第四章_微生物反应器操作
- 格式:ppt
- 大小:3.12 MB
- 文档页数:79
教学基本内容:讲授微生物反应器的操作方式,包括分批式操作、连续式操作、流加式操作。
连续式操作的定义、数学模型,连续稳态操作条件,连续操作的优缺点,在生产上和科研中的应用;流加式操作的定义、数学模型,定流量流加、指数流加的概念,流加式操作的控制优化问题。
分批式操作下微生物生长曲线。
5.1 微生物反应器操作基础5.2连续式操作5.3 流加式操作5.4 分批式操作授课重点:1. 三种基本操作方式的比较。
2. 单级连续式操作的数学模型,连续稳态操作条件,冲出现象。
3. 连续操作的优缺点及在生产上和科研领域的应用。
4 流加式操作的数学模型,指数流加和定流量流加的概念。
5. 流加操作的控制与优化。
6. 分批式操作下微生物的生长曲线。
难点:1. 连续式操作的数学模型。
2. 多级连续培养的数学模型。
3. 流加式操作的数学模型。
本章主要教学要求:1. 理解微生物反应器操作方式的概念。
注意连续式操作、流加式操作和分批式操作的区别。
2. 理解和掌握连续式操作的数学模型及连续稳态操作条件。
3. 理解指数流加和定流量流加的区别。
4. 了解连续式操作的优缺点和应用。
5. 了解流加式操作的优化和控制。
5.1微生物反应器操作基础5.1.1 微生物反应器操作方式分批式操作:是指基质一次性加入反应器内,在适宜条件下将微生物菌种接入,反应完成后将全部反应物料取出的操作方式。
连续式操作:是指分批操作进行到一定阶段,一方面将基质连续不断地加入反应器内,另一方面又把反应物料连续不断的取出,使反应条件不随时间变化的操作方式。
流加式操作:是指先将一定量基质加入反应器内,在适宜条件下将微生物菌种接入反应器中,反应开始,反应过程中将特定的限制性基质按照一定要求加入到反应器内,以控制限制性基质浓度保持一定,当反应终止时取出反应物料的操作方式。
VVV图5-3连续式操作5.1.2 不同操作方式的特点在分批式操作中,反应液中基质浓度S 随反应进行不断降低,菌体浓度X 、产物浓度P 则不断升高,因此是一个动态变化过程。
生物反应器操作规程第一章总则生物反应器是生物工程中常用的设备,用于培养和控制微生物、细胞或酶等生物体系进行生物转化或生物合成反应。
为了保证生物反应器的正常运行,提高生产效率,特制定此操作规程。
第二章设备准备1. 检查生物反应器设备的完好性,确保各个部件没有损坏或异物;2. 检查反应釜、搅拌器、温控系统等部件是否正常运转;3. 准备所需的培养基、生物体系、调理液等实验物品。
第三章操作流程1. 打开生物反应器的电源开关,启动设备;2. 设置所需的温度、压力、搅拌速度等操作参数;3. 向反应釜中加入适量的培养基,等待培养基温度升至设定温度;4. 加入生物体系或细胞,注意避免空气接触;5. 启动搅拌器进行充分混合;6. 在反应过程中根据需要逐步加入调理液或其他试剂;7. 定时监测反应器内参数,并做好记录。
第四章清洗消毒1. 反应结束后,关闭生物反应器的电源开关;2. 停止搅拌器和冷却系统,排空反应釜中的废液;3. 用适量的清洗液对反应器进行彻底清洗,确保没有残留;4. 使用消毒液进行消毒处理,保证反应器内无细菌残留;5. 反应器彻底干燥后,进行下一批实验前的准备工作。
第五章注意事项1. 操作过程中要注意安全,避免发生事故;2. 必须按照操作规程正确操作,不能私自更改参数;3. 反应器设备要定期保养和检修,确保设备正常运行;4. 反应器内部应保持清洁,避免影响后续实验。
