ,A-B= ,P(A)-P(B )= .9.设集合A ={ 1, 2 },B={ a, b },那么集合A到B的双射函数是.10. A,B,C表示三个集合,文氏图中阴影部分的集合表达式为。
离散数学第一部分测试题 一、 填空题1.当p,q,r 分别取1,0,1时,(p→q) (p→r)的真值为 假,或02.设P :他富有,Q :他幸福,“他既不富有也不幸福” 的符号化为 ┐ P ∧┐ Q3.“所有的人都长着黑头发”用谓词表达式符号化为 M(x):x 为人,F(x): x 长着黑头发, x(M(x)→F(x))4.如果6大于4,则4大于5用谓词表达式符号化为 G(x,y): x ﹥y ,G(6,4) →G(4,5)二、 选择题1.2x+3<4( C )A.是命题也是复合命题B.是命题但不是复合命题C.不是命题D.以上都不对2. 下列语句是命题的有( D )A. 什么时候开会呀?B. 请快开门!C. x+y>10。
D. 苹果树和梨树都是落叶乔木。
3.设p 表示命题“天下大雨”,q 表示命题“他乘公共汽车上班”,r 表示命题“他骑自行车上班”。
则命题“如果天不下大雨,他乘公共汽车上班或者骑自行车上班。
”符号化为( B )A .(⌝p ∧q) →rB .⌝p →(q ∨r )C .⌝p ∧(q →r )D .p →(q ∧r )三、 计算题1.求(p ∨q) →r 的主析取范式解 本公式含有三个命题变项,所以极小项均含有三个文字。
75310)()()()()()()()()()()())()(()()()()()(m m m m m r q p r q p r q p r q p r q p r q p r q p r q p r q p r q p r q p r q q p p r r q p rq p rq p rq p ∨∨∨∨⇔∧∧∨∧⌝∧∨∧∧⌝∨∧⌝∧⌝∨⌝∧⌝∧⌝⇔∧∧∨∧⌝∧∨∧∧⌝∨∧⌝∧⌝∨∧⌝∧⌝∨⌝∧⌝∧⌝⇔∧∨⌝∧∨⌝∨∨⌝∧⌝∧⌝⇔∨⌝∧⌝⇔∨∨⌝⇔→∨2.求公式的主合取范式:()()R Q Q P ∧→∨证明:()()()()P Q Q R P Q Q R ∨→∧⇔⌝∨∨∧()()P Q Q R ⇔⌝∧⌝∨∧()()()()()P Q Q P P Q R ⇔⌝∧⌝∨∧⌝∨∧∧()()()()()()R Q P P R R Q P ∧∧∨⌝∨∨⌝∧⌝∧⌝⇔()()()()R Q P R Q P R Q P R Q P ∧∧∨∧∧⌝∨∧⌝∧⌝∨⌝∧⌝∧⌝⇔四、 证明题1.用等演算法证明下面等值式。
离散数学第1章答案习题1.11、(1)否(2)否(3)是,真值为0(4)否(5)是,真值为12、(1)P:天下⾬ Q:我去教室┐P → Q(2)P:你去教室 Q:我去图书馆 P → Q(3)P,Q同(2) Q → P(4)P:2是质数 Q:2是偶数 P∧Q3、(1)0(2)0(3)14、(1)如果明天是晴天,那么我去教室或图书馆。
(2)如果我去教室,那么明天不是晴天,我也不去图书馆。
(3)明天是晴天,并且我不去教室,当且仅当我去图书馆。
习题1.21、(1)是(2)是(3)否(4)是(5)是(6)否2、(1)(P → Q) →R,P → Q,R,P,Q(2)(┐P∨Q) ∨(R∧P),┐P ∨ Q,R∧P,┐P,Q,R,P(3)((P → Q) ∧ (Q → P)) ∨┐(P → Q)),(P → Q) ∧(Q → P),┐(P → Q),P → Q,(Q → P),P → Q,P,Q,Q,P,P,Q 3、(1)((P → Q) → (Q → P)) → (P → Q)(2)((P → Q) ∨ ((P → Q) → R))→ ((P → Q) ∧ ((P → Q) → R)) (3)(Q → P∧┐P) → (P∧┐P → Q)4、(P → Q) ∨ ((P∧Q) ∨ (┐P∧┐Q)) ∧ (┐P∨Q)习题1.31、(1)I(P∨(Q∧R)) = I(P)∨(I(Q)∧I(R)) = 1∨(1∧0) = 1(2)I((P∧Q∧R)∨(┐(P∨Q)∧┐(R∨S))) = (1∧1∧0)∨(┐(1∨1)∧┐(0∨1)) = 0∨(0∧0) = 0(3)I((P←→R)∧(┐Q→S)) = (1←→0)∧(┐1→1) = 0∧1 = 0(4)I((P∨(Q→R∧┐P))←→(Q∨┐S)) = (1∨(1→(0∧┐1)))←→(1∨┐1) = 1←→1 = 1(5)I(┐(P∧Q)∨┐R∨((Q←→┐P)→R∨┐S)) = ┐(1∧1)∨┐0∨((1←→┐1)→(0∨┐1)) = 0∨1∨1 = 13、(1)原式 <=> F→Q <=> T 原式为永真式(2)原式 <=> ┐T∨(┐(┐P∨Q)∨(┐┐Q∨┐P)) <=> (P∧┐Q)∨(Q∨┐P)<=> (P∧┐Q)∨┐(P∧┐Q) <=> T 原式为永真式(3)原式 <=> ┐(P∧Q) ←→┐(P∧Q) <=> T 原式为永真式(4)原式 <=> P∧(Q∨R) ←→ P∧(Q∨R) <=> T 原式为永真式(5)原式 <=> ┐(P∨┐Q)∨Q <=> (┐P∧Q)∨Q <=> Q 原式为可满⾜式(6)原式 <=> ┐(P∧Q)∨P <=> ┐P∨┐Q∨P <=> T∨┐Q <=> T 原式为永真式(7)原式 <=> (┐P∨P∨Q)∧┐P <=> (T∨Q)∧┐P<=> T∧┐P <=> ┐P 原式为可满⾜式(8)原式 <=> ┐((P∨Q) ∧(┐Q∨R))∨(┐P∨R) <=> (P∧┐Q)∨(Q∧┐R)∨(┐P∨R)<=> ((P∧┐Q)∨┐P)∨((Q∧┐R)∨R)<=>(( P∨┐P)∧(┐Q∨┐P))∨(( Q∨R)∧(┐R∨R))<=> (┐Q∧┐P)∨( Q∨R) <=> T 原式为永真式4、(1)左 <=> ┐P∨┐Q∨P <=> ┐┐P∨(┐P∨┐Q) <=> 右(2)左 <=> ┐(┐P∨Q) <=> 右(3)左 <=> ┐(P∧Q)∨P <=> ┐P∨┐Q∨P <=> T∨┐Q <=> 右(4)左 <=> ┐(P→Q)∨┐(Q→P) <=> (P∧┐Q)∨(Q∧┐P) <=> 中<=> ((P∧┐Q)∨Q)∧((P∧┐Q)∨┐P)<=> (P∨Q)∧(┐Q∨Q)∧(P∨┐P)∧(┐Q∨┐P)<=> (P∨Q)∧┐(P∧Q) <=> 右(5)左?(?P∨Q)∧(?R∨Q)??(P∨Q)∨Q?右5.(1)左?Q??P∨Q?右(2)(P→(Q→R))→((P→Q)→(P→R))(?P∨?Q∨R)∨?(?P∨Q) ∨(?P∨R)(P∧Q∧?R)∨(P∧?Q)∨?P∨R(P∧Q∧?R)∨((P∨?P)∧(?Q∨?P))∨R(P∧Q∧?R)∨(?Q∨?P∨R)(P∧Q∧?R) ∨?(P∧Q∧?R)T故P→(Q→R)?(P→Q)→(P→R)(3).(P→Q)→(P→P∧Q)(?P∨Q)∨?P∨(P∧Q)(?P∨Q)∨(?P∨P)∧(?P∨Q)(?P∨Q)∨(?P∨Q)T故P→Q?P→P∧Q(4).((P→Q) →Q) →P∨Q(?(?P∨Q) ∨Q) ∨P∨Q((P∨Q)∧?Q)∨P∨Q(P∧?Q)∨(Q∧?Q) ∨P∨Q(P∨Q)∨(P∨Q)T故(P→Q) →Q?P∨Q(5).((P∨?P)→Q)∧((P∨?P)→R)→(Q→R)((?T∨Q)∧(?T∨R)) ∨?Q∨R(Q∧R)∨?Q∨RQ∨?R∨?Q∨RQ∨TT故((P∨?P) →Q)∧((P∨?P)→R)?Q→R(6)左?(Q→F)∧(R→F)(Q∨F)∧(?R∨F)Q∧?RRR∨Q?右6.(1)原式?(?P∧?Q∧R)(2)原式??P∨?Q∨P??