向量三角不等式题目提高
- 格式:doc
- 大小:115.06 KB
- 文档页数:2
丰城九中校本资料丰城九中校本资料高三数学三角函数、平面向量与解三角形专题一.【考纲要求】1、三角函数的图象和性质,特别是y =A sin (w x +φ)的图象及其变换;2、重点考察向量的概念、向量的几何表示、向量的加减法、实数与向量的积、两个向量共线、垂直的充要条件、向量的坐标运算及向量的应用等;3、三角函数的化简、给值求值及三角恒等式的证明;4、正弦、余弦定理及应用 第1讲 三角函数的图象与性质例题1.已知函数f (x )=2sin ωx cos ωx +23sin 2ωx -3(ω>0)的最小正周期为π.将函数f (x )的图象向左平移π6个单位长度,再向上平移1个单位长度,得到函数y =g (x )的图象;若y =g (x )在[0,b ](b >0)上至少含有10个零点,求b 的最小值= 变式:江西卷)已知函数f (x )=(a +2cos2x )cos(2x +θ)为奇函数,且f ⎝ ⎛⎭⎪⎫π4=0,其中θ∈(0,π).(1)求a ,θ的值; (2)若f ⎝ ⎛⎭⎪⎫α4=-25,α∈⎝ ⎛⎭⎪⎫π2,π,求sin ⎝ ⎛⎭⎪⎫α+π3的值.变式2::已知函数()sin ()3f x A x πϕ=+,x R ∈,0A >,02πϕ<<.()y f x =的部分图像,如图所示,P 、Q 分别为该图像的最高点和最低点,点P 的坐标为(1,)A .下题2图(1)求()f x 的最小正周期及ϕ的值;(2)若点R (1,0),23PRQ π∠=,求A 的值.课时1练习1、已知角α的顶点与原点重合,始边与x 轴的正半轴重合,终边上一点P (-4,3),则cos (π2+α)sin (-π-α)cos (11π2-α)sin (9π2+α)的值为________.2. 已知函数()2sin()f x x ωφ=+ 的图像如图所示,则712f π⎛⎫=⎪⎝⎭. 3.函数y =2sin ⎝ ⎛⎭⎪⎫π6-2x ,x ∈[0,π]的增区间是 ( C )A.⎣⎢⎡⎦⎥⎤0,π3B.⎣⎢⎡⎦⎥⎤π12,7π12C.⎣⎢⎡⎦⎥⎤π3,5π6D.⎣⎢⎡⎦⎥⎤5π6,π 4、若函数y =cos 2x +3sin 2x +a 在[0,π2]上有两个不同的零点,则实数a 的取值范围为________.5.已知函数)0,)(4sin()(>∈+=w R x wx x f π的最小正周期为π,将)(x f y =的图像向左平移||ϕ个单位长度,所得图像关于y 轴对称,则ϕ的一个值是( ) A .2π B . 83π C. 4π D.8π8.(2014全国理数)16.若函数()cos 2sin f x x a x =+在区间(,)62ππ是减函数,则a 的取值范围是 .9.(2014上海理数)12.设常数a 使方程sin 3x x a =在闭区间[0,2π]上恰有三个解123,,x x x ,则123x x x ++= 。
专题集训·作业(九)一、选择题1.平行六面体的各棱长均为4,在其顶点P 所在的三条棱上分别取P A =1,PB =2,PC =3,则棱锥P -ABC 的体积是平行六面体的体积的( )A.164 B.364 C.132 D.332答案 A解析 由已知可将平行六面体模型化为正方体,则有V 正方体=64,V P -ABC =13×12×1×2×3=1,故选A.2.(2014·合肥一中模拟)e ,π分别是自然对数的底数和圆周率,则下列不等式不成立的是( )A .log πe +(log e π)2>2B .log πe +log e π>1C .e e -e>e π-πD .(e +π)3<4(e 3+π3)答案 C解析 设f (x )=e x -x (x >0),则f ′(x )=e x -1,当x >0时,f ′(x )>0,即f (x )在(0,+∞)上是增函数,所以f (π)>f (e),即e π-π>e e -e.3.(2014·鄂西示范性学校联考)命题“∀x ∈R ,x 2-3x +2≥0”的否定是( )A .∃x 0∈R ,x 20-3x 0+2<0B .∃x 0∈R ,x 20-3x 0+2>0C .∃x 0∈R ,x 20-3x 0+2≤0D .∃x 0∈R ,x 20-3x 0+2≥0 答案 A解析 求全称命题的否定时,需要先把全称量词改写为存在量词,再对结论进行否定,所以原命题的否定为“∃x 0∈R ,x 20-3x 0+2<0”.4.(2014·襄阳五校联考)已知双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),离心率为2,F 1,F 2分别是它的左、右焦点,A 是它的右顶点,过F 1作一条斜率为k (k ≠0)的直线与双曲线交于两个点M ,N ,则∠MAN =( )A .30°B .45°C .60°D .90°答案 D解析 由离心率为2,可得c =2a ,b 2=3a 2,则双曲线方程为3x 2-y 2=3a 2.设M (x 1,y 1),N (x 2,y 2),因直线MN 的斜率不为零,则可设其方程为x =my -2a ,与双曲线方程联立得(3m 2-1)y 2-12amy +9a 2=0,从而有3m 2-1≠0,y 1+y 2=12am 3m 2-1,且y 1y 2=9a 23m 2-1.则AM →·AN→=(x 1-a )(x 2-a )+y 1y 2=(my 1-3a )(my 2-3a )+y 1y 2=(m 2+1)y 1y 2-3am (y 1+y 2)+9a 2=9a 2(m 2+1)3m -1-36a 2m23m -1+9a 2=0,故选D. 5.某几何体的三视图如图所示,其中正视图和侧视图均是腰长为1的等腰直角三角形,则该几何体的外接球体积为( )A.32π B.3π C .23π D .33π答案 A解析 由正视图和侧视图均是腰长为1的等腰直角三角形,可得该几体体是一个四棱锥(如图所示),底面BCDE 是边长为1的正方形,侧棱AE ⊥底面BCDE ,所以根据球与四棱锥的对称性知,外接球的直径是AC .根据勾股定理知AC=1+1+1=3,所以外接球半径为32,于是该几何体的外接球体积V =43π×(32)3=32π.故选A.6.