吸收塔的工艺计算教程文件
- 格式:doc
- 大小:768.50 KB
- 文档页数:17
摘要利用不同气体在液体中的溶解度的不同,对混合气体进行吸收纯化,叫做吸收。
填料塔的洗涤吸收以及净化不单应用于化学领域中,在低浓度的净化方面,也能够发挥不小的作用。
此次设计任务是在25r下入塔混合气体,用20r的清水在常压下,利用空气和氨气在水中的溶解度的不同,通过填料塔吸收氨气的单元操作设计,达到塔顶氨气的回收率为98.5%。
根据吸收的相关资料与文献,查得物性数据。
在吸收过程中,采用简单的一步吸收流程,并且对吸收后的水进行再生处理,为了提高吸收效率,吸收流程采用逆流吸收流程,此次吸收塔填料选择的是塑料阶梯环填料,塑料阶梯环填料具有良好的传质性能。
在吸收过程中,选用排管是液体分布器以及盘式液体再分布器;选用栅板作为填料支承装置;丝网压板作为填料压紧装置。
设计过程主要有:填料塔的工艺计算、结构设计以及附属设备及其选型等。
关键词:填料氨吸收塔工艺计算结构设计机械设计ABSTRACTUsing different solubility of different gases in a liquid, the absorption of the mixed gas purification called absorption.Washing packed tower absorption and purification is not only in the chemical field, at low concentrations of purification, but also can play no small role.The design task is to enter the tower at 25 °C mixed gas with water 20 C un der atmospheric pressure, with differe nt solubility in water, air and ammonia, ammonia absorption through the packed column unit operation design, reaching overhead ammonia recovery was 98.5%. Accord ing to in formatio n in the literature absorbed Richard physical data.In the absorption process, using a simple step absorption process, and the water absorpti on of the rege nerati on treatme nt, i n order to in crease the absorpti on efficie ncy and absorpti on processes coun tercurre nt absorpti on process, the choice is plastic absorber packing Ladder ring packing, plastic cascadering filler has good mass transfer performanee. In the absorption process, the selection of a liquid discharge tube pan liquid distributor and redistributor; use as a filler in the grid plate supporting means; a screen latch plate as a filler.The design process are: process calculation packed column, and an cillary equipme nt desig n and selecti on and so on.Keywords: packing ammonia absorption tower design mechanical desig n process calculati on目录绪论 (1)第一节塔设备的发展 (1)第二节吸收技术的概况及其设备 (2)第一章设计条件及设计内容 (4)第一节设计题目 (4)第二节设计方案 (4)第三节吸收操作参数的选择 (5)第四节填料的选择 (5)第二章吸收塔的工艺计算 (8)第一节基础的物性数据 (8)第二节物料衡算 (8)第三节塔径的计算 (10)第四节填料层高度的计算 (13)第五节填料层压降的计算 (16)第三章塔附属设备工艺计算 (18)第一节塔附属高度的计算 (18)第二节填料塔的结构设计 (18)第三节辅助装置及附件 (21)第四章吸收塔的机械计算 (23)第二节材料的选择 .........................23 第一节主要的工艺参数 (23)第三节塔的强度和稳定性校核 (23)结论 (32)参考文献 (33)致谢 (35)绪论第一节塔设备的发展塔设备是化工、石油化工和炼油等生产中最重要的设备之一。
