专题18 新定义与阅读理解题(第02期)(解析版)
- 格式:docx
- 大小:472.32 KB
- 文档页数:12
阅读理解及定义型问题(复习讲义)【考点总结|典例分析】考点01新定义型阅读理解题常见的两种类型1.新定义概念型阅读题:解新定义概念型阅读题,要把握新概念的现实模型,理解新概念的形2.新定义运算型阅读题:把新定义运算转化为一般的实数运算是解这类阅读理解题的关键.【特别提醒】(1)正确理解新定义运算的含义,认真分析题目中的定义,严格按照新定义的运算顺序进行运算求解,切记不可脱离题目要求.(2)在新定义的算式中,若遇有括号的也要先算括号里面的.(3)材料中的新概念、新运算与我们已学过的概念、运算有着密切的联系,注意“新”“旧”知识之间的联系与转化.考点02新公式应用型阅读题新公式应用型阅读题常见的三种类型1.新数学公式型:通过阅读材料,给出新的数学公式,根据新的数学公式解决所给问题.2.新变换法则型:通过阅读材料,给出新的数学变换法则,根据新的变换法则解决所给问题.3.新规定型:通过阅读材料,给出新的规定,根据新规定解决所给问题.【知识归纳】新公式应用型阅读题的解题策略1.通过对所给材料的阅读,从中获得新的数学公式或某种新的变换法则.2.分析新公式的结构特征及适用范围.3.将新公式转化为已学知识,寻找解决问题的突破口,进而利用新公式解决问题.解一元一次不等式的注意事项解一元一次不等式的步骤与解一元一次方程的步骤基本类似,只是注意在不等式的两边同乘或同除一个负数时,不等号的方向要发生改变.在数轴上表示不等式的解集时,要注意“分界点”和“方向”,大于向右画,小于向左画,含等于号的画成实心点,不含等于号的要画成空心圆圈.考点03新解题方法型阅读题新解题方法型阅读题常见的两种类型1.以例题的形式给出新方法:材料中首先给出一道例题及其解题方法,然后仿照新的解题方法解决与例题类似的问题.这类新方法型阅读题在中考中最为常见,值得关注.2.以新知识的形式给出新方法:先给出体现一个新解题方法的阅读材料,通过阅读体会新方法的实质,然后用新方法解决相关的问题.【特别提醒】(1)认真阅读题目,理解掌握新的解题方法是解决新问题的关键.(2)体会转化思想在解新方法型阅读题中的作用,理解新方法并进行转化,用我们熟悉的知识来解决新问题.【知识归纳】解答数字规律题的步骤(1)计算前几项,一般算出四五项.(2)找出几项的规律,这个规律或是循环,或是成一定的数列规律如等差,等比等.(3)用代数式表示出规律或是得出循环节(即几个数一个循环).(4)验证你得出的结论.考点04归纳概括型阅读题归纳概括型阅读题常见的三种类型1.等式型:通过对给出的几个等式中数的变化,分析、类比、推断、猜测,归纳出等式存在的一般性规律,再用含字母的等式表示一般规律.2.代数式型:通过对给出的几个代数式中数和字母的变化,分析、类比、猜测,归纳出代数式存在的一般性规律,再用含字母的代数式表示一般规律.3.三角函数式型:通过对给出的几个三角函数式中数或字母的变化,分析、类比、猜测,归纳出三角函数式存在的一般性规律,再用数或含字母的式子表示一般规律.1.(2022·重庆)对多项式x y z m n ----任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:()()x y z m n x y z m n ----=--++,()x y z m n x y z m n ----=--+-,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3【答案】D【分析】给x y -添加括号,即可判断①说法是否正确;根据无论如何添加括号,无法使得x 的符号为负号,即可判断②说法是否正确;列举出所有情况即可判断③说法是否正确.【详解】解:∵()x y z m n x y z m n ----=----∴①说法正确∵0x y z m n x y z m n -----++++=x 的符号为负号∴②说法正确∵当括号中有两个字母,共有4种情况,分别是()x y z m n ----、()x y z m n ----、()x y z m n ----、()x y z m n ----;当括号中有三个字母,共有3种情况,分别是()x y z m n ----、()x y z m n ----、()x y z m n ----;当括号中有四个字母,共有1种情况,()x y z m n ----∴共有8种情况∴③说法正确∴正确的个数为3故选D.