(P∧Q∧?P)(3)原式?P∨(Q∨?R∨P)?P∨Q∨?R??(?P∧?Q∧R)7.(1)原式??(?P∨?Q∨P)(2)原式?(?P∨Q∨?R) ∧?P∧Q??(?(?P∨Q∨?R)∨P∨?Q)(3)原式??P∧?Q∧ (R∨P) ??(P∨Q∨?(R∨P))8. (1) (P∨Q)∧((?P∧ (?P∧Q))∨R)∧?P(2)(P∨Q∨R)∧(?P∧R)(3)(P∨F)∧(Q∨T)习题1.41.(1)原式??(?P∨?Q)∨((?P∨?Q)∧(Q∨P))(?P∨?Q)∨(Q∨P)(P∧Q) ∨Q∨PQ∨P,既是析取范式⼜是合取范式(2)原式?((?P∨Q)∨(?P∨?Q))∧(?(?P∨Q) ∨?(?P∨?Q)) ?(P∧Q)∨(P∧?Q) 析取范式P∧(Q∨?Q)合取范式(3)原式??P∨Q∨?S∨ (?P∧Q)析取范式(P∨(?P∧Q))∨Q∨?SP∨Q∨?S合取范式(4)原式?P∨P∨Q∨Q∨R既是析取范式⼜是合取范式2.(1)原式?P∨?Q∨R为真的解释是:000,001,011,100,101,110,111故原式的主析取范式为:(?P∧?Q∧?R)∨(?P∧?Q∧R)∨(?P∧Q∧R)∨(P∧?Q∧?R)∨(P∧?∧QR)∨(P∧Q∧?R)∨(P∧Q∧R)(2)原式?(P∧?Q) ∨R(P∧?Q∧(R∨?R))∨((P∨?P)∧R)(P∧?Q∧R)∨(P∧?Q∧?R)∨(P∧Q)∨( ?P∧R)(P∧?Q∧R)∨(P∧?Q∧?R)∨(P∧(Q∨?Q)∧R)∨(?P∧(Q∨?Q)∧R) ?(P∧?Q∧R)∨(P∧?Q∧?R)∨(P∧Q∧R)∨(P∧?Q∧R)∨(? P∧Q∧R)∨(?P∧?Q∧R)(P∧?Q∧R)∨(P∧?Q∧?R)∨(P∧Q∧R) ∨(?P∧Q∧R)∨(?P∧?Q∧R)为真的解释是101,100,111,011,001(3)原式?(?P∨(Q∧R))∧(P∨(?Q∧?R))((P∨ (Q∧R)) ∧P)∨(( ?P∨ (Q∧R))∧( ?Q∧?R))(P∧P)∨(Q∧P∧R)∨( ?P∧?Q∧?R)∨(Q∧R∧?Q∧?R)(P∧Q∧R)∨(?P∧?Q∧?R)为真的解释是:000,111(4)原式?P∨P∨Q∨Q∨R?P∨Q∨R为真的解释是:001,010,011,100,101,110,111故原式的主析取范式为:(?P∧?Q∧R)∨(?P∧Q∧?R)∨(?P∧Q∧R)∨(P∧?Q∧?R)∨(P∧?Q∧R)∨(P∧Q∧?R)∨(P∧Q∧R)3.(1)原式??P∨Q∨?P∨?Q?T主合取范式,⽆为假的解释。
离散数学章练习题及答案离散数学练习题第⼀章⼀.填空1. 公式(p q) ( p q )的成真赋值为01 ;102. 设p, r 为真命题,q, s 为假命题,则复合命题(p q) ( r s) 的真值为03. 公式(p q)与(p q) (p q )共同的成真赋值为01;104. 设A为任意的公式,B为重⾔式,则A B 的类型为重⾔式5.设p, q 均为命题,在不能同时为真条件下,p与q的排斥也可以写成p与q的相容或。
⼆.将下列命题符合化1. 7 不是⽆理数是不对的。
解:( p) ,其中p: 7 是⽆理数;或p,其中p: 7 是⽆理数。
2. ⼩刘既不怕吃苦,⼜很爱钻研。
解:p q, 其中 p: ⼩刘怕吃苦,q:⼩刘很爱钻研3. 只有不怕困难,才能战胜困难。
解:q p ,其中p: 怕困难,q: 战胜困难或p q ,其中p: 怕困难,q: 战胜困难4. 只要别⼈有困难,⽼王就帮助别⼈,除⾮困难解决了。
解:r (p q),其中p: 别⼈有困难,q: ⽼王帮助别⼈,r: 困难解决了或:( r p) q ,其中p: 别⼈有困难,q: ⽼王帮助别⼈,r: 困难解决了5. 整数n是整数当且仅当n 能被2 整除。