已知对于任意的a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于0,则x 的取值范围是( )A .1<x <3B .x <1或x >3C .1<x <2D .x <2或x >2答案 B解析 将f (x )=x 2+(a -4)x +4-2a 看作是a 的一次函数,记为g (a )=(x -2)a +x 2-4x +4.当a ∈[-1,1]时恒有g (a )>0,只需满足条件⎩⎪⎨⎪⎧ g (1)>0,g (-1)>0,即⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0,解之得x <1或x >3. 7.已知在正三棱锥S -ABC 中,E 是侧棱SC 的中点,且SA ⊥BE ,则SB 与底面ABC 所成角的余弦值为( )A.12B.23C.23D.63答案 D解析 如图所示,在正三棱锥S -ABC 中,作SO ⊥平面ABC ,连接AO ,则O 是△ABC 的中心,所以SO ⊥BC ,AO ⊥BC .由此可得BC ⊥平面SAO ,所以SA ⊥BC .又SA ⊥BE ,所以SA ⊥平面SBC ,故正三棱锥S -ABC 的各侧面全等且均是等腰直角三角形.连接OB ,则∠SBO 为SB 与底面ABC 所成的角.设SA =a ,则AB =2a ,BO =63a ,所以cos ∠SBO =63.8.定义在R 上的可导函数f (x ),当x ∈(1,+∞)时,f (x )+f ′(x )<xf ′(x )恒成立,若a =f (2),b =12f (3),c =(2+1)f (2),则a ,b ,c 的大小关系为( )A .c <a <bB .b <c <aC .a <c <bD .c <b <a答案 A解析 设g (x )=f (x )x -1,则g ′(x )=f ′(x )(x -1)-f (x )(x -1)2.由于f (x )+f ′(x )<xf ′(x ),即f ′(x )(x -1)-f (x )>0,因此g (x )=f (x )x -1在(1,+∞)上为增函数,故c <a <b .9.过正方体ABCD -A 1B 1C 1D 1的顶点A 作直线l ,使l 与直线AB ,AD ,AA 1所成的角都相等,这样的直线l 可以作( )A .1条B .2条C .3条D .4条答案 D解析 本题考查了空间直线与直线所成角问题,考查空间想象能力.显然正方体的对角线AC 1与棱AB ,AD ,AA 1所成的角都相等,将该正方体以A 为坐标原点,AB ,AD ,AA 1分别为坐标轴建立空间直角坐标系,则可以得到8个象限,其中在平面ABCD 上方的四个象限内的每一个象限内均有一条与AC 1相似的对角线与此三条棱成等角,即这样的直线l 有4条,故应选D.10.(2014·芜湖三校一模)已知f (x )是定义在R 上的不恒为零的函数,且对于任意的a ,b ∈R ,满足f (ab )=af (b )+bf (a ),f (2)=2.若b n =f (2n )2n (n ∈N *),则数列{b n }的通项公式为( )A .nB .n -1C .2nD .2n -1答案 A解析 ∵f (ab )=af (b )+bf (a ),f (2)=2,∴f (2n +1)=2f (2n )+2n f (2)=2f (2n )+2n +1.∵b n =f (2n )2n (n ∈N *),又f (2n +1)2n +1=f (2n)2n +1,即b n +1-b n =1,∴{b n }成等差数列,且b 1=f (2)2=1,∴b n =b 1+(n -1)×1=1+n -1=n ,n ∈N *.11.(2014·孝感市质检)若函数f (x )=x -1+1e x (a ∈R ,e 为自然对数的底数)的图像与直线l :y =kx -1没有公共点,则实数k 的最大值为( )A .0B .1C .-1 D.1e答案 B解析 令g (x )=f (x )-(kx -1)=(1-k )x +1e x ,则直线l :y =kx -1与曲线y =f (x )没有公共点,等价于方程g (x )=0在R 上没有实数解.假设k >1,此时g (0)=1>0.g (1k -1)=-1+1e 1k -1<0.又函数g (x )的图像是连续的,由零点存在性定理,可知g (x )=0在R 上至少有一个解,与方程g (x )=0在R 上没有实数解矛盾,故k ≤1.又k =1时,g (x )=1e x >0,易知方程g (x )=0在R 上没有实数解.所以实数k 的最大值为1.12.(2014·武汉部分学校调研)椭圆C :x 24+y 23=1的左、右顶点分别为A 1,A 2,若点P 在C 上且直线P A 2斜率的取值范围是[-2,-1],则直线P A 1斜率的取值范围是( )A .[12,34] B .[38,34] C .[12,1] D .[34,1]答案 B解析 椭圆的左顶点为A 1(-2,0),右顶点为A 2(2,0),设点P (x 0,y 0),则x 204+y 203=1,得y 20x 20-4=-34.而kP A 2=y 0x 0-2,kP A 1=y 0x 0+2,所以kP A 2·kP A 1=y 20x 20-4=-34.又kP A 2∈[-2,-1],所以kP A 1∈[38,34].二、填空题13.已知函数f (x )=3x +sin x +1,若f (t )=2,则f (-t )=________. 答案 0解析 由于g (x )=3x +sin x 为奇函数,且f (t )=3t +sin t +1=2,所以3t +sin t =1,则f (-t )=g (-t )+1=-1+1=0.14.(2014·皖西四校联考)若正数x ,y 满足2x +3y -3=0,则x +2yxy 的最小值为________.答案 7+433解析 由2x +3y -3=0,得1=2x +3y 3.于是x +2y xy =1y +2x =(1y +2x )·2x +3y 3=13(7+2x y +6y x )≥13×(7+43)=7+433,当且仅当⎩⎨⎧2x y =6y x,2x +3y -3=0,即x =6-33,y =23-3时,等号成立.故最小值为7+433.15.