质谱复习题
- 格式:docx
- 大小:4.90 MB
- 文档页数:22
1、质谱分析是先将物质离子化,利用电磁学原理按离子的质荷比分离,然后测量各种离子谱峰的强度而实现分析目的的一种分析方法。
对于有机化合物质谱,根据质谱峰的质荷比和相对强度,可以进行结构分析。
2、质谱仪的结构:进样系统,真空系统(离子源,质量分析器,检测器),数据分析系统。
3、离子源将被测样品分子电离成为带电的离子,并对离子进行加速使其进入质量分析器。
电离所需的能量随分子的不同差异很大,因此对不同的分子应选择使用不同的电离方法。
4、电子轰击电离使用具有一定能量的电子直接作用于样品分子,使其电离。
电子所带的能量转移给样品分子,样品分子释放出一个电子变成分子离子(M·+),持有剩余能量的离子还可引起化学键的开裂生成碎片离子。
5、EI的特点:电离效率高;能量高,碎片多,结构信息多;碎片稳定,重现性好(质谱检索);通用性强。
6、在70 eV下,电子轰击后得到的碎片比较稳定,可以在不同时间和不同的仪器上实现比较,便于进行谱库检索。
7、化学电离源的基本原理:先反应气离子化、再使样品分子离子化。
将甲烷气、乙烷气、氨气等气体作为反应气体加入离子源,使其量大大超过样品,在离子源中受到电子轰击、并离子化。
离子化气体与样品分子相撞时样品分子达到离子化。
如果待分析样品有机物质量太大或稳定性较差,利用电子轰击源不易获得分析离子,因而也不能测定其分子量,化学源就是为解决这个问题而发展起来的离子化技术。
7、以高能量的初级离子轰击表面,再对由此产生的二次离子进行质谱分析是材料表面分析的一种重要方法,由此基础上发展起来的两种十分相似的电离方法:快原子轰击(FAB)和液体二次离子质谱(LSIMS)在有机质谱学中占有重要位置。
8、电喷雾电离(ESI)是一种软电离方法,其离子话过程分为三步:1样品溶液喷雾,2雾滴分裂,3溶液中离子转变为气相离子。
质量分析器的作用是将离子源产生的离子按照质荷比的大小分开并排列成谱图。
是质谱仪的核心部件,因此常以质量分析器的类型来命名一台质谱仪。
质谱解析考试题及答案一、选择题1. 质谱分析中,离子源的作用是什么?A. 将样品分子转化为离子B. 将离子加速C. 将离子分离D. 检测离子2. 质谱仪中,质量分析器的作用是什么?A. 将样品分子转化为离子B. 将离子加速C. 根据离子的质荷比分离离子D. 检测离子3. 下列哪种质谱技术可以提供结构信息?A. 电子冲击电离质谱B. 化学电离质谱C. 快原子轰击电离质谱D. 串联质谱二、填空题1. 质谱仪中的________是用来检测离子的装置。
2. 质谱分析中,________是将样品分子转化为离子的过程。
3. 质谱中的________技术可以提供分子的组成和结构信息。
三、简答题1. 简述质谱分析中样品的电离方式有哪些?2. 质谱分析在生物医药领域有哪些应用?四、计算题假设一个分子的质荷比为 100:1,若该分子在质谱仪中被加速后,其速度为 1000 m/s,求该分子的质量。
五、论述题论述质谱分析在环境监测中的应用及其重要性。
答案:一、选择题1. 答案:A2. 答案:C3. 答案:D二、填空题1. 答案:检测器2. 答案:电离3. 答案:串联质谱三、简答题1. 答案:质谱分析中样品的电离方式包括电子冲击电离、化学电离、快原子轰击电离、电喷雾电离等。
2. 答案:质谱分析在生物医药领域的应用包括药物代谢研究、蛋白质组学分析、疾病标志物的发现等。
四、计算题答案:设分子的质量为 m,根据质荷比的定义,有 \( \frac{m}{z} = 100 \),其中 z 为电荷数。
由于质谱中常见的电荷数为 1,即\( z = 1 \),所以分子的质量 \( m = 100 \)。
再根据动能公式\( E_k = \frac{1}{2}mv^2 \),其中 \( E_k \) 为动能,\( v \)为速度,代入已知的速度 \( v = 1000 \) m/s,可得 \( m =\frac{2E_k}{v^2} \)。