第六章结语生物反应器操作规程的制定是为了保障实验的准确性和安全性,本规程适用于各类生物反应器的操作,并应严格执行。
希望大家能够熟练掌握操作技巧,规范操作流程,提高实验效率和成果质量。
试题库结构章节 试题分布名词解释 数学表达式 简答题图形题推导题判断题 计算题合计第一章 0 0 9 0 0 0 0 9 第二章 0 0 11 0 0 0 2 13 第三章 1 3 9 3 11 4 2 33 第四章 1 11 6 7 1 11 14 51 第五章 3 1 7 8 2 0 13 34 第六章 6 0 6 2 0 0 0 14 第七章 2 2 2 2 0 0 13 21 第八章 0 0 36 0 0 0 2 38 合计 13 17 86 22 14 15 46 213一、名词解释[03章酶促反应动力学]酶的固定化技术:[04章微生物反应动力学]有效电子转移:[05章微生物反应器操作]流加式操作:连续式操作:分批式操作:[06章生物反应器中的传质过程]粘度:牛顿型流体:非牛顿型流体塑性流体假塑性流体胀塑性流体[07章生物反应器]返混:停留时间:二、写出下列动力学变量(参数)的数学表达式[03章酶促反应动力学]1. Da准数:2. 外扩散效率因子:3. 内扩散效率因子:[04章微生物反应动力学]1. 菌体得率:2. 产物得率:3. 菌体得率常数:4. 产物得率常数:5. 生长比速:6. 产物生成比速:7. 基质消耗比速:8. 生长速率:9. 产物生成速率:10. 基质消耗速率:11. 呼吸商:[05章微生物反应器操作]1. 稀释率:[07章生物反应器]1. 停留时间:2. 转化率:三、简答题:[01章绪论]1.什么是生物反应工程、生化工程和生物技术?2.生物反应工程研究的主要内容是什么?3.生物反应工程的研究方法有哪些?4.解释生物反应工程在生物技术中的作用。
5. 为什么说代谢工程是建立在生化反应工程与分子生物学基础之上的?6. 何为系统生物学?7. 简述生化反应工程的发展史。
8. 如何理解加强“工程思维能力”的重要性。
9. 为什么在当今分子生物学渗入到各生物学科领域的同时,工程思维也成为当今从事生物工程工作人员共同关注的话题?[02章生物反应工程的生物学与工程学基础]1. 试说明以下每组两个术语之间的不同之处。
mbr膜生物反应器操作规程MBR膜生物反应器是一种有效的废水处理设备,通过生物反应和膜分离技术,能够高效地去除废水中的悬浮物、有机物和微生物等污染物。
为了保证MBR膜生物反应器的正常运行和良好的处理效果,需要严格遵守以下操作规程:1. 操作前的准备:a. 确保反应器周围的环境整洁,无杂物和异味。
b. 检查设备各部位的接口和密封性,确保没有泄漏。
c. 检查进水、出水和气体管道是否畅通。
d. 检查电源是否正常,并确保设备接地良好。
2. 启动系统:a. 打开进水阀门,使废水缓慢进入反应器,并逐渐增加流量至正常工作流量。
b. 打开空气供应系统,提供足够的曝气以维持生物反应器内的氧气供应。
c. 启动膜组件和搅拌器,确保膜组件正常工作。
3. 监测操作:a. 定期检测进水和出水的COD、BOD、总悬浮固体等指标,确保处理效果符合要求。
b. 定期检查膜组件的通透率和污染程度,如有需要,进行清洗或更换膜组件。
c. 监测温度、pH值和溶解氧等参数,保持反应器内的环境稳定。
4. 维护清洁:a. 定期清洗反应器内部,去除废水中的沉淀物和污泥。
b. 定期检查反应器内部的搅拌器、气体供应系统和膜组件,确保其无损坏和漏水现象。
c. 定期对膜组件进行清洗,去除附着在膜面上的污染物。