已知函数g (x )是R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,g (x ),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是________.答案 (-2,1)解析 方法一 由题意可知,当x ≥0时,g (x )=-g (-x )=-[-ln(1+x )]=ln(1+x ),所以f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (1+x ),x >0.当x ≤-2时,由f (2-x 2)>f (x ),得(2-x 2)3>x 3,因为f (x )=x 3在R 上为增函数,所以有2-x 2>x ,解得-2<x <1,即-2<x ≤- 2.当-2<x ≤0时,由f (2-x 2)>f (x ),得ln(1+2-x 2)>x 3,即-2<x ≤0.当0<x <2时,由f (2-x 2)>f (x ),得ln(1+2-x 2)>ln(1+x ),所以有2-x 2>x ,解得-2<x <1,即0<x <1.当x ≥2时,由f (2-x 2)>f (x ),得(2-x 2)3>ln(1+x ),无解.综上得-2<x <1.方法二 同上得f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (1+x ),x >0.易知f (x )在R 上是增函数,由f (2-x 2)>f (x ),得2-x 2>x ,即x 2+x -2<0,∴-2<x <1.16.已知F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >b >0)的左、右焦点,P 为双曲线左支上一点,若|PF 2|2|PF 1|的最小值为8a ,则该双曲线的离心率e 的取值范围是________.答案 (1,3]解析 ∵P 为双曲线左支上一点,∴|PF 2|-|PF 1|=2a .∴|PF 2|=|PF 1|+2a .∴|PF 2|2|PF 1|=(|PF 1|+2a )2|PF 1|=|PF 1|+4a 2|PF 1|+4a ≥8a ,当且仅当4a 2|PF 1|=|PF 1|,即|PF 1|=2a 时取等号,故|PF 2|=4a .当点P 在x 轴上时,|PF 1|+|PF 2|=|F 1F 2|,即2a +4a =2c ,此时e =3;当点P 不在x 轴上时,在△PF 1F 2中,|PF 1|+|PF 2|>|F 1F 2|,即2a +4a >2c ,此时e <3,∴e ≤3.又e >1,于是1<e ≤3.。
数列、向量、斜三角形、均值不等式(易错题警示)1.设{a n }是等差数列,{b n }为等比数列,其公比q ≠1, 且b i >0(i=1、2、3 …n) 若a 1=b 1,a 11=b 11则 ( )A a 6=b 6B a 6>b 6C a 6<b 6D a 6>b 6或 a 6<b 62.一个只有有限项的等差数列,它的前5项的和为34,最后5项的和为146,所有项的和为234,则它的第七项等于( )A. 22B. 21C. 19D. 183.已知S k 表示{a n }的前K 项和,S n —S n+1=a n (n ∈N +),则{a n }一定是( )A 、等差数列B 、等比数列C 、常数列D 、以上都不正确4.已知数列—1,a 1,a 2,—4成等差数列,—1,b 1,b 2,b 3,—4成等比数列,则212b a a -的值为( ) A 、21 B 、—21 C 、21或—21 D 、41 5.数列{}n a 的前n 项和为s n =n 2+2n-1,则a 1+a 3+a 5+……+a 25=( )A 350B 351C 337D 3386.在等差数列||,0,0}{10111110a a a a a n >><且中,则在S n 中最大的负数为( )A .S 17B .S 18C .S 19D .S 207.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列个数为( ) A .3 B .4 C .6 D .88.数列}{n a 满足121,12210,2{1<≤-<≤=+n n n n n a a a a a ,若761=a ,则2004a 的值为( ) A.76 B. 75 C. 73 D.71 9.已知数列}{n a 的前n 项和为)15(21-=n n S n ,+∈N n ,现从前m 项:1a ,2a ,…,m a 中抽出一项(不是1a ,也不是m a ),余下各项的算术平均数为37,则抽出的是( )A .第6项B .第8项C .第12项D .第15项10.}{n a 是实数构成的等比数列,S n 是其前n 项和,则数列}{n S 中 ( )A 、任一项均不为0B 、必有一项为0C 、至多有有限项为0D 、或无一项为0,或无穷多项为011.数列1,1+2,1+2+4,…,1+2+4+…+2n 各项和为( C )A 、2n+1-2-nB 、2n -n -1C 、2n+2-n -3D 、2n+2-n -212..在∆ABC 中,c b a ,,为C B A ∠∠∠,,的对边,且1)cos(cos 2cos =-++C A B B ,则( )。
专题06 三角不等式------121212||--+≤≤Z Z Z Z Z Z[新教材的新增内容]背景分析:在旧教材中对于复数的几何意义涉及不多.而新教材将复数的学习安排在了向量及三角函数之后,使复数的学习与向量及三角函数进行了融合,提升了复数的应用价值.1.复数加法与减法的几何意义 z 1,z 2,z 3∈C ,设,分别与复数z 1=a +bi ,z 2=c +di (a ,b ,c ,d ∈R )相对应,且,不共线复数的和z 1+z 2与向量+=的坐标对应复数的差z 1-z 2与向量-=的坐标对应2.复数三角不等式若12,Z Z 是复数,则121212||--+≤≤Z Z Z Z Z Z .注:当,a b 为实数或向量时,a b a b a b -≤±≤+结论也成立. 推论1:1212≤n n a a a a a a ++++++推论2:如果a b c 、、是实数,那么a c a b b c -≤-+-,当且仅当()()0≥a b b c --时,等号成立. [新增内容的考查分析]1.