【点睛】本题考查了新定义运算,认真阅读,理解题意是解答此题的关键.2.3=3=3=,…,3n =个根号,一般地,对于正整数a,b,如果满足n a =个根号时,称(),a b 为一组完美方根数对.如上面()3,6是一组完美方根数对.则下面4个结论:①()4,12是完美方根数对;②()9,91是完美方根数对;③若(),380a 是完美方根数对,则20a =;④若(),x y 是完美方根数对,则点(),P x y 在抛物线2y x x =-上.其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C【分析】根据定义逐项分析判断即可.【详解】解:4=,∴()4,12是完美方根数对;故①正确;10=9≠∴()9,91不是完美方根数对;故②不正确;若(),380aa 即2380a a =+解得20a =或19a =-a 是正整数则20a =故③正确;若(),x yx =2y x x ∴+=,即2y x x =-故④正确故选C【点睛】本题考查了求算术平方根,解一元二次方程,二次函数的定义,理解定义是解题的关键.3.对于实数a、b,定义一种新运算“⊗”为:21a b a b⊗=-,这里等式右边是实数运算.例如:21113138⊗==--.则方程()2214⊗-=--x x 的解是()A.x=4B.x=5C.x=6D.x=7【答案】B【解析】根据新定义运算,把方程转化为分式方程.因为211(2)(2)4x x x ⊗-==---,所以原方程可转化为12144x x =---,解得x=5.经检验,x=5是原方程的解.4.(2020·随州)将关于x 的一元二次方程0=q +px -x 2变形为q -px x 2=,就可以将2x表示为关于x 的一次多项式,从而达到“降次”的目的,又如=-=⋅=)(23q px x x x x …,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:0=1-x -x 2,且x>0,则3x +2x -x 34的值为()A.51-B.53-C.51+D.53+【答案】C【解析】本题考查了降次法、整体代入法、整式的化简求值,一元二次方程的解法.解答过程如下:∵0=1-x -x 2,∴1x x 2+=,∴3x +2x -x 34=3x +1)2x(x -)1(x 2++=3x +2x -2x -12x x 22++=3x +x -12=3x+1)(x -1+=3x +1-x -1=2x,∵0=1-x -x 2,且x>0,∴x=251+,∴原式=2×251+=51+.因此本题选C.5.,,…若2的位置记为(1,2)(2,3),则的位置记为________.【答案】(4,2)【分析】先找出被开方数的规律,然后再求得∴规律为:被开数为从2开始的偶数,每一行4个数,∵=,28是第14个偶数,而14432÷=∴(4,2)故答案为:(4,2)【点睛】本题考查了类比点的坐标解决实际问题的能力和阅读理解能力.被开方数全部统一是关键.6.对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a ⊕⊕12⊕4=______.【答案】【解析】依题意可知12⊕.7.(2022·浙江宁波)定义一种新运算:对于任意的非零实数a,b,11ba b a ⊗=+.若21(1)++⊗=x x x x,则x 的值为___________.【答案】12-【分析】根据新定义可得221(1)x x x x x++⊗=+,由此建立方程22121x x x x x ++=+解方程即可.【详解】解:∵11ba b a ⊗=+,∴()211121(1)11x x x x x x x x x x x ++++⊗=+==+++,又∵21(1)++⊗=x x x x ,∴22121x x x x x++=+,∴()()()221210x x x x x ++-+=,∴()()2210x x x x +-+=,∴()2210x x +=,∵21(1)++⊗=x x x x即0x ≠,∴210x +=,解得12x =-,经检验12x =-是方程22121x x x x x++=+的解,故答案为:12-.【点睛】本题主要考查了新定义下的实数运算,解分式方程,正确理解题意得到关于x 的方程是解题的关键.8.