例1:未知物1的质谱图。
解:从图谱上看,该化合物的裂解碎片极少,说明应为具有高度稳定性结构的化合物,不易进一步被裂解。
例2、未知物2的质谱图。
解:该化合物为具有两个稳定结构单元的化合物,分子离子峰具有较为稳定的结构,易失去一个苯基形成m/z105的高度稳定的碎片。
分子离子与m/z105碎片离子之间由较弱的键连接。
例3、未知物3的质谱图。
解:该化合物的质谱峰很孤单,同位素峰丰度非常小,低质量端的峰没有伴随峰。
示该化合物含有单同位素元素,分子中的氢很少。
未知物4的质谱图。
解:髙质量端的质谱峰很弱,低质量端的质谱峰多而强。
示为脂肪族化合物。
例5、某化合物的化学式是C8H16O,其质谱数据如下表,试确定其结构式43 57 58 71 85 86 128相对丰度/% 100 80 57 77 63 25 23 解:⑴ 不饱和度Ω=1+8+(-16/2)=1,即有一个双键(或一个饱和环);⑵ 不存在烯烃特有的m/z41及41+14n系列峰(烯丙基的α断裂所得),因此双键可能为羰基所提供,而且没有m/z29(HC O+)的醛特征峰,所以可能是一个酮;⑶ 根据碎片离子表,m/z为43、57、71、85的系列是C n H2n+1及C n H2n+1CO 离子,分别是C3H7+、CH3CO+,C4H9+、C2H5CO+,C5H11+、C3H7CO+及C6H13+、C4H9CO+离子;⑷ 化学式中N原子数为0(偶数),所以m/z为偶数者为奇电子离子,即m/z86和58的离子一定是重排或消去反应所得,且消去反应不可能,所以是发生麦氏重排,羰基的γ位置上有H,而且有两个γ-H。
m/z86来源于M-42(C3H6、丙稀),表明m/z86的离子是分子离子重排丢失丙稀所得; m/z58的重排离子是m/z86的离子经麦氏重排丢失质量为26的中性碎片(C2H4、乙烯)所产生,从以上信息及分析,可推断该化合物可能为:由碎片裂解的一般规律加以证实:例6、某化合物由C、H、O三种元素组成,其质谱图如下图,测得强度比M :(M+1):(M+2)=100 :8.9 :0.79 试确定其结构式。
质谱部分(30分)一、问答(8分)1简述质谱仪中质量分析器的主要作用。
(3分)2•请写出由a裂解引起的逆Diels-Alder反应式。
(3分)3.请写出磁质谱的基本原理公式。
(2分)、填空(6 分)1.EI法是一种将分析样品的汽化与电离分别实施的电离方法,因此,EI-MS —般适合于测定热稳定,极性小的化合物。
2.测得理想的FAB-MS谱的关键条件之一是选择合适的基质;FAB-MS 谱给出的最常见分子离子是。
3.利用质谱方法进行混合物的分析时,最常用的电离技术是ESI ,这是因为通常它主要产生分子离子峰。
4.MALDI-TOFMS主要适用于生物大分子的测定。
5.—般,MS/MS技术具有母离子、子离子、中性丢失碎片等扫描方式。
6.含有二个溴原子的有机化合物,在质谱中测得的[A]:[A+2]:[A+4]同位素丰度比大约是1: 2: 1三、当利用(+)ESI-MS/MS方法分别鉴别以下二对菲吲哚里西丁类生物碱类似物的结构时,请指出能够鉴别出它们结构之间差异的最明显的裂解特征。
(8分)+H +-16分子离子峰分子离子峰-18 四、根据以下EI-MS 谱结果,找出分别对应于3-戊酮和3-甲基-2-丁酮的图谱,并写出产生m/z 57、m/z 29以及m/z 71、m/z 43碎片离子的裂解反应。
(8 分)提示:分子离子为m/z 86。
要尽可能写出每一步分析步骤。
一、问答(8 分)1.质谱仪有哪几个主要部分组成?( 3 分)2.质谱仪中离子源的基本作用是什么?(2 分)3.请写出麦氏重排的反应式。
(3 分)二、填空( 6 分)1 .采用正离子模式检测时,EI-MS 谱和ESI-MS 谱给出的最常见分子离子分别是和。
2.FAB 法是将样品的与同时进行的电离技术;FAB-MS 方法比较适合于测定的化合物。