5. 故障处理:a. 发现设备故障时,应立即停止废水的进水和继续操作,并通知维修人员进行维修。
b. 在维修期间,应关闭废水的进水阀门,以防止故障扩大和影响其他设备的正常工作。
6. 定期维护:a. 每年对MBR膜生物反应器进行全面维护和检修,包括更换损坏或寿命到期的设备和部件。
b. 定期对设备进行润滑和保养,保证其正常运行并延长使用寿命。
7. 安全操作:a. 操作人员应经过专业培训,了解设备的操作规程和安全事项。
b. 操作人员应佩戴防护装备,如手套、防护面罩等,以防止接触有害物质和化学品。
c. 在操作过程中,严禁吸烟、饮食和乱扔垃圾,保持操作区域的整洁和安全。
第四章微生物反应器操作习题答案4.答:连续培养的稳定状态,是指菌体的生长与反应液的排放、基质的流加与反应消耗及 反应液排放、产物的生成与反应液排放达到了动态平衡,因此菌体浓度、基质浓度、产物浓度保持恒定,即,并不一定是稳定状态。
如菌体因生长环境不利出现了死亡时,也满足,但不能说是稳定状态,此时是一种静止状态,而不是动态平衡。
5.解:诱导期结束时的菌体量:X = X0 + X AO □ X DO = X0 + f A X0 □ X DO = (1+ fA )X0-X DO菌体在t l 时间后开始指数型繁殖,因此边界条件: t = t l , X = (1+ f A )X0 □ X DO积分,得X = [(1+ f A )X0 □ X DO ]exp[μ (t □ t l )],如图所示。
当f A = 0, X = (X0 □ X DO ) exp[μ (t □ t l )] ;当f A = 0.2, X = (1.2X0 □ X DO ) exp[μ (t □ t l )]当f A = 0.4, X = (1.4X0 □ X DO ) exp[μ (t □ t l )]当f A = 0.6, X = (1.6X0 □ X DO ) exp[μ (t □ t l )]当f A = 0.8, X = (1.8X0 □ X DO ) exp[μ (t □ t l )]6.答:设菌体生长比速为μ,菌体浓度为X,则菌体生长速率为μX。
为保证菌体生长速率 不变,应采取指数流加方式,控制稀释率D = μ ,此时流加操作可达到拟稳态,菌体生长速率DX = uX 。
7.答:微生物的生长可用莫诺方程表达,即分批培养中菌体生长速率连续培养中菌体生长速率:由此可见,有抑制作用时,菌体最大产率下降,D max 下降。
10 解:生长符合莫诺模型,故14.解:由实验数据可知,菌体浓度不断下降,流加操作为动态过程。
对流加操作中的菌体进行衡算:。
第I 篇环境工程原理基础第二章质量衡算与能量衡算第二节质量衡算◆质量衡算的三个要素:划定衡算系统;确定衡算对象;确定衡算基准;◆稳态系统和非稳态系统的特征当系统中流速、压力、密度等物理量只是位置的函数,不随时间变化,称稳态系统;当系统中流速、压力、密度等物理量不仅随位置变化,而且随时间变化,称非稳态系统。
◆质量衡算的基本关系式:见(2.2.4)p29第三节能量衡算◆封闭系统和开放系统封闭系统:与环境没有物质交换的系统开放系统:与环境既有物质交换又有能量交换的系统第四章热量传递第一节热量传递的方式◆根据传热机理的不同,热的传递三种方式的特点1、热传导:条件:物体各部分之间无宏观运动机理:通过物质的分子、原子和电子的振动、位移和相互碰撞发生的热量传递过程。
在气态、液态和固态物质中都可以发生,但传递的方式和机理不同。
气体的热量传递方式:不规则热运动时相互碰撞固体的热量传递方式:两种方式:晶格振动、自由电子迁移液体的热量传递方式:分子振动、分子间的相互碰撞2、对流传热:流体中质点发生相对位移引起的热量传递过程,仅发生在液体和气体中。