定义[a ,b ,c ]为函数y =a x 2+bx c +的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论:①当m=﹣3时,函数图象的顶点坐标是(18,33);②当m>0时,函数图象截x 轴所得的线段长度大于32;③当m<0时,函数在x >14时,y 随x 的增大而减小;④当m≠0时,函数图象经过同一个点.其中正确的结论有___________【解析】解:根据定义可得函数y =2m x 2+(1﹣m)x +(﹣1﹣m),①当m=﹣3时,函数解析式为y =﹣6x 2+4x +2,∴224144(6)248,22(6)344(6)3b ac b a a -⨯-⨯--=-===⨯-⨯-,∴顶点坐标是(18,33),正确;②函数y =2m x 2+(1﹣m)x +(﹣1﹣m)与x 轴两交点坐标为(1,0),(﹣12m m+,0),当m>0时,1﹣(﹣12m m +)=313222m +>,正确;③当m<0时,函数y =2m x 2+(1﹣m)x +(﹣1﹣m)开口向下,对称轴111444x m =->,错误;④当m≠0时,x =1代入解析式y =0,则函数一定经过点(1,0),正确.故选:①②④9.若记y=f(x)=221x x +,其中f(1)表示当x=1时y 的值,即f(1)=22111+=12;f(12)表示当x=12时y 的值,即f(12)=22111212512f ==+((();…;则f(1)+f(2)+f (22111212512f ==+((())+f(3)+f(13)+…+f(2011)+f(12011)=.【解析】解:∵y=f(x)=221x x+,∴f(1x )=22111x x +()()=211x +,∴f(x)+f(1x)=1,∴f(1)+f(2)+f(12)+f(3)+f(12)+…+f(2011)+f(12011)=f(1)+[f(2)+f(12)]+[f(3)+f(13)]+…+[f(2011)+f(12011)]=12+1+1+…+1=12+2010=201012.故答案为:201012.10.(2022·重庆)若一个四位数M 的个位数字与十位数字的平方和恰好是M 去掉个位与十位数字后得到的两位数,则这个四位数M 为“勾股和数”.例如:2543M =,∵223425+=,∴2543是“勾股和数”;又如:4325M =,∵225229+=,2943≠,∴4325不是“勾股和数”.(1)判断2022,5055是否是“勾股和数”,并说明理由;(2)一个“勾股和数”M 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,记()9c dG M +=,()()()103a cb d P M -+-=.当()G M ,()P M 均是整数时,求出所有满足条件的M .【答案】(1)2022不是“勾股和数”,5055是“勾股和数”;理由见解析(2)8109或8190或4536或4563.【分析】(1)根据“勾股和数”的定义进行验证即可;(2)由“勾股和数”的定义可得2210a b c d +=+,根据()G M ,()P M 均是整数可得9c d +=,22812c d cd +=-为3的倍数,据此得出符合条件的c,d 的值,然后即可确定出M.(1)解:2022不是“勾股和数”,5055是“勾股和数”;理由:∵22228+=,820≠,∴1022不是“勾股和数”;∵225550+=,∴5055是“勾股和数”;(2)∵M 为“勾股和数”,∴2210a b c d +=+,∴220100c d <+<,∵()9c dG M +=为整数,∴9c d +=,∵()()()2291010910333c a c b d a b c dP c d M --+-+-+=--==为整数,∴22812c d cd +=-为3的倍数,∴①0c =,9d =或9c =,0d =,此时8109M =或8190;②3c =,6d =或6c =,3d =,此时4536M =或4563,综上,M 的值为8109或8190或4536或4563.【点睛】本题以新定义为背景考查了整式混合运算的应用以及学生应用知识的能力,解题关键是要理解新定义,能根据条件找出合适的“勾股和数”.11.请你阅读引例及其分析解答,希望能给你以启示,然后完成对探究一和探究二的解答.引例:设a,b,c 为非负实数,求证:a 2+b 2+b 2+c 2+c 2+a 2≥2(a+b+c),分析:考虑不等式中各式的几何意义,我们可以试构造一个边长为a+b+c 的正方形来研究.