设 t 的初始位移和初始速度为:
x() x
x() x
令:
c 1b 1co 0 s ) (b 2si n 0 )(
c2b 1si n 0 )( b 2co 0 s)(
有 : x ( t) b 1 co 0 ( t s ) b 2 si 0 ( t n )
b1 x
b2
x 0
单自由度系统自由振动
固有振动或自由振动微分方程 : mxkx0
令: 0
k m
固有频率
单位:弧度/秒(rad/s)
则有 : x02x0
通解 : x(t) c 1co0 ts ) c (2sin 0 t)(Asin0(t)
c1
,
c
:
2
任意常数,由初始条件决定
振幅 : A c12 c22
初相位 : tg 1 c1
c2
单自由度系统自由振动
m xkx0 x02x0
0
k m
x(t) c 1co0 ts ) c (2sin 0 t)(Asin0(t)
A c12 c22
x
tg 1 c1
c2
T2/0
A
0
t
0
单自由度系统自由振动
m xkx0 x02x0
0
k m
x(t) c 1co0 ts ) c (2sin 0 t)(Asin0(t)
单自由度系统自由振动
• 线性系统的受迫振动
弹簧原长位置
令 x 为位移,以质量块的静平衡位置
m
0
静平衡位置
为坐标原点,λ为静变形。
当系统受到初始扰动时,由牛顿第
k
x
二定律,得:
m x mg k(x)