解:p q,其中p: 整数n是偶数,q: 整数n能被2整除三、求复合命题的真值P:2能整除5,q :旧⾦⼭是美国的⾸都,r :在中国⼀年分四季1. ((p q) r) (r (p q))2. (( q p) (r p)) (( p q) r解:p, q 为假命题,r 为真命题1. ((p q) r) (r (p q)) 的真值为02. (( q p) (r p)) (( p q) r 的真值为1四、判断推理是否正确设y 2x 为实数,推理如下:若y在x=0可导,则y在x=0连续。
y 在x=0连续,所以y在x=0可导。
解:y 2x,x为实数,令p: y在x=0可导,q: y 在x=0连续。
P为假命题,q为真命题,推理符号化为:(p q) q p,由p,q 得真值可知,推理的真值为0,所以推理不正确。
离散数学试题第一部分选择题一、单项选择题1.下列是两个命题变元p,q的小项是( C )A.p∧┐p∧q B.┐p∨qC.┐p∧q D.┐p∨p∨q2.令p:今天下雪了,q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为( D )A.p→┐q B.p∨┐qC.p∧q D.p∧┐q3.下列语句中是命题的只有( A )A.1+1=10 B.x+y=10C.sinx+siny<0 D.x mod 3=24.下列等值式不正确的是( C )A.┐(∀x)A⇔(∃x)┐AB.(∀x)(B→A(x))⇔B→(∀x)A(x)C.(∃x)(A(x)∧B(x))⇔(∃x)A(x)∧(∃x)B(x)D.(∀x)(∀y)(A(x)→B(y))⇔(∃x)A(x)→(∀y)B(y)5.谓词公式(∃x)P(x,y)∧(∀x)(Q(x,z)→(∃x)(∀y)R(x,y,z)中量词∀x的辖域是( C )A.(∀x)Q(x,z)→(∃x)(∀y)R(x,y,z))B.Q(x,z)→(∀y)R(x,y,z)C.Q(x,z)→(∃x)(∀y)R(x,y,z)D.Q(x,z)6.设A={a,b,c,d},A上的等价关系R={<a,b>,<b,a>,<c,d>,<d,c>}∪I A,则对应于R的A的划分是( D )A.{{a},{b,c},{d}} B.{{a,b},{c},{d}}C.{{a},{b},{c},{d}} D.{{a,b},{c,d}}7.设A={Ø},B=P(P(A)),以下正确的式子是( A )A.{Ø,{Ø}}∈B B.{{Ø,Ø}}∈BC.{{Ø},{{Ø}}}∈B D.{Ø,{{Ø}}}∈B8.设X,Y,Z是集合,一是集合相对补运算,下列等式不正确的是( A )A.(X-Y)-Z=X-(Y∩Z)B.(X-Y)-Z=(X-Z)-YC.(X-Y)-Z=(X-Z)-(Y-Z)D.(X-Y)-Z=X-(Y∪Z)9.在自然数集N上,下列定义的运算中不可结合的只有( D )A.a*b=min(a,b)B.a*b=a+bC.a*b=GCD(a,b)(a,b的最大公约数)02324# 离散数学试题第1 页共4页02324# 离散数学试题 第 2 页 共4页D .a*b=a(mod b)10.设R 和S 是集合A 上的关系,R ∩S 必为反对称关系的是( A ) A .当R 是偏序关系,S 是等价关系; B .当R 和S 都是自反关系; C .当R 和S 都是等价关系; D .当R 和S 都是传递关系11.设R 是A 上的二元关系,且R ·R ⊆R,可以肯定R 应是( D ) A .对称关系; B .全序关系; C .自反关系; D .传递关系第二部分 非选择题二、填空题1.设论域是{a,b,c},则(∀x)S(x)等价于命题公式 S(a)∧S(b)∧S(c) ;(x ∃)S(x)等价于命题公式 S(a)∨S(b) ∨S(c) 。