对流与热传导的区别:流体质点的相对位移。
自然对流传热强制对流传热3、辐射传热:物体由于热的原因而发出辐射能的过程。
能量传递的同时又有能量的转化,不需要任何介质作媒介。
第二节热传导◆傅立叶定律的意义和适用条件意义:见(4.2.2)适用条件:平壁和圆管壁的稳态热传导◆多孔材料具有保温性能◆若采用两种导热系数不同的材料为管道保温,分析应如何布置效果最好。
第三节对流传热◆对流传热的机理、传热阻力的分布及强化传热的措施机理:流体中质点发生相对位移引起的热量传递过程,仅发生在液体和气体中。
传热阻力的分布:层流底层(热传导)、缓冲层(热传导、对流传热)、湍流中心(对流传热)强化传热的措施:减小层流底层◆影响对流传热的因素:物性特征;几何特征;流动特征◆保温层的临界直径和保温层的临界厚度。
什么情况下保温层厚度增加反而会使热损失加大(保温层外径小于临界直径)?保温层的临界直径由什么决定(导热系数与对流传热系数的比值)?◆间壁传热热阻包括哪几部分?若冷热流体分别为气体和液体,要强化换热过程,需在哪一侧采取措施?(1)两侧流体的对流传热热阻、污垢热阻、间壁导热热阻。
细胞生物反应器操作规程1. 引言细胞生物反应器是一种用于细胞培养和生物反应的设备,广泛应用于生物技术、药物研发和生物制造等领域。
为了确保细胞生物反应器的安全运行和实验的顺利进行,制定本操作规程,指导操作人员正确操作细胞生物反应器。
2. 设备准备2.1 细胞生物反应器的准备•检查细胞生物反应器的外观,确保无损坏和杂质•清洗细胞生物反应器,使用无菌纯水和无菌洗涤剂进行彻底清洗•消毒细胞生物反应器,使用适当浓度的消毒液,按照消毒液说明书进行消毒2.2 培养基和试剂的准备•准备所需的培养基和试剂,确保其质量合格和纯度符合要求•按照配方和操作规程正确配置培养基和试剂2.3 实验室环境的准备•检查实验室环境,确保无尘、无菌和温度、湿度适宜•细胞生物反应器与其他实验仪器保持适当的距离,避免相互影响3. 细胞生物反应器操作3.1 细胞接种•准备合适的细胞培养物,确保其活性和纯度•将细胞培养物转移到培养基中,按照所需的细胞密度进行接种3.2 培养条件的设置•根据实验要求,设置适宜的温度、气体和培养基流速等培养条件•确保细胞生物反应器的搅拌速度和通气速度符合要求3.3 监测细胞生长和反应过程•定期监测细胞生长情况,记录生长曲线和细胞密度•注意观察细胞状态、代谢产物和废料的积累情况3.4 维持培养条件•定期检查和调整培养基和试剂的浓度和配比•确保培养基的pH值、温度和氧气浓度稳定在适宜范围内3.5 细胞收获和处理•在适当的时间点,根据实验要求采集细胞样品•使用无菌工具和操作方式,将细胞样品抽取或离心收集4. 维护和清洁4.1 细胞生物反应器的维护•定期检查细胞生物反应器的运行状况,确保无故障和损坏•按照使用说明书和操作要求更换消耗品和零配件4.2 细胞生物反应器的清洁•实验结束后,立即清洗细胞生物反应器,避免污垢和细胞残留物的附着•使用适当的清洗剂和工具进行清洁,保持反应器的干净和无菌状态5. 安全注意事项•操作前请佩戴个人防护装备,如实验手套、口罩和防护眼镜等•操作过程中注意细胞生物反应器和培养基的无菌操作,避免污染•注意消毒液和试剂的正确使用和储存,避免危险和污染•遵守实验室操作规程,注意使用细胞生物反应器时的安全操作6. 总结本操作规程对细胞生物反应器的操作流程和注意事项进行了详细介绍,目的在于规范操作流程,确保实验的顺利进行和实验结果的可靠性。