3.ESI-MS 方法最适合于测定化合物,其中ESI 源属于电离技术。
4.MS/MS 技术中子离子扫描谱的测定是通过选择离子,对其进行碰撞诱导裂解,来产生离子。
质谱练习题答案质谱练习题答案质谱是一种分析化学技术,广泛应用于化学、生物、环境等领域。
它通过将化合物转化为离子,并根据离子的质量-电荷比进行分析,从而得到化合物的结构和组成信息。
质谱练习题是帮助学生巩固质谱原理和应用知识的重要工具。
下面是一些常见的质谱练习题及其答案,希望对学习者有所帮助。
题目一:以下哪个质谱仪不适用于大分子的质谱分析?A. 液质谱仪B. 气质谱仪C. 电喷雾质谱仪D. MALDI-TOF质谱仪答案:B. 气质谱仪解析:气质谱仪主要适用于描绘小分子化合物的质谱图谱,而对于大分子化合物如蛋白质、多肽等,气质谱仪的分析能力有限。
相比之下,液质谱仪、电喷雾质谱仪和MALDI-TOF质谱仪在大分子分析方面表现更出色。
题目二:以下哪个质谱技术适用于分析化合物的分子量?A. GC-MSB. LC-MSC. MALDI-TOF-MSD. 电喷雾质谱答案:C. MALDI-TOF-MS解析:MALDI-TOF-MS(基质辅助激光解析离子飞行时间质谱)是一种常用于分析化合物分子量的质谱技术。
它通过将样品与基质混合,利用激光脉冲将样品分子转化为离子,并根据离子的飞行时间来测定其质量。
题目三:以下哪个离子化技术适用于气相色谱质谱联用分析?A. 电子轰击离子化(EI)B. 化学电离(CI)C. 电喷雾离子化(ESI)D. 大气压化学电离(APCI)答案:A. 电子轰击离子化(EI)解析:气相色谱质谱联用分析中常用的离子化技术是电子轰击离子化(EI)。
在EI离子源中,电子束与分析物分子碰撞,使其电离产生碎片离子。
这些离子会根据质量-电荷比被质谱仪分析,从而得到分析物的质谱图谱。
题目四:以下哪个质谱技术适用于分析化合物的结构?A. 质子转移反应质谱(PTR-MS)B. 碰撞诱导解离质谱(CID)C. 高分辨质谱(HRMS)D. 脂质质谱(Lipidomics)答案:B. 碰撞诱导解离质谱(CID)解析:碰撞诱导解离质谱(CID)是一种常用于分析化合物结构的质谱技术。
质谱法的复习题质谱法的复习题质谱法是一种广泛应用于化学、生物、环境等领域的分析技术。
它通过测量物质的质量和相对丰度来确定其化学组成和结构。
在质谱法的学习和应用过程中,我们需要掌握一些基本的概念和原理。
下面是一些质谱法的复习题,帮助我们回顾和加深对这一分析技术的理解。
1. 什么是质谱法?质谱法是一种通过测量物质分子的质量和相对丰度来确定其化学组成和结构的分析技术。
它基于物质分子在质谱仪中的离子化和分离,利用质谱仪测量得到的离子质量谱图来推断物质的组成和结构。
2. 什么是质谱仪?质谱仪是用于进行质谱分析的仪器。
它由离子源、质量分析器和检测器组成。
离子源将样品中的分子转化为离子,质量分析器将离子按其质量-电荷比进行分离和测量,检测器用于检测和记录离子信号。
3. 什么是质谱图?质谱图是质谱仪测量得到的离子质量和相对丰度的图谱。
它通常由质量轴和相对丰度轴组成。
质谱图可以提供物质的分子质量、分子结构、分子离子峰的相对丰度等信息。
4. 什么是质谱峰?质谱峰是质谱图中表示离子相对丰度的峰状信号。
每个质谱峰代表一个离子,其位置对应于该离子的质量,峰的高度对应于该离子的相对丰度。
5. 什么是质量分析器?质量分析器是质谱仪中用于分离和测量离子质量的部件。
常见的质量分析器包括磁扇形质量分析器、四极质量分析器和飞行时间质量分析器等。
它们通过对离子施加电场、磁场或电磁场来实现离子的分离和测量。
6. 什么是质量-电荷比?质量-电荷比(m/z)是质谱中用于表示离子质量的比值。
它定义为离子的质量除以其电荷数目。
质量-电荷比常用于质谱图的横轴,用于表示离子的质量。
7. 什么是基质辅助激光解吸电离质谱(MALDI-TOF)?MALDI-TOF是一种常用的质谱技术,用于分析大分子化合物,如蛋白质、核酸等。