运用三角不等式求最值(由三角不等式,借助其几何意义及性质,可消减变量从而求出最值.)【考法示例1】若a ,b ∈R ,且|a |≤3,|b |≤2,则|a +b |的最大值是 ,最小值是 . 5; 1因为|a |-|b |≤|a +b |≤|a |+|b |,所以1=3-2≤|a +b |≤3+2=5. 【考法示例2】函数的最小值及取得最小值时的值分别是( ) A.1, B.3,0 C.3,D.2,C利用三角不等式,求得函数的最小值,并求得对应的值. 依题意,当且仅当,即12x -≤≤时等号成立,故选C .2.应用三角不等式求参数(关键是能够运用三角不等式求得函数的最值,将问题转化为变量与函数最值之间的大小关系问题.) 【考法示例3】如果关于的不等式的解集不是空集,则的取值范围是______.利用三角不等式可求得,根据不等式解集不为空集可得根式不等式,根据根式不等式的求法可求得结果. 由三角不等式得:,即.原不等式解集不是空集,,即当时,不等式显然成立; 当时,,解得:; 综上所述:的取值范围为.【考法示例4】若存在(其中)使得不等式成立,则的取值范围是__________.先利用绝对值三角不等式求出的最大值为3,从而得,进而可求出的取值范围,当且仅当或时取等号,所以右式最大值为3, 从而,解得.故的取值范围为,或者[]1,2t ∈-.[新增内容的针对训练]1. 11a b a b -≤-+-取等号的条件是 A. ()()110a b --< B. ()()110a b --> C. ()()110a b --≤ D. ()()110a b --≥【答案】C 【解析】【详解】分析:利用绝对值不等式||||||a b a b +≥+(当且仅当0ab ≥时取等号)即可求得答案. 详解:()()111111a b a b a b a b -+-=-+-≥-+-=-:当且仅当()()110a b --≥:即()()110a b --≤时取等号. 故选:C.点睛:本题考查绝对值不等式,考查绝对值不等式取等号的条件,属于中档题. 2. 已知x∈R ,y∈R ,则|x|<1,|y|<1是|x +y|+|x -y|<2的( ) A. 充分不必要条件 B. 必要不充分条件 C. 既不充分也不必要条件 D. 充要条件【答案】D 【解析】【分析】根据绝对值三角不等式及充分条件和必要条件进行判断.【详解】若|x|:1:|y|:1,则当(x:y)(x:y)≥0时,|x:y|:|x:y|:|(x:y):(x:y)|:2|x|:2;当(x:y)(x:y):0时,|x:y|:|x:y|:|(x:y)::(x:y)|:2|y|:2.若|x:y|:|x:y|:2,则2|x|:|(x:y):(x:y)|:|x:y|:|x:y|:2,即|x|:1:2|y| :|(x:y):(x:y)|:|x:y|:|x:y|:2,即|y|:1.【点睛】本题考查绝对值不等式的性质的应用,属于基础题.3. 关于x 的不等式|||2|4x m x -++<的解集不为∅,则实数m 的取值范围是 A. ()2,6-B. (,2)(6,)-∞-⋃+∞C. (,6)(2,)-∞-⋃+∞D. (6,2)-【答案】D 【解析】 【分析】关于x 的不等式|x ﹣m |+|x +2|<4的解集不为∅⇔(|x ﹣m |+|x +2|)min <4,再根据绝对值不等式的性质求出最小值,解不等式可得.【详解】关于x 的不等式|x ﹣m |+|x +2|<4的解集不为∅⇔(|x ﹣m |+|x +2|)min <4, ∵|x ﹣m |+|x +2|≥|(x ﹣m )﹣(x +2)|=|m +2|, ∴|m +2|<4,解得﹣6<m <2, 故选D .【点睛】本题考查了绝对值三角不等式的应用,考查了转化思想,属于基础题. 4. 若关于x 的不等式|1||1|2x ax x -+-≥对于任意0x >恒成立,则实数a 的取值范围是________. 【答案】1a ≤-或3a ≥ 【解析】【分析】将绝对值不等式等价转化,利用绝对值三角不等式即可求得关于a 的不等式即可.【详解】11|1||1|212|1|||2(0)x ax x a t t a t x x-+-≥⇔-+-≥⇔-+-≥>. 所以min (|1|||)(1)()1|2t t a t t a a -+-=|---|=|-≥, 解得1a ≤-或3a ≥. 故答案为:1a ≤-或3a ≥.【点睛】本题考查绝对值不等式恒成立求参数范围的问题,涉及绝对值三角不等式的利用,属中档题.5. 已知α,β是实数,给出三个论断: :|α+β|=|α|+|β|; :|α+β|>5;:|α|>|β|>以其中的两个论断为条件,另一个论断作为结论,写出你认为正确的一个命题是________. 【答案】:::: 【解析】【分析】根据绝对值的性质判断或举反例说明.【详解】:,:成立时,则|α+β|=|α|+|β>5, 若::成立,如10,1αβ==,但:不成立, 若::成立,如20,5αβ==-,但:不成立. 故答案为:::::.6. 若不等式2213111a a x x x x a+--+-+++≥对任意使式子有意义的实数a 恒成立,则实数x 的取值范围是__________ 【答案】(,2][1,)-∞-+∞ 【解析】 【分析】 首先求得131a a a+--的最大值max ,然后解不等式22|1||1|max x x x x +-+++≥.【详解】131a a a +--1111111313(1)(3)4a a a a a a =+--=+--≤+--=.当且仅当113a -≤≤时等号成立.:131a a a +--的最大值为4.下面解不等式22|1||1|4x x x x +-+++≥,:22111()244x x x +=+-≥-,:210x x ++>,:不等式22|1||1|4x x x x +-+++≥为不等式22|1|14x x x x +-+++≥, 即22|1|3x x x x +-≥--+,:2213x x x x +-≥--+或2213x x x x +-≤+-, 解得1≥x 或2x -≤或x ∈∅, :x 的取值范围是(,2][1,)-∞-+∞. 故答案为:(,2][1,)-∞-+∞.【点睛】本题考查绝对值不等式,考查绝对值不等式的性质.首先不等式恒成立问题转化为求最值.