解:如图①,设正方形的边长为a+b+c,则AB=a 2+b 2,BC=b 2+c 2,CD=a 2+c 2,显然AB+BC+CD≥AD,∴a 2+b 2+b 2+c 2+c 2+a 2≥2(a+b+c).探究一:已知两个正数x+y=12,求x 2+4+y 2+9的最小值(图②仅供参考);探究二:若a,b 为正数,求以a 2+b 2,4a 2+b 2,a 2+4b 2为边的三角形的面积.【解答】解:探究一:如解图①,构造矩形AECF,并设矩形的两边长分别为12,5,①则x+y=12,AB=x 2+4,BC=y 2+9,显然AB+BC≥AC,当A,B,C 三点共线时,AB+BC 最小,即x 2+4+y 2+9的最小值为AC,∵AC=122+52=13,∴x 2+4+y 2+9的最小值为13;②探究二:如解图②,设矩形ABCD 的两边长分别为2a,2b,E,F 分别为AB,AD 的中点,则CF=4a 2+b 2,CE=a 2+4b 2,EF=a 2+b 2,设以a 2+b 2,4a 2+b 2,a 2+4b 2为边的三角形的面积为S △CEF ,∴S △CEF =S 矩形ABCD -S △C DF -S △AEF -S △BCE =4ab-12×2a×b-12ab-12a×2b=32ab,∴以a 2+b 2,4a 2+b 2,a 2+4b 2为边的三角形的面积为32ab.12.(2022·重庆)对于一个各数位上的数字均不为0的三位自然数N,若N 能被它的各数位上的数字之和m 整除,则称N m 的“和倍数”.例如:∵247(247)2471319÷++=÷=,∴247是13的“和倍数”.又如:∵214(214)2147304÷++=÷= ,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A 是12的“和倍数”,a,b,c 分别是数A 其中一个数位上的数字,且a b c >>.在a,b,c 中任选两个组成两位数,其中最大的两位数记为()F A ,最小的两位数记为()G A ,若()()16F AG A +为整数,求出满足条件的所有数A.【答案】(1)357不是15“和倍数”,441是9的“和倍数”;理由见解析(2)数A 可能为732或372或516或156【分析】(1)根据题目中给出的“和倍数”定义进行判断即可;(2)先根据三位数A 是12的“和倍数”得出12a b c ++=,根据a b c >>,()F A 是最大的两位数,()G A 是最小的两位数,得出()()10210F A G A a b c +=++,()()16k F A G A +=(k 为整数),结合12a b c ++=得出152b k =-,根据已知条件得出16b <<,从而得出3b =或5b =,然后进行分类讨论即可得出答案.(1)解:∵()357357357152312÷++=÷=⋅⋅⋅⋅⋅⋅,∴357不是15“和倍数”;∵()441441441949÷++=÷=,∴441是9的“和倍数”.(2)∵三位数A 是12的“和倍数”,∴12a b c ++=,∵a b c >>,∴在a,b,c 中任选两个组成两位数,其中最大的两位数()10F A a b =+,最小的两位数()10G A c b =+,∴()()101010210F A G A a b c b a b c +=+++=++,∵()()16F A G A +为整数,设()()16k F A G A +=(k 为整数),则1021016a b c k ++=,整理得:558a c b k ++=,根据12a b c ++=得:12a c b +=-,∵a b c >>,∴12b b ->,解得6b <,∵“和倍数”是各数位上的数字均不为0的三位自然数,∴0a b c >>>,∴1b >,∴16b <<,把12a c b +=-代入558a c b k ++=得:()5128b b k -+=,整理得:152b k =-,∵16b <<,k 为整数,∴3b =或5b =,当3b =时,1239a c +=-=,∵0a b c >>>,∴a >3,03c <<,7a ∴=,3b =,2c =,或8a =,3b =,1c =,要使三位数A 是12的“和倍数”,数A 必须是一个偶数,当7a =,3b =,2c =时,组成的三位数为732或372,∵7321261÷=,∴732是12的“和倍数”,∵3721231÷=,∴372是12的“和倍数”;当8a =,3b =,1c =时,组成的三位数为318或138,∵31812266÷=⋅⋅⋅⋅⋅⋅,∴318不是12的“和倍数”,∵13812116÷=⋅⋅⋅⋅⋅⋅,∴138不是12的“和倍数”;当5b =时,1257a c +=-=,∵0a b c >>>,∴57a <<,6a ∴=,5b =,1c =,组成的三位数为516或156,∵5161243÷=,∴516是12的“和倍数”,∵1561213÷=,∴156是12的“和倍数”;综上分析可知,数A 可能为732或372或516或156.