它利用基质分子将样品分子转化为离子,然后利用飞行时间质量分析器测量离子的飞行时间,从而确定其质量。
8. 什么是电喷雾质谱(ESI-MS)?ESI-MS是一种常用的质谱技术,用于分析溶液中的化合物。
一、名词解释:1.重排反应:在质谱裂解反应中,生成的某些离子的原子排列并不保持原来分子结构的关系,发生了原子或基团重排,产生这些重排离子的反应叫做重排反应。
2.麦氏重排:具有γ-氢原子的不饱和化合物,经过六元环空间排列的过渡态,γ-氢原子重排转移到带正电荷的杂原子上,伴随有Cα-Cβ键的断裂。
3.质谱:是化合物分子在真空条件下受电子流的“轰击”或强电场等其他方法的作用,电离成离子,同时发生某些化学键有规律的断裂,生成具有不同质量的带正电荷的离子,这些离子按质荷比的大小被收集记录的谱。
4. 质谱碎裂的一般规律:分子中电离电位低的电子最容易丢失,生成的正电荷和游离基就定域在丢失电子的位置上,离子具有过剩的能量和带有的正电荷或不成对电子式它发生碎裂的原因和动力,质谱中的碎片离子多而杂,造成质谱解析困难,产物离子的相对丰度主要由它的稳定性决定。
5.质谱碎裂的影响因素:化学键的相对强度,碎裂产物的稳定性,立体化学因素。
6. 质谱分析法中判断分子离子的方法:①分子离子必须是一个奇电子离子。
②分子离子的质量奇偶性必须符合氮规则。
③合理的中性丢失。
7. 质谱计通常的组成:由离子源、质量分析器、离子检测器三个主要部分和真空系统、数据处理与显示系统两个辅助部分组成。
8.离子源:离子源是质谱的主要组成部件之一,其作用是使被分析的物质电离成离子,并将电子会聚成具有一定能量和一定几何形状的电子束。
9.离子源的常见种类:电子轰击、离子轰击、原子轰击、真空放电、表面电离、场致电离、化学电离和光致电离等。
最常用的电离源是电子轰击源,它能提供有机物最丰富的结构信息,有较好的重复性。
二、选择题:1. 芳烃(M=134), 质谱图上于m/e91处显一强峰,试问其可能的结构是: ( B )A. B. C. D.2. 指出下列四种化合物中,哪一种化合物的分子离子峰为奇数(B )A、C6H6 B、C6H5NO2 C、C4H2N6O D、C9H10O24. 在质谱仪中当收集正离子的狭缝位置和加速电压固定时,若逐渐增加磁场强度H,对具有不同质荷比的正离子,其通过狭缝的顺序如何变化?( B )A、从大到小B、从小到大C、无规律D、不变5. 含奇数个氮原子有机化合物,其分子离子的质荷比值为:( B )A、偶数B、奇数C、不一定D、决定于电子数6. 二溴乙烷质谱的分子离子峰M与M+2、M+4的相对强度为:( C )A、1:1:1B、2:1:1C、1:2:1D、1:1:27.发生麦氏重排的一个必备条件是(C )A) 分子中有电负性基团B) 分子中有不饱和基团C) 不饱和双键基团γ-位上要有H原子D) 分子中要有一个六元环8、质谱(MS)主要用于测定化合物中的(C )A) 官能团B) 共轭系统C) 分子量D) 质子数9、分子离子峰,其质量数与化合物的分子量(A)A) 相等B) 小于分子量C) 大于分子量D) 与分子量无关10、氮律指出:一般有机化合物分子量与其含N原子数的关系是(B )A)含奇数个N原子时,分子量是偶数;B) 含奇数个N原子时,分子量是奇数;C) 含偶数个N原子时,分子量是奇数;D) 无关系11、某化合物的质谱中,其分子离子峰M与其M+2峰强度比为约1:1, 说明分子中可能含有(B )A) 一个Cl B) 一个Br C) 一个N D) 一个S12、某一化合物(M=102),质谱图上于m/z 74 (70%)处给出一强峰,其结构为(C )A) (CH3)2CHCOOCH3 B) CH3CH2CH2CH2COOHC) CH3CH2CH2COOCH3 D) (CH3)2CHCH2COOH13. 在质谱仪中当收集正离子的狭缝位置和加速电压固定时,若逐渐增加磁场强度H,对具有不同质荷比的正离子,其通过狭缝的顺序如何变化?2(1)从大到小(2)从小到大(3)无规律(4)不变14. 