其次解绝对值不等式时,绝对值性质x a >等价于x a >或x a <-中可以不讨论a 的正负,直接用来解不等式,即不等式()()f x g x >直接转化为()()f x g x >或()()f x g x <-,不需要按()0,()0g x g x ≥<分类,大家可以从集合的分析.7. 设函数()52f x x a x =-+--.(1)当1a =时,求不等式()0f x ≥的解集; (2)若()1f x ≤恒成立,求a 的取值范围. 【答案】(1)[2,3]-;(2) ][(),62,-∞-⋃+∞. 【解析】【详解】分析:(1)先根据绝对值几何意义将不等式化为三个不等式组,分别求解,最后求并集,(2)先化简不等式为|||2|4x a x ++-≥,再根据绝对值三角不等式得|||2|x a x ++-最小值,最后解不等式|2|4a +≥得a 的取值范围. 详解::1)当1a =时,()24,1,2,12,26, 2.x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩可得()0f x ≥的解集为{|23}x x -≤≤::2:()1f x ≤等价于24x a x ++-≥:而22x a x a ++-≥+,且当2x =时等号成立:故()1f x ≤等价于24a +≥: 由24a +≥可得6a ≤-或2a ≥,所以a 的取值范围是][(),62,-∞-⋃+∞: 点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向. 8. 已知a 和b 是任意非零实数.:1)求|2||2|||a b a b a ++-的最小值.:2)若不等式22(22)a b a b a x x ++-≥++-恒成立,求实数x 的取值范围. 【答案】(1)4;(2)22x -≤≤ 【解析】【详解】试题分析::1)利用绝对值不等式的性质可得 22224a b a b a b a b a ++-≥++-=,所以|2||2|||a b a b a ++-的最小值等于4;:2:由:1:转化为有x 的范围即为不等式|2+x|+|2-x|≤4的解集,解绝对值不等式求得实数x 的取值范围.试题解析::1::22224a b a b a b a b a ++-≥++-=对于任意非零实数a 和b 恒成立,当且仅当(2)(2)0a b a b +-≥时取等号,∴|2||2|||a b a b a ++-的最小值等于4.(2)∵2222a b a bx x a++-++-≤恒成立,故22x x ++-不大于|2||2|||a b a b a ++-的最小值由(1)可知|2||2|||a b a b a ++-的最小值等于4实数x 的取值范围即为不等式224x x ++-≤的解. 解不等式得22x -≤≤,[2,2]x ∈-.。
第19讲 向量与三角、不等式等知识综合应用常熟市中学 蔡祖才一、高考要求平面向量与三角函数、不等式等知识的综合应用是高考的主要考查内容之一.掌握向量的几何表示、向量的加法与减法和实数与向量的积,掌握平面向量的坐标运算、平面向量的数量积极其几何意义,掌握向量垂直的条件,并且能熟练运用,掌握平移公式.注重等价转化、分类讨论等数学思想的渗透. 二、考点解读考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力.考查平面向量的概念和计算,三角函数的恒等变换及其图象变换的基本技能,着重考查数学运算能力.平面向量与三角函数结合是高考命题的一个新的亮点之一. 三、课前训练1.把曲线y cos x +2y -1=0先沿x 轴向右平移2π个单位,再沿y 轴向下平移1个单位,得到的曲线方程是 ( )(A)(1-y )sin x +2y -3=0 (B)(y -1)sin x +2y -3=0 (C)(y +1)sin x +2y +1=0 (D) -(y +1)sin x +2y +1=02.函数y =sin x 的图象按向量a =(32π-,2)平移后与函数g (x )的图象重合,则g (x )的函数表达式是 ( ) (A )cos x -2 (B )-cos x -2 (C )cos x +2 (D )-cos x +23.已知向量a = (1,sin θ),b = (1,cos θ),则 | a - b | 的最大值为.4.如图,函数y =2sin(πx+φ),x ∈R,(其中0≤φ≤2π)的图象与y 轴交于点(0,1). 设P 是图象上的最高点,M 、N 是图象与x 轴的交点,则PM PN u u u u r u u u r与的夹角余弦值为 .四、典型例题例1 已知a =(3sin ωx ,cos ωx ),b =(cos ωx ,cos ωx )(ω>0),记函数f (x )= a · b ,且f (x )的最小正周期是π,则ω= ( )(A) ω=1 (B) ω=2 (C) 21=ω ( D) 32=ω 例2 在△OAB 中,O 为坐标原点,]2,0(),1,(sin ),cos ,1(πθθθ∈B A ,则△OAB 的面积达到最大值时,=θ ( )(A)6π (B) 4π (C) 3π (D) 2π例3 设向量a r =(sin x ,cos x ),b r =(cos x ,cos x ),x ∈R ,函数f(x)=a r ·(a r +b r).使不等式f (x )≥23成立的x 的取值集合为 .例4 在△ABC 中,O 为中线AM 上的一个动点,若AM =2,则()OA OB OC ⋅u u u r u u u r u u u r+的最小值是 .例5 已知函数f (x )=a +b sin2x +c cos2x 的图象经过点A (0,1),B (4π,1),且当x ∈[0, 4π]时,f (x )取得最大值22-1.(Ⅰ)求f (x )的解析式;(Ⅱ)是否存在向量m ,使得将f (x )的图象按向量m 平移后可以得到一个奇函数的图象?若存在,求出满足条件的一个m ;若不存在,说明理由.例6 已知向量m =(cos ,sin )θθ和n =sin ,cos ),(,2)θθθππ∈,且| m + n |=,5求cos()28θπ+的值.第19讲 向量与三角、不等式等知识综合应用 过关练习1.