吸收塔的工艺计算第3章 吸收塔的工艺计算3.1基础物性数据 3.1.1液相物性数据对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。
由手册查得,20℃时水的有关物性数据如下:密度为3998.2/L km m ρ=粘度为 001.0=L μs Pa ⋅=3.6 kg/(m ·h)表面张力为 272.6/940896/L dyn cm kg h ==σ查手册得20C 时氨在水中的扩散系数为 921.76110/D m s -=⨯ 3.1.2气相物性数据 混合气体的平均摩尔质量为0.05170.952928.40/Vm i i M y M kg kmol =∑=⨯+⨯=混合气体的平均密度为3Vm PM 101.32528.4= 1.161 kg/m 8.314298Vm RT ρ⨯==⨯ 25C 时混合气体流量:)/(2.229215.27315.29821003h m =⨯混合气体的粘度可近似取为空气的粘度,查手册得25C 时空气的黏度为:518.1100.065/()v pa s kg m h -=⨯⋅=⋅μ 由手册查得,25C 时氨在空气中的扩散系数为:220.236/0.08496/v D cm s m h ==3.1.3气相平衡数据有手册查得氨气的溶解度系数为30.725/()H kmol kPa m =⋅计算得亨利系数998.276.410.72518.02LSE kPa HM ρ===⨯相平衡常数为76.410.7543101.3E m P === 3.2物料衡算进塔气相摩尔比为:05263.005.0105.01=-=Y出塔气相摩尔比为:003158.0)94.01(05263.0)1(12=-⨯=-=A Y Y ϕ 对于纯溶剂吸收过程,进塔液相组成为:02=X (清水) 惰性气体流量:)/(06.89)05.01(4.222100h kmol V =-⨯= 最小液气比:7090.007543.0/05263.0003158.005263.0/)(21212121min =--=--=--=X m Y Y Y X X Y Y V L 取实际液气比为最小液气比的2倍,则可得吸收剂用量为:)/(287.12606.894180.14180.17090.02)(2min h kmol L VLV L =⨯==⨯== 03876.06584.113)003158.005263.0(06.89)(211=-⨯=-=L Y Y V X V ——单位时间内通过吸收塔的惰性气体量,kmol/s; L ——单位时间内通过吸收塔的溶解剂,kmol/s;Y 1、Y 2——分别为进塔及出塔气体中溶质组分的摩尔比,kmol/kmol; X 1、X 2——分别为进塔及出塔液体中溶质组分的摩尔比,kmol/kmol;3.3填料塔的工艺尺寸的计算 3.3.1塔径的计算填料塔直径的计算采用式子D =计算塔径关键是确定空塔气速 ,采用泛点气速法确定空塔气速. 泛点气速是填料塔操作气速的上限,填料塔的操作空塔气速必须小于泛点气速才能稳定操作.泛点气速(/)f u m s 的计算可以采用EcKert 通用关联图查图计算,但结果不准确,且不能用于计算机连续计算,因此可采用贝恩-霍根公式计算:气体质量流量:h /kg 2.2661161.12.2292=⨯=V W液相质量流量可近似按纯水的流量计算,即:h kg W L /69.227502.18287.126=⨯=120.20.2583lg[()()]()()t v v F L L L v Lu W A K g W αρρμερρ=- 式中 29.81/g m s = 23114.2/t m m α=30.9271.161/v kg mερ==3998.2/L kg m ρ=0.2041.751.0042275.69/2661.2/L L v A K mpa s W kg h W kg hμ===⋅==代入以上数据解得泛点气速 4.219/F u m s = 取 0.8 3.352/F u u m s == 则塔径0.492D m ==圆整后取 0.5500D m mm == 3.3.2泛点率校核22292.2/36003.244/0.7850.5u m s ==⨯ 3.244100%76.89%4.219F u f u ==⨯= f 在50%-85%之间,所以符合要求.3.3.3填料规格校核 有50010850D d ==> 即符合要求. 3.3.4液体喷淋密度校核对于直径不超过75mm 的散装填料塔,取最小润湿速率为:()()h m m L w ⋅=/08.03min本设计中填料塔的喷淋密度为:32222275.6911.62/()0.785998.20.7850.5h L U m m h D ===⋅⨯⨯ 最小喷淋密度: 32min min ()0.08114.29.136/()w t U L m m h α=⋅=⨯=⋅min U U >说明填料能获得良好的润湿效果.经以上校核可知,填料塔直径选用D=500mm 能较好地满足设计要求。