在丁酮质谱中,质荷比为29的碎片离子是发生了?2(1)α-裂解(2)I-裂解(3)重排裂解(4)γ-H迁移15. 在通常的质谱条件下,下列哪个碎片峰不可能出现?3(1)M+2 (2)M-2 (3)M-8 (4)M-18三、推断题:1.试确定下述已知质何比离子的可能存在的化学式:(1) m/z为71,只含C、H、O三种元素(2) m/z为57,只含C、H、N三种元素(3) m/z为58,只含C、H两种元素(1)C4H7O或C3H3O2(2)CH3N3或C2H5N2或C3H7N (3)C4H102.写出丙烷分子离子的碎裂过程,生成的碎片是何种正离子,其m/z是多少?m/z 29m/z 153.试解释溴乙烷质谱图中m/z分别为29、93、95三峰生成的原因?4.试解释环己烷质谱图中产生m/z分别为84、69、56、41离子峰的原因?5.某有机化合物(M=140)其质谱图中有m/z分别为83和57的离子峰,试问下述哪种结构式与上述质谱数据相符合?(1)(2)结构与(1)相符合。
质谱练习题答案根据您的要求,我将为您编写一篇关于质谱练习题答案的文章,以下是文章的正文:质谱练习题答案一、选择题1.答案:C。
在质谱仪中,离子会穿过磁场,其轨迹受磁场的影响而弯曲。
质谱仪的磁场通常为恒定磁场,因此质谱仪中的离子在磁场中盘旋运动。
2.答案:A。
质谱仪的工作原理是通过将化合物分子中的分子或原子离子化,使其得到带电,然后根据其质量和电荷比,通过磁场的作用将其分离并检测。
因此,质谱仪主要用于分析化合物的质量。
3.答案:B。
质谱仪中,离子会被加速器加速,使其具有一定的动能。
离子的动能与其质量和电荷成正比,动能越高,离子在质谱仪中运动的速度越快。
因此,质量较大的离子会以较慢的速度通过质谱仪。
4.答案:D。
质谱仪中使用的离子检测器主要有离子倍增器和荧光检测器。
离子倍增器能够将进入其中的离子放大数倍,从而提高其检测的灵敏度。
荧光检测器则通过检测离子与材料之间的荧光发射来实现离子的检测。
5.答案:C。
在质谱仪中,离子会根据其质量和电荷比在磁场中偏转,不同质量的离子会以不同的轨迹运动。
离子的运动轨迹会被记录并转化为质谱图,从而可以通过质谱图来确定化合物中的成分。
二、填空题1.答案:毛细管电泳质谱(CE-MS)。
毛细管电泳质谱(Capillary Electrophoresis-Mass Spectrometry)是将毛细管电泳与质谱技术相结合的一种分析方法,可以用于分析极性化合物、药物、蛋白质等。
2.答案:飞行时间质谱(TOF-MS)。
飞行时间质谱(Time-of-Flight Mass Spectrometry)是一种基于离子在磁场中飞行时间差异的分析方法,可以用于测定离子的质量。
它具有高分辨率、高灵敏度的特点。
3.答案:MALDI-TOF-MS。
MALDI-TOF-MS(Matrix-assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry)是一种基于激光诱导裂解的质谱分析方法,常用于生物大分子(如蛋白质、多肽等)的分析。
质谱一、选择题1. 在质谱仪中当收集正离子的狭缝位置和加速电压固定时,若逐渐增加磁场强度H,对具有不同质荷比的正离子,其通过狭缝的顺序如何变化?(2)(1)从大到小(2)从小到大(3)无规律(4)不变2. 含奇数个氮原子有机化合物,其分子离子的质荷比值为(2)(1)偶数(2)奇数(3)不一定(4)决定于电子数3. 二溴乙烷质谱的分子离子峰M与M+2、M+4的相对强度为(3)(1)1∶1∶1 (2)2∶1∶1 (3)1∶2∶1 (4)1∶1∶24. 在丁酮质谱中,质荷比为29的碎片离子是发生了(2)(1)α-裂解(2)I-裂解(3)重排裂解(4)γ-H迁移5. 在通常的质谱条件下,下列哪个碎片峰不可能出现(3)(1)M+2 (2)M-2 (3)M-8 (4)M-18二、解答及解析题1.样品分子在质谱仪中发生的断裂过程,会形成具有单位正电荷而质荷比(m/z)不同的正离子,当其通过磁场时的动量如何随质荷比的不同而改变?其在磁场的偏转度如何随质荷比的不同而改变?答:根据公式m/z=B2R2/2E可知,m/z越大,动量越大。