已知i r ,j r 为互相垂直的单位向量,2a i j =-r r r ,b i j λ=+r r r ,且||||a b r r与的夹角为锐角,则实数λ的取值范围是( )(A )),21(+∞ (B ))21,2()2,(-⋃--∞ (C )),32()32,2(+∞⋃- (D ))21,(-∞2.在直角坐标系中,O 是原点,OQ =(-2+cos θ,-2+sin θ) (θ∈R),动点P 在直线x =3上运动,若从动点P 向Q 点的轨迹引切线,则所引切线长的最小值为 ( )(A ) 4 (B ) 5 (C ) 26 (D )263.已知||2||0a b =≠r r ,且关于x 的方程2||0x a x a b ++⋅=r r r 有实根,则a r 与b r 的夹角的取值范围是 ( )(A )[0,6π] (B )[,]3ππ (C )2[,]33ππ (D )[,]6ππ 4.设(0,0)O ,(1,0)A ,(0,1)B ,点P 是线段AB 上的一个动点,AP AB λ=u u u r u u u r,若OP AB PA PB ⋅≥⋅u u u r u u u r u u u r u u u r,则实数λ的取值范围是 ( )(A )112λ≤≤ (B )11λ-≤≤(C )1122λ≤≤+ (D )1122λ-≤≤+ 5. 已知向量a r =(cos α,sin α),b r =(cos β,sin β),且a b ≠±r r ,那么a b +r r 与a b-r r的夹角的大小是 .6. 已知向量].2,0[),2sin ,2(cos ),23sin,23(cos π∈-==x x x x x 且若||2)(x f +-⋅=λ的最小值为32-,则λ的值为 .7.已知A 、B 、C 是ABC ∆三内角,向量(m =-u r(cos ,sin ),n A A =r 且 1.m n ⋅=u r r(Ⅰ)求角A ; (Ⅱ)若221sin 23cos sin BB B+=--,求tanC . 8.设函数f (x )=a b ⋅r r ,其中向量a r =(2cos x ,1),b r=(cos x ,3sin2x ),x ∈R .(Ⅰ)若f(x)=1-3且x ∈[-3π,3π],求x ; (Ⅱ)若函数y =2sin2x 的图象按向量c r =(m ,n )(|m |<2π)平移后得到函数y =f (x )的图象,求实数m 、n 的值.第19讲 向量与三角、不等式等知识综合应用 参考答案课前训练部分1.C2.D3.4.1517典型例题部分例1 A例2 1111sin cos (1cos )(1sin )222ABC S θθθθ∆=----- 当2θπ=即2πθ=时,面积最大.例3 3,88x k x k k Z ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭例4 如图,OM OA OC OB OA -≥-=⋅⋅=+⋅2)(=.222-=⋅- 即)(+⋅的最小值为:-2.例5 (Ⅰ)由题意知⎩⎨⎧=+=+,1,1b a c a ∴b =c =1-a , ∴f (x )=a +2(1-a )sin(2x +4π).∵x∈[0,4π], ∴2x +4π∈[4π,4π3].当1-a >0时,由a +2(1-a )=22-1, 解得a =-1; 当1-a <0时, a +2(1-a )·22=22-1,无解; 当1-a =0时,a =22-1,相矛盾. 综上可知a =-1. ∴f (x )=-1+22sin(2x +4π). (Ⅱ)∵g (x )=22sin2x 是奇函数,将g (x )的图象向左平移8π个单位,再向下平移一个单位就可以得到f (x )的图象. 因此,将f (x )的图象向右平移8π个单位,再向上平移一个单位就可以得到奇函数g(x )=22sin2x 的图象.故m u r =(8π,1)是满足条件的一个向量.例6 (cos sin sin )m n θθθθ+=-++u r rm n +=u r r由已知m n +=u r r ,得7cos()425πθ+=又2cos()2cos ()1428πθπθ+=+- 过关练习部分1.B2.C3.B4.B 5、2π6. 217(Ⅰ)∵1m n ⋅=u r r∴(()cos ,sin 1A A -⋅= cos 1A A -=12sin cos 12A A ⎛⎫⋅= ⎪ ⎪⎝⎭, 1sin 62A π⎛⎫-= ⎪⎝⎭ ∵50,666A A ππππ<<-<-<∴66A ππ-= ∴3A π= (Ⅱ)由题知2212sin cos 3cos sin B B B B+=--,整理得22sin sin cos 2cos 0B B B B --= ∴cos 0B ≠ ∴2tan tan 20B B --= ∴tan 2B =或tan 1B =-而tan 1B =-使22cos sin 0B B -=,舍去 ∴tan 2B =8.(Ⅰ)依题设可知,函数的解析式为f (x )=a b ⋅r r =2cos 2x +3sin2x =1+2sin(2x +6π).由1+2sin(2x +6π)=1-3,可得三角方程sin(2 x +6π)=-23.∵-3π≤x ≤3π,∴-2π≤2x +6π≤65π,∴2x +6π=-3π,即x =-4π. (Ⅱ)函数y =2sin2x 的图象按向量c r=(m ,n )平移后得到函数y =2sin2(x -m )+n 的图象,即函数y =f(x)的图象.由(1)得 f(x)=2sin2(x +12π)+1. ∵|m |<2π,∴12m π=-, 1.n =。
一、不等式的解法:1.一元一次不等式:Ⅰ、(0)ax b a >≠:⑴若0a >,则 ;⑵若0a <,则 ;Ⅱ、(0)ax b a <≠:⑴若0a >,则 ;⑵若0a <,则 ;2.一元二次不等式:0a >时的解集与∆有关 (数形结合:二次函数、方程、不等式联系)3. 高次不等式:数轴标根 步骤:正化,求根,标轴,穿线(奇穿偶不穿),定解.4.分式不等式的解法:通解变形为整式不等式; ⑴()0()f x g x >⇔;⑵()0()f x g x <⇔; ⑶()0()f xg x ≥⇔ ;⑷()0()f xg x ≤⇔;5.解含有参数的不等式:解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论: ①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为12,x x (或更多)但含参数,要分12x x >、12x x =、12x x <讨论。