【点睛】本题主要考查了新定义类问题,数的整除性,列代数式,利用数位上的数字特征和数据的整除性,是解题的关键,分类讨论是解答本题的重要方法,本题有一定的难度.13.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式,求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想一转化,把未知转化为已知.用“转化”的数学思想,我们]还可以解一些新的方程.例如,一元三次方程x 3+x 2-2x=0可以通过因式分解把它转化为x(x 2+x-2)=0,解方程x=0和x 2+x-2=0,可得方程x 3+x 2-2x=0的解(1)问题:方程x 3+x 2-2x=0的解是x 1=0,x 2=______.x 3=______.(2)拓展:用“转化”思想求方程x x =+32的解;(3)应用:如图,已知矩形草坪ABCD 的长AD=8m,宽AB=3m,小华把一根长为10m 的绳子的一端固定在点B,沿草坪边沿BA、AD 走到点P 处,把长绳PB 段拉直并固定在点P,然后沿草坪边沿PD、DC 走到点C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP 的长.【解析】(1)x 2=1,x 3=-2(2)xx =+32两边平方,得232x x =+解此方程,得1,321-==x x 检验:当x=3时,满足题意;当x=-1时,不满足题意,舍去原方程的根为x=3。
新定义及阅读理解题1.有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的表达式的值,如以下问题:已知实数x 、y 满足35x y -=①,237x y +=②,求4x y -和75x y +的值.本题常规思路是将①②两式联立组成方程组,解得x 、y 的值再代入欲求值的表达式得到答案,常规思路运算量比较大其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得表达式的值,如由-①②可得42x y -=-,由2+´①②可得7519x y +=.这样的解题思想就是通常所说的“整体思想”,解决问题:(1)已知二元次方程组327233x y x y +=ìí+=î则x y -=______,x y +=______.(2)某班级组织活动购买小奖品,买13支铅笔、5块橡皮、2本日记本共需35元,买25支铅笔、9块橡皮、3本日记本共需55元,则购买3支铅笔、3块橡皮、3本日记本共需多少元?【答案】(1)4,2;(2)45元【详解】(1)解:327233x y x y +=ìí+=î①②,①-②得:4x y -=,①+②得:5510x y +=,2x y \+=,故答案为:4,2;(2)购买1支铅笔需a 元,1块橡皮需b 元,1本日记本共需c 元,由题意得:135235259355a b c a b c ++=ìí++=î①②,①2´-②得:15a b c ++=,∴33345a b c ++=答:购买3支铅笔、3块橡皮、3本日记本共需45元.2.阅读下面解题过程,再解题.已知a b >,试比较-2023a+1与-2023b+1的大小.解:因为a b >,①所以-2023a >-2023b ,②所以-2023a+1>-2023b+1.③问:(1)上述解题过程中,从第________步开始出现错误;(2)错误的原因是什么?(3)请写出正确的解题过程.