m/z值越大,偏转度越小。
2.带有电荷为e、质量为m的正离子,在加速电场中被电位V所加速,其速度达υ,若离子的位能(eV)与动能(mυ2/2)相等,当电位V 增加两倍时,此离子的运动速度υ增加多少倍?答:由公式eV=1/2mv2,当V增加两倍时,此时的离子的运动速度v 增加为原来的√2倍。
3.在双聚焦质谱仪中,质量为m,电荷为e、速度为υ的正离子由离子源进入电位为E的静电场后,由于受电场作用而发生偏转。
为实现能量聚焦,要使离子保持在半径为R的径向轨道中运动,此时的R值受哪些因素影响?答:eV=mv2/R R=mv2/eE,由此可知,此时的R主要受静电场强度的的影响。
4.在双聚焦质谱仪中,质量为m,电荷为e、速度为υ的正离子由电场进入强度为H的磁场后,受磁场作用,再次发生偏转,偏转的半径为r,此时离子受的向心力(Heυ)和离心力(mυ2/R)相等,此时离子受的质荷比受哪些因素影响?答:由题意有Heυ= mυ2/r,m/e=Hr/υ=H2r2/2V此时离子受的质荷比受磁场强度、半径r以及电场电位V的影响。
质谱分析特点:灵敏度高,样品用量少,应用范围广;分析速度快,并可实现多组分同时测定;与其它仪器相比,仪器结构复杂,价格昂贵,使用及维修比较困难;对样品有破坏性,无法回收。
质谱的基本原理:EI为离子源:分子受电子流冲击后,形成带正电荷分子离子及碎片离子。
不同质荷比(m/z)的离子具有不同的速度,利用离子质荷比或速度差异,质量分析器可将其分离。
质谱分析的四个过程:①通过合适的进样装置引入样品,并进行气化;②引入离子源进行电离—离子化过程;③离子经加速后进入质量分析器,按质荷比(m/z)进行分离;④检测、记录得质谱图。
质谱仪的结构:质谱仪一般由进样系统、离子源、质量分析器、检测器和记录系统等组成,还包括真空系统和自动控制数据处理等辅助设备。
离子源——作用:将样品分子电离成带电离子;常用离子源:电子轰击电离源(EI)、化学电离源(CI)、场致电离源(FI)、场解析电离源(FD)、快原子轰击电离源(FAB)、激光解析电离源(LD)、电喷雾电离源(ESI)等。
硬源:离子化能量高,伴有化学键的断裂,谱图复杂,可得到分子官能团的信息;如EI;软源:离子化能量低,产生的碎片少,谱图简单,可得到分子离子峰或准分子离子峰。
电子轰击电离源(EI):+M1+ + N1▪M+M2+ + N2▪特点:使用最广泛,谱库最完整;电离效率高;结构简单,操作方便;但分子离子峰强度较弱或不出现(因电离能量最高)。
质量分析器——作用:将不同碎片按质荷比m/z分开。
质量分析器类型:磁分析器(单聚焦、双聚焦)、飞行时间、四极滤质器(四极杆)、离子阱、离子回旋共振等。
质谱的表示方法——横坐标:质荷比(m/z);纵坐标:将最强离子峰(基峰)相对丰度规定为100%。
质谱仪的分辨率——分辨率是指仪器对质量非常接近的两种离子的分辨能力。
一般定义是:对两个相等强度的相邻峰,当两峰间的峰谷不大于其峰高10%时,则认为两峰已经分开,其分辨率:离子峰的类型——分子离子峰、同位素离子峰、碎片离子峰、亚稳离子峰①分子离子峰:,所产生的峰称为分子离子峰或称母峰,一般用符号电离顺序:n电子(非键) >共轭π电子>独立π电子>σ电子;离子稳定性:正电荷愈分散,离子愈稳定。
分子离子峰的特点:+稳定性:a 碳链越长,分子离子峰越弱;b 存在支链有利于分子离子裂解,故分子离子峰很弱;c 饱和醇类及胺类化合物的分子离子峰弱;d 有共振系统的分子:离子稳定,分子离子峰强;e 环状分子一般有较强的分子离子峰。
氮规则:由C,H,O组成的有机化合物,其分子离子的质量M一定是偶数。