3.4填料塔填料高度计算 3.4.1传质单元高度计算传质过程的影响因素十分复杂,对于不同的物系、不同的填料及不同的流动状况与操作条件, 传质单元高度迄今为止尚无通用的计算方法和计算公式.目前,在进行设计时多选用一些准数关联式或经验公式进行计算,其中应用较普遍的是修正的恩田(Onde )公式:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛--=-2.0205.0221.075.045.1exp 1t L L L L t L L t L L C t w U g U U ασρραμασσαα 查]1[13-5 得233/427680/C dyn cm kg h σ== 液体质量通量为()222275.6911585.8726/0.7850.5L U kg m h ==⋅⨯ 0.050.750.12280.2242768011595.872611595.8726114.21.45940896114.2 3.6998.2 1.27101exp 0.348211595.8726998.2940896114.2w tαα-⎧⎫⎛⎫⨯⎛⎫⎛⎫-⎪⎪ ⎪ ⎪ ⎪⨯⨯⨯⎝⎭⎝⎭⎪⎪⎝⎭=-=⎨⎬⎛⎫⎪⎪ ⎪⎪⎪⨯⨯⎝⎭⎩⎭230.348239.76/w t m m αα== 气膜吸收系数有下式计算: 气体质量通量为:222292.2 1.16113560.48/()0.7850.5Vkg m h U⨯==⋅⨯()10.7310.7321113560.480.065114.20.084960.237114.20.065 1.1610.084968.3142930.1577V V t V G t V V V U D k c D RT kmol m h KPa μααμρ---⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⨯⎛⎫⎛⎫⎛⎫=⨯⨯⨯ ⎪ ⎪ ⎪⨯⨯⨯⎝⎭⎝⎭⎝⎭=⋅⋅⋅液膜吸收系数由下式计算:()210.533120.583390.009511595.8726 3.6 3.6 1.27100.009539.76 3.6998.2 1.761103600998.20.5614/L L L L w L L L L U g k a D m h μμμρρ---⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎛⎫⨯⨯⎛⎫⎛⎫=⨯⨯⨯ ⎪ ⎪ ⎪⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭=由1.1ψ=w G G k k αα ,查[1] 14-5 得45.1=ψ则 1.1 1.130.157739.76 1.459.4359/()G G w k k kmol m h kPa αα=ψ=⨯⨯=⋅⋅0.40.40.561439.76 1.4525.8980/L L w k k h αα=ψ=⨯⨯=因为76.89%50%Fuu =>,所以必须对G k α和L k α进行校正,校正计算如下: 由 1.419.5(0.5)G G F u k k u αα⎡⎤'=+-⎢⎥⎣⎦, 2.21 2.6(0.5)L L F uk k u αα⎡⎤'=+-⎢⎥⎣⎦得1.4319.5(0.76890.5)9.435923.6898/()G k kmol m h kPa α'⎡⎤=+-⨯=⋅⋅⎣⎦ 2.21 2.6(0.76890.5)25.898029.6420/L k h α'⎡⎤=+-⨯=⎣⎦则气相总传质系数为:31111.2683/()111123.68980.72529.6420G G L k kmol m h kpa k Hk ααα===⋅⋅++''⨯由289.060.397611.2683101.30.7850.5OG G V H m K α===PΩ⨯⨯⨯3.4.2传质单元数的计算*110.75430.038760.02924Y mX ==⨯= *220Y mX ==解吸因数为0.754389.060.5319126.287mV S L ⨯=== 气相总传质单元数为:*12*22110.052630ln (1)ln (10.5319)0.5319 4.3143110.53190.0035180OGY Y N S S S Y Y ⎡⎤--⎡⎤=-+=-+=⎢⎥⎢⎥----⎣⎦⎣⎦ 3.4.3填料层高度的计算由0.3976 4.3143 1.7154OG OG Z H N m =⨯=⨯=得1.4 1.71542.4016Z m '=⨯= 设计取填料层高度为3Z m '=查 16-5[1] 对于阶梯环填料, h/D=8~15, m h 6max ≤ 取8hD=,则 85004000h mm mm =⨯= 计算得填料塔高度为3000mm ,故不需分段。
3.5填料塔附属高度计算塔上部空间高度可取1.5m, 塔底液相停留时间按5min 考虑, 则塔釜所占空间高度为()125602275.690.96810.50.7853600998.2h m ⨯⨯==⨯⨯⨯考虑到气相接管所占的空间高度,底部空间高度可取1.5m,所以塔的附属高度可以取3m. 所以塔高为 336A H m =+=3.6液体分布器计算和再分布器的选择和计算3.6.1液体分布器液体分布装置的种类多样,有喷头式、盘式、管式、槽式、及槽盘式等。
工业应用以管式、槽式、及槽盘式为主。
性能优良的液体分布器设计时必须满足以下几点:⑴液体分布均匀评价液体分布均匀的标准是:足够的分布点密度;分布点的几何均匀性;降液点间流量的均匀性。