例:解关于x 的不等式: 2(1)10ax a x -++< ()R a ∈)例:实系数方程2()20f x x ax b =++=的一个根在(0,1)内,另一个根在(1,2)内,则21b a --∈;22(1)(2)a b -+- ∈ ;3a b +- ∈二、不等式的性质 (几个重要不等式) (1)0,0||,2≥≥∈a a R a 则若 (2))2||2(2,2222ab ab baab ba Rb a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号)(3)如果a ,b 都是正数,那么.2a b +(当仅当a=b 时取等号)极值定理:若,,,,x y R x y S xy P +∈+==则:○1如果P 是定值, 那么当x=y 时,S 的值最小; ②如果S 是定值, 那么当x =y 时,P 的值最大.利用极值定理求最值的必要条件: 一正、二定、三相等.常用的方法为:拆、凑、平方;例1:设12,,,x a a y 成等差数列,12,,,x b b y 成等比数列,则21212()a a b b +的取值范围是___ 。
高中数学专题复习《函数不等式三角向量数列算法等大综合问题》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =( ) (A )0 (B )1 (C )-1 (D )±1(汇编江苏) 2.(汇编辽宁理)ABC 的三内角,,A B C 所对边的长分别为,,a b c 设向量(,)p a c b =+,(,)q b a c a =--,若//p q ,则角C 的大小为( )A .6πB .3πC . 2πD . 23π第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题oyxb nb n-1b 2b 3b 1a 3a 2a 1a n-1a n......3.已知集合{}{}22|230,|0A x x x B x x ax b =-->=++≤,AB R =,{}|34A B x x =<≤,则sin cos a x b x +的最小值是分析:根据条件求出,a b 的值,则函数sin cos a x b x +的最小值为22a b -+。
4.已知集合(){}(){}1,,,+====x a y y x Q k y y x P ,且φ=Q P .那么k 的取值范围是5. 设x x x f sin cos )(-=,把)(x f 的图象向右单位平移m (m>0)个单位后,图象恰好为函数)(x f y '-=的图象,则m 的最小值为________.6.已知12,,,n a a a ;12,,,n b b b (n 是正整数),令112n L b b b =+++,223L b b =+,n b ++,n n L b =.某人用右图分析得到恒等式:1122n n a b a b a b +++=112233a L c L c L +++k kc L +n n c L ++,则k c = ▲ (2)k n ≤≤.评卷人得分三、解答题7.已知向量()()sin ,cos ,1,2θθ==-a b ,且⋅=0a b , (1)求tan θ的值;(2)求函数()()2cos tan sin f x x x x R θ=+∈,的值域.-1 3 48.设平面向量a =(cos ,sin )x x ,(cos 23,sin )b x x =+,(sin ,cos )c αα=,x R ∈,⑶a c ⊥,求cos(22)x α+的值;⑵若(0,)2x π∈,证明:a 和b 不可能平行;⑶若0α=,求函数()(2)f x a b c =-的最大值,并求出相应的x 值.(汇编年3月苏、锡、常、镇四市高三数学教学情况调查一)(14分) 9.1.已知向量(sin ,3)a θ=,(1,cos )b θ=,,22ππθ⎡⎤∈-⎢⎥⎣⎦. (1)若a b ⊥,求θ; (2)求||a b +的取值范围10.已知集合23{|log (33)0},{|20}A x x x B x mx =-+==-=,且AB B =,求实数m 的值.11.记f (x )=lg(3-|x -1|)的定义域为A ,集合B ={x |x 2-(a +5)x +5a <0}. (1)当a =1时,求A ∩B ;(2)若A ∩B =A ,求a 的取值范围.12.已知(cos 2,3sin )a x x =,(1,2cos )b x =,设函数()f x a b =⋅,()f x 的最大值为M ,最小正周期为T , (Ⅰ)求M 、T ;(Ⅱ)10个互不相等的正数i x 满足(),10(1,2,i i f x M x i π=<=且,求1021x x x +++ 的值.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.A 2.B解析:B 222//()()()p q a c c a b b a b a c ab ⇒+-=-⇒+-=,利用余弦定理可得2cos 1C =,即1cos 23C C π=⇒=,故选择答案B 。
客观题专练四 不等式、平面向量、解三角形一、选择题 (共12小题,每题5分。
每道题只有一个正确选项。