由C,H,O,N组成的有机化合物:当氮原子的个数为奇数时,其分子离子的质量M一定是奇数;当氮原子的个数为偶数时,其分子离子的质量M一定是偶数。
处不应有其他碎片离子峰。
如有,则该峰不是分子离子峰(因为不可能从分子离子上失去相当于3-14个质量单位的结构碎片)。
②同位素离子峰除P、F、I外,组成有机化合物的十几种元素都有同位素。
因而在质谱中会出现由不同质量的同位素形成的峰(M+1、M+2等),称为同位素离子峰。
天然丰度:同位素在自然界中的丰度,又称天然存在比,指的是该同位素在这种元素的所有天然同位素中所占的比例。
丰度的大小一般以百分数表示。
人造同位素的丰度为零。
周期表上所列的原子量实际上是各种同位素按丰度加权的平均值,这是因为各种同位素在自然界中往往分布的比较均匀,取平均值计算比较准确。
含S化合物(S原子个数的计算):100 * I(M+2)+/I M+≈n*4.40 (n是分子含S个数);如在CH3Cl、C2H5Cl等分子中Cl M+2/Cl M=32.5%,而在含有一个溴原子的化合物中(M+2)+峰的相对强度几乎与M+峰相等。
利用同位素离子峰可用来确定分子离子峰。
③碎片离子峰:一般有机化合物的电离能为7-13电子伏特eV,质谱中常用的电离电压为70eV,电离后有过剩内能的分子离子能以多种方式裂解成碎片离子,碎片例子还可能进一步裂解成更小的碎片离子,在裂解的同时也可能发生重排。
④亚稳离子峰:质量为m1的离子在离开电离室到质量分析器之前的飞行过程中,发生分解而形成低质量(质量为m2)的离子所产生的峰。
m1+→m2+ + 中性碎片由于该离子具有的m1的速度和m2的质量,所以不出现在m/z=m2处,而是出现在峰形钝而小(一般的碎片离子峰都很尖锐);一般要跨2-5个质量单位;质荷比一般都不是整数。
⑤重排离子峰:重排离子:碎片离子通过分子内原子或基团的重排或转移形成。
麦氏重排(如下):丢失中性分子质谱离子类型汇总:ⅰ分子离子:M+▪,M-e →M+▪z=1时,其m/z等于天然丰度最大的同位素的原子量之和;往往不是基峰(谱图中丰度最高的峰)。
ⅱ碎片离子:广义上指除分子离子以外的所有离子。
ⅲ重排离子:经过重排,断裂一个以上化学键所生成的离子。
ⅳ母离子与子离子:任何一个离子进一步裂解为质荷比较小的离子,前者是后者的母离子或前体离子,后者是前者的子离子。
ⅰ奇电子离子OE+▪:带单电子的离子,如M+▪,A+▪,C+▪...在质谱解析中,奇电子离子很重要,因质荷比较小的奇电子离子是由质荷比较大的奇电子离子裂解生成的。
ⅱ偶电子离子EE+:带双电子的离子,如B+,D+,E+…子完全成对的离子则称为“偶电子离子”EE,以符号“+”表示)ⅲ多电荷离子:如z=2的离子,存在于稳定的结构中。
ⅳ准分子离子:[M+H]+,[M-H]+。
ⅴ同位素离子:非单一同位素的元素在电离过程中产生同位素离子,同位素离子构成同位素峰簇。
采用EI,大约20%的分子离子峰弱或不出现。
峰的强度强度排列:芳香族化合物>共轭多烯>脂环化合物>低分子链烃/某些含硫化合物;羰基化合物(醛,酮,酸,酯,酰氯,酰胺):分子离子峰不出现或弱;脂肪族醇类,胺类,硝基化合物等:分子离子往往不出现。
分子离子峰不出现怎么办?可尝试其它离子源,如:Cl,FAB等。
质谱裂解反应机理和规律研究有机质谱裂解反应的实验方法:①亚稳离子法:m*=m22/m1m1-Δm→m2;前体离子(母离子),子离子;Δm=15(CH3),18(H2O),28(CH2CH2,CO)…②同位素标记法:2H标记,其质荷比大于未标记的分子离子或碎片离子。
例如:质谱裂解反应机理:裂解反应瞬间进行,机理研究困难;McLaferty 提出“电荷自由基定位理论”——自由基有强烈的电子配对倾向;正电荷有吸引或极化相邻成键电子引起裂解。
重排-裂解时,发生一个以上化学键的断裂。
不含氮的化合物,奇电子离子为质量数M 为偶,经简单断裂,产生的偶电子离子,质量数M 为奇;(电子数与质量数全都倒过来相反了)含一个氮的分子,分子离子质量M 为奇,经简单断裂反应产生的偶电子离子,含氮离子为偶质量数;不含则为奇质量数。