【答案】任务一:22x -<<;330x x £ìí+³î;33x -≤≤;66a -££;任务二:(1)08k <£;(2)12-【详解】解:任务一:回顾:∵13x -<<,1y x =-,∴212x -<-<,∴22y -<<,探究:∵3x y -+=,3a x y =+-,∴3y x =+,∴3332a x y x x x =+-=++-=,∵3x £,0y ³,∴可得关于x 的一元一次不等式组330x x £ìí+³î,解该不等式组得到x 的取值范围为33x -≤≤,∴626x -££,∴a 的取值范围是66a -££,故答案为:22x -<<;330x x £ìí+³î;33x -≤≤;66a -££;任务二:(1)∵2x y -=,k x y =+,∴2x y =+,∴22k x y y =+=+,∵1x >,3y £,∴可得关于y 的一元一次不等式组213y y +>ìí£î,解该不等式组得13y -<£,∴0228y <+£,∴k 的取值范围为08k <£;(2)∵28164x y z =+=,b y z x =+-,∴48x y =+,24z y =+,∴()24484b y y y y =++-+=--,∵0x >,1y ³-,8z <,∴可得关于y 的一元一次不等式组4801248y y y +>ìï³-íï+<î,的转化,其中“作差法”就是常用的方法之一.作差法:就是通过作差变形,利用差的符号确定它们的大小.即要比较代数式A 、B 的大小,只要算A B -的值,若0A B ->,则A B >;若0A B -=,则A B =;若0A B -<,则A B <.【知识运用】:(1)请用上述方法比较下列代数式的大小(直接在空格中填写答案):①1x +__________3x -;②当x y >时,35x y +__________26x y +;③若0a b <<,则3a __________2ab ;(2)试比较与22(31)x x ++与2543x x +-的大小,并说明理由;【类比运用】:(3)图1是边长为4的正方形,将正方形一边保持不变,另一组对边增加22a +()0a >得到如图2所示的新长方形,此长方形的面积为1S ;将正方形的边长增加1a +,得到如图3所示的新正方形,此正方形的面积为2S ;则1S 与2S 大小的大小关系为:1S 2S ;(4)已知2002020023A =´,2002120022B =´,试运用上述方法比较A 、B 的大小,并说明理由.【答案】(1)>;>;<;(2)()22231543x x x x ++>+-;(3)<;(4)A B <,理由见解析【详解】解:(1)①∵()()131340x x x x +--=+-+=>,∴13x x +>-;②∵()()35263526x y x y x y x y x y +-+=+--=-,又∵x y >,∴0x y ->,∴3526x y x y +>+;③∵()()()3222a ab a a b a a b a b -=-=+-,又∵0a b <<,∴0a b +<,0a b -<,∴()()0a a b a b +-<,∴32a ab <;故答案为:>;>;<;(2)()()22231543x x x x ++-+-141212OB AE S OB S ODOD AE ×==×Q 12OB CF S OB ×问题3:运用上述两个问题的发现我们一起探究如何作一条直线平分多边形面积:(1)如图3:在四边形ABCD,小孙同学的辅助线:D E A C交BC的延长线于①连接对角线AC,②作∥(2)如图4:在四边形ABCD,小悟同学的辅助线:①连接对角线AC和BD;②取BD的中点O问题4:小空同学运用类比和转化的数学思想作了一条直线平分五边形(保作图痕迹并写出作图方法)【答案】【问题1】见解析;点B作BM∥AC,交即为所求.【详解】【问题1】证明:如图,过点∴1,2ABDS BD AP S V=´∵AD是△ABC的中线,∴BD CD=,∴S S=;∴1,2ABC BCD S BC AK S=´V V∵AD BC∥,∴AK DL=,S S=【问题4】解:①连接对角线AC 和N ;③取MN 的中点H ,则直线∵BM∥AC ,EN ∥AD ,∴ABC AMC S S =V V ,ADE ADN S S =V V ∴ABC AHC AMC AHC S S S S +=+V V V V ∴AHM ABCH S S =V 四边形,AHN S =V ∵点H 为MN 的中点,∴AHM AHN S S =V V ,【答案】【初步思考】(1)60;(2)见解析;【综合运用】时,3902CQD aÐ=-°.【详解】[初步思考](1)解:根据题意可知AÐQ DA CP∥,A B DPC a Ð=Ð=Ð=,由(2)可知ADP CGB Ð=Ð设ADP CGB x Ð=Ð=,DPC Ð()1180GCF x a \Ð=°--(1)如图2,延长△ABC 的边BC 到点D ,使CD BC =,连接DA .