)1.(2016·全国Ⅰ理,1)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B 等于( ) A.⎝⎛⎭⎫-3,-32 B.⎝⎛⎭⎫-3,32 C.⎝⎛⎭⎫1,32 D.⎝⎛⎭⎫32,32.(2016·全国Ⅰ理,8)若a >b >1,0<c <1,则( )A .a c <b cB .ab c <ba cC .a log b c <b log a cD .log a c <log b c3.(2016·全国Ⅲ,1)设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则S ∩T 等于( ) A .[2,3] B .(-∞,2]∪[3,+∞) C .[3,+∞) D .(0,2]∪[3,+∞)4.(2016·全国Ⅲ,3)已知向量BA →=⎝⎛⎫12,32,BC →=⎝⎛⎫32,12,则∠ABC 等于( )A .30°B .45°C .60°D .120°5.(2016·全国Ⅲ,6)已知a =243,b =425,c =2513,则( )A .b <a <cB .a <b <cC .b <c <aD .c <a <b6.(2016·全国Ⅲ,8)在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A 等于( )A.31010B.1010 C .-1010 D .-310107.(2016·四川)设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,则p 是q 的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件8.(2016·山东)已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13.若n ⊥(t m +n ),则实数t 的值为( ) A .4 B .-4 C.94 D .-949.(2016·天津)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( ) A .-58 B.18 C.14 D.11810.(2015课标全国Ⅰ,理7)设D 为△ABC 所在平面内一点,=3 ,则( ) A =-BCD11. (2014课标全国Ⅰ,理1)已知集合A={|},B=,则=( ) .[-2,-1] .[-1,2) .[-1,1] .[1,2)12.(2013课标全国Ⅰ,理12)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n=1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n+1=a n ,b n+1=,c n+1=,则( ).A .{S n }为递减数列B .{S n }为递增数列C .{S 2n-1}为递增数列,{S 2n }为递减数列D .{S 2n-1}为递减数列,{S 2n }为递增数列二、填空题(共4道小题,每题5分,请将正确的结果填到横线上。
详细介绍三角不等式
三角不等式是数学中的一个基本定理,它是指:对于任意的三角形ABC,AB+BC>AC、AC+CB>AB、BC+AB>AC。
这个定理的意义在于,它告诉我们三条边之间的关系,使我们能够更好地理解和解决与三角形有关的问题。
三角不等式的证明方法有很多种,其中一种比较简单的方法是使用向量。
假设三角形ABC的三个顶点的坐标分别为
A(x1,y1),B(x2,y2),C(x3,y3),则AB、BC、AC所对应的向量分别为AB=(x2-x1,y2-y1),BC=(x3-x2,y3-y2),AC=(x3-x1,y3-y1)。
根据向量的加法和模长的定义,我们可以得到:
|AB+BC| ≤ |AB|+|BC|
|BC+AC| ≤ |BC|+|AC|
|AC+AB| ≤ |AC|+|AB|
由于三角形ABC的三边的长度分别为|AB|、|BC|、|AC|,因此上述不等式可以改写为:
BC<AB+AC
AC<AB+BC
AB<AC+BC
这就是三角不等式的向量证明方法,它利用了向量的几何性质,简单而且直观。
除了向量证明方法外,还有很多其他的证明方法,例如几何证明、代数证明和不等式证明等。
无论采用哪种方法,都要注意证明过程的
严谨性和清晰性,以确保结论的正确性。
总之,三角不等式是数学中的一个基本定理,它对于解决与三角形有关的问题非常重要。
掌握了三角不等式,我们可以更好地理解三角形的性质和特点,从而更加熟练地处理与三角形有关的各种问题。
知识点 绝对值三角不等式3.11定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当 ab ≥0 时,等号成立. 几何解释:用向量a ,b 分别替换a ,b .当a 与b 不共线时,有|a +b |<|a |+|b |,其几何意义为三角形的两边之和大于第三边; 若a ,b 共线,当a 与b 同向 时, |a +b |=|a |+|b | ;由于定理1.定理1ab 同号取等,左边ab 同号取等)证明:把-b 代回到第一个式子的b 里面来证明第二个定理2(当且仅当 (a -b )(b -c )≥0 时,几何解释:在数轴上,a ,b ,c 所对应的点分别为A ,B ,C ,当点B 在点A ,C 之间时,|a -c | = |a -b |+|b -c |.当点B 不在点A ,C 之间时:(1)点B 在A 或C 上时,|a -c | = |a -b |+|b -c |;(2)点B 不在A ,C 上时,|a -c | < |a -b |+|b -c |.应用:利用该定理可以确定绝对值函数的值域和最值.题型一 含绝对值不等式的证明例1 设函数f (x )=x 2-2x ,实数a 满足|x -a |<1. 求证:|f (x )-f (a )|<2|a |+3.证明 ∵f (x )=x 2-2x ,且|x -a |<1, ∴|f (x )-f (a )|=|x 2-2x -a 2+2a | =|(x +a )(x -a )-2(x -a )|=|(x -a )(x +a -2)|=|x -a |·|x +a -2| <|x +a -2|=|(x -a )+(2a -2)| x 并运用绝对值三角不等式 ≤|x -a |+|2a -2|<1+|2a -2|≤1+|2a|+|-2|=2|a|+3,∴|f (x )-f (a )|<2|a |+3.题型二 利用绝对值三角不等式求最值例2 (1)求函数y =|x -3|-|x +1|的最大值和最小值;答||x -3|-|x +1||≤|(x -3)-(x +1)|=4,▲定理1推论左边∴-4≤|x -3|-|x +1|≤4,∴y max =4,y min =-4.例3 设函数f (x )=+|x -a |(a >0), (1)证明:f (x )≥2;证明 由a >0,可得f (x )=⎪⎪⎪⎪⎪⎪x +1a +|x -a |≥|x+1a -(x-a )|正负以消元为目的=1a +a ≥2,。