第一章部分习题及参考答案1 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)(2)(p↔r)∧(﹁q∨s)(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r)(4)(⌝r∧s)→(p∧⌝q)2.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”3.用真值表判断下列公式的类型:(1)(p→q) →(⌝q→⌝p)(2)(p∧r) ↔(⌝p∧⌝q)(3)((p→q) ∧(q→r)) →(p→r)4.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)5.用等值演算法证明下面等值式:(1)(p→q)∧(p→r)⇔(p→(q∧r))(2)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)6.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)7.在自然推理系统P中构造下面推理的证明:(1)前提:p→q,⌝(q∧r),r结论:⌝p(2)前提:q→p,q↔s,s↔t,t∧r结论:p∧q8.在自然推理系统P中用附加前提法证明下面推理:前提:p→(q→r),s→p,q结论:s→r9.在自然推理系统P中用归谬法证明下面各推理:前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p参考答案:1.(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0 (4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔12.p: π是无理数 1q: 3是无理数0r: 2是无理数 1s: 6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
第一章习题之答禄夫天创作1.2.1判断下列语句是否为命题,若是命题请指出是简单命题还是复合命题。
(1)2是无理数。
(2)5能被2整除。
(3)现在开会吗?(4)x+5>0(5)这朵花真是好看!(6)2是素数当且仅当三角形有三条边。
(7)雪是黑色的当且仅当太阳是从东方升起。
(8)2000年10月1日天气晴好。
(9)太阳系以外的星球上有生物。
(10)小李在宿舍里。
(11)全体起立。
(12)4是2的倍数或是3的倍数。
(13)4是偶数且是奇数。
(14)李明和王华是同学。
(15)蓝色和黄色可以调配成绿色。
1..2 将上题中的命题符号化,并讨论他们的真值。
1.3判断下列各命题的真值。
(1)若2+2=4,则3+3=6;(2)若2+2=4,则3+3≠6;(3)若2+2≠=4,则3+3=6;(4)若2+2≠=4,则3+3≠=6;(5)2+2=4,当且仅当3+3=6;(6)2+2=4,当且仅当3+3≠6;(7)2+2≠4,当且仅当3+3=6;(8)2+2≠4,当且仅当3+3≠6;1.4将下列命题符号化,并讨论其真值。
(1)如果今天是1号,则明天是2号;(2)如果今天是1号,则明天是3号;1.5将下列命题符号化。
(1)2是偶数不是素数;(2)小王不单聪明而且用功;(3)虽然天气冷。
老王还是来了;(4)他一边吃饭,一边看电视;(5)如果天下大雨,他就乘公交汽车来;(6)只有天下大雨,他才乘公交汽车来;(7)除非天下大雨,否则他不乘公交汽车来;(8)不经一事,不长一智;1.5设p,q的真值为0 ,r,s的真值为1,求下列命题公式的真值。
(1)p∨(q∧r);(2)(p↔r)∧(⌝p∨s);(3)(p∧(q∨r)→((p∨q)∧(r∧s);(4)⌝(p∨(q→r∧⌝p)))→(r∨⌝s);1.6设p:2+3=5。