在质谱图中, 奇电子离子峰不多, 但很重要!离子丰度的影响因素: ①产物离子的稳定性质谱反应产生的离子稳定性越高,其丰度越大;例如,由于电荷能够分散于共轭体系,在相关化合物的质谱反应中,形成酰鎓离子和烯丙基正离子是一个主要倾向。
碳碳不饱和键相邻的C -C 键易断裂;芳环相邻的C -C 键易断裂(芳杂环的情况也类似);②Stevenson 规则奇电子离子(OE +▪)的单键断裂能够产生两组离子和游离基产物;ABCD +▪→A+BCD +ABCD +▪→A ++BCD形成BCD +或A +的概率与这两种离子对应的自由基BCD▪或A▪的电离能(I)有关。
当电离能值I(BCD▪)>I(A▪)时,形成A +的概率较高;反之,则形成BCD +的概率较高。
即容易保留不成对电子而以自由基形式存在的碎片具有较高的电③质子亲合能PA④最大烷基丢失在反应中心首先失去最大的烷基游离基是一个普遍倾向/碳链分支处易断裂,且大基团断裂优先(形成自由基)。
P226⑤中性产物的稳定性产生电中性小分子的开裂优先。
饱和环易在环与侧链连接处断开;含杂原子化合物易发生α断裂。
OE+▪离子:一般不形成系列,在谱中峰的数目很少,如C、H、O 的分子,该种离子质量数为偶数。
EE+离子系列:烷烃类:29,43,57,71,85,99,113烯烃类:27,41,55,69,83,97,111饱和脂肪胺类:30,44,58,72,86,100酮类:43,57,71,85,99,113醛类:44,58,72,86,100苯:39,51,65,77,91,105腈类:40,54,68,82只含C、H、O的分子,谱中离子质量数多为奇数(因为它不是分子离子峰,并不符合氮规则);含一个氮,则偶数会较多。
基本的质谱碎裂机制——①α断裂:自由基引发的α位断裂(自由基电子配对倾向)酮——酯——氧有更强的电负性,能把自由基电子吸引过来醚——醇——最大烷基丢失规则胺——烯——②i断裂:由正电荷引发的碎裂过程,涉及两个电子的转移。
电荷会转移!正电荷对σ键中的电子有强烈的吸引作用,并吸收两个电子中的一个电子给自己,使自己变成偶电子离子,使σ键断裂的另一端形成单电子自由基。
羰基则使羰基碳所连接的σ键断裂。
酮——酯——氯代物——③σ断裂:当σ键形成阳离子自由基时发生的碎裂过程。
④γH过程:指氢的重排过程(Mclafferty重排/麦氏重排)羰基化合物,烯,亚胺,腙,苯丙烷等常发生麦氏重排。
烯——麦氏重排后,以带自由基电子的原子为基准,再来一发α断裂。
机理过程包括电子转移过程要弄懂酯——机理过程包括电子转移过程要弄懂苯乙醚——机理过程包括电子转移过程要弄懂氢重排后得新的OE,后续反应可以是α/i/σ断裂;妈蛋最后一个是γ?偶电子离子氢的重排:。
请搞懂机理与电子转移!奇电子离子OE的其它重排——⑤rd过程/取代重排:重排的不是氢原子,而是一个基团,一般是烷基。
⑥re过程/消去重排:⑦饱和分子的氢重排:X为卤素,消去HX;X为OH,消去H2O;X为SH,消去H2S等。
⑧逆DA反应(可视为重排的一种)随机裂解:有机化合物在离子源中受到电子流的轰击,会按照一定规律将有机化合物进行裂解,类似的化合物会有类似的裂解碎片。
然而,在电子流轰击中也会发生随机性的裂解,对质谱中的每一个峰都未必能解释清楚。
常见有机化合物的质谱——①饱和脂肪烃ⅰ直链烃:直链烃显示弱的分子离子峰,有m/z:15,29,43,57,71,…C n H2n+1系列峰(σ-断裂);伴有m/z:27,41,55,69,…C n H2n-1系列较弱峰。
ⅱ支链烃:链的支化会引起M+丰度降低,分子离子峰丰度降低。
ⅲ环烷烃:分子离子峰强度增加,会出现m/z=41,55,56,69等系列碎片离子峰。
烷基取代的环烷烃易丢失烷基,优先失去最大基团,正电荷保留在环上。
②烯烃容易发生烯丙基断裂;产生一系列27,41,55,69,…C n H2n-1峰,41常是基峰。