q:大熊猫产在中国。
r:复旦大学在广州。
求下列复合命题的真值:(1)(p q)→r(2)(r→(p∧q))┐p(3)┐r→(┐p∨┐q∨r)(4)(p∧q∧┐r)((┐p∨┐q)→r)1.7.用真值表判断下列公式的类型:方法不限。
第一单元练习题
一、单项选择题(每小题2分,共12分)
1.若集合A ={a ,b },B ={ a ,b ,{ a ,b }},则( ) A .A ⊂B ,且A ∈B B .A ∈B ,但A ⊄B C .A ⊂B ,但A ∉B D .A ⊄B ,且A ∉B 2. 若集合A 的元素个数为10,则其幂集的元素个数为( ) A .100 B .10 C .1024 D .1 3. 设R 为实数集,函数f :R →R ,f(x)= 2x ,则f 是( ) A .满射函数
B .单射函数
C .双射函数
D .非单射非满射
4. 设A={1,2,3},则A 上的二元关系有( )个。
A .32 ; B .23; C . 3
32
⨯; D . 2
23
⨯
5.设B = { {2}, 3, 4, 2},那么下列命题中错误的是( ).
A .{2}∈
B B .{2, {2}, 3, 4}⊂B
C .{2}⊂B
D .{2, {2}}⊂B 6. 集合}}}{,{},{,{ΦΦΦΦ=B 的幂集为( )。
A 、}},},{{},{{ΦΦΦΦ;
B 、}}}},{,{},{{}}},{,{,{}},{,{}}},{,{{}},{{},{,{B ΦΦΦΦΦΦΦΦΦΦΦΦΦ;
C 、}}}},{,{},{{}}},{,{,{}},{,{}},{,{}},{{},{,{B ΦΦΦΦΦΦΦΦΦΦΦΦΦ;
D 、},}}},{,{},{{}}},{{,{}},{,}{{{B ΦΦΦΦΦΦΦΦΦΦ,
二、填空题(每小题4分,共20分)
7.设有集合A={a,b,c,d,e},B={d,e,f,g,h},则A/B=______________ ,
A △B=________________.
8.设集合A B
12312,则A B= ,
==
{,,},{,}
A B= ,A-B= ,P(A)-P(
B )= .
9.设集合A ={ 1, 2 },B={ a, b },那么集合A到B的双射函数是
.
10. A,B,C表示三个集合,文氏图中阴影部分的集合表达式
为。
11. 设集合A ={0, 1, 2},B ={0, 2, 4},R是A到B的二元关系,
∈
R⋂
y
x
∈
∈
=且
<
>
且
y
{B
,
x
}
A
,
y
A
B
x
M=
则R的关系矩阵
R
.
三、证明题(每小题8分,共16分)
12.证明:A (B-A)=A B
13. 设A,B是任意集合,试证明:若A A B B
⨯=⨯,则A=B.
四、计算题(14、15题各5分,16、17、18、19题各8分,20题10分)
14.已知A={ 1,3,5,7 },写出集合A上大于关系的关系矩阵。
15.求从1到500之间能被2、3、7任何一个数整除的整数的个数。
P上的包含关系
16.已知A={ a,b,c },求
()A
17.设A={ 0,1 },B={ 1, 2 },试确定下面的集合: (1)A ⨯{ 1 }⨯B ; (2)2A ⨯B ; (3)2(B A)⨯; (4)(A ⨯B) (B A)⨯.
18.设集合A={ a ,b ,c ,d },A 上的关系1R ={(a ,a),(a ,c), (b ,d)},2R ={(a ,d )(c ,b )(d ,c )},求12R R ∙,21R R ∙,
1
1
R R ∙,2
2
R R
∙,112()R R R ∙∙,121()R R R ∙∙。