若ACD V 的面积为1S ,则1S =(用含代数式表示);(2)如图3,延长△ABC 的边BC 到点D ,延长边CA 到点E ,使CD BC =,AE CA =,连接DE .若△DEC 面积为2S ,则2S =(用含a 的代数式表示);Q 延长△ABC 的边BC 到点\12ACD AED ECD S S S D D D ==,22ECD ABC S S a D D \==,即22S a =;(3)由(2)得2ECD S S D =同理:22EFA ABC S S a D D ==,36ECD EFA BFD S S S S D D D \=++=(4)2BEF S a =△,理由如下:理由:∵点E 是线段AD 的中点,∴ABE BDE S S =V V ,ACE S S =△△(1)如图1,△ABC 中,若AD 是BC 边上的中线,则ABD △的面积______△ACD “=”);(2)如图2,若CD 、BE 分别是△ABC 的AB 、AC 边上的中线,求四边形ADOE 连接AO ,由AD DB =得ADO BDO S S =V V ,同理,可得CEO AEO S S =V V .AD Q 是△ABC 的BC 边上的中线,:1:3AD DB =Q ,13ADO BDO S S \=V V ,:2:3CE AE =Q ,23CEO AEO S S \=V V ,②因为6x >,从数轴上(如下图)可以看出只有小于-6的数和大于解集为6x <-或6x >.(1)3x <的解集为,3x >的解集为;245x y m -=-∴1020a a ->ìí+>î,解得a 的取值范围是1a >;(2)解:∵4a b -=,∴4a b =+,∵1a >,∴41b +>,∴3b >-,∵2b <,∴b 的取值范围是32b -<<.24.阅读材料:如果x 是一个有理数,我们把不超过x 的最大整数记作[]x .例如,[]3.23=,[]55=,[]2.13-=-.请你解决下列问题:(1)[]3.7=_______;[]4.5-=_______;(2)如果[]3x =,那么x 的取值范围是________;(3)如果[]3221x x -=+,求x 的值.【答案】(1)3,5-;(2)34x £<;(3)3或3.5【详解】(1)解:由题意得:[]3.73=,[]4.55-=-,故答案为:3,5-.(2)解:[]3x =Q ,34x \£<,故答案为:34x £<.(3)解:[]3221x x -=+Q ,213232211x x x x +£-ì\í-<++î,解得34x £<,7219x \£+<,又21x +Q 为整数,217x \+=或218x +=,3x \=或 3.5x =.25.阅读下列材料,解答下面的问题:我们知道方程3424x y +=有无数个解,但在实际生活中我们往往只需求出其正整数解.【初步应用】如图③,点D ,E 分别是△ABC 的边AB AC ,延长线上一点,(1)若60110A CBD Ð=°Ð=°,,则ACB =∠______°;(2)若60110A CBD Ð=°Ð=°,,则CBD BCE Ð+Ð=______°;(3)若A m Ð=°,则CBD BCE Ð+Ð=______°.【拓展延伸】【新知探究】(1)如图②,过点A 画出△(2)如图③,直线12l l ∥,A 、B 是2l 上的两点,P 、Q 是1l 交于点O .设APO △的而积为1S ,BQO △的面积为2S ,则【拓展提高】(1)如图④,点M 是△ABC 中BC 边上的一点,CM BM <(2)∵12l l ∥,∴APQ BPQ S S =V V ,∴12APQ POQ S S S S S ==-=V V V 故答案为:=;(2)过D 作DP AE ∥交BC 延长线于取BP 中点E ,连接AE ,与(1)同理可得,AE 即为四边形【概念理解】(1)若△ABC为开心三角形,(2)若△ABC为开心三角形,Ð是开心△ABC (3)已知A【应用拓展】(4)如图,AD平分△ABC。
专题18函数中的新定义问题一、单选题1.x R ∀∈,[]x 表示不超过x 的最大整数,十八世纪,函数[]y x =被“数学王子”高斯采用,因此得名高斯函数,人们更习惯称之为“取整函数”,则[][]4.8 3.5--=()A .0B .1C .7D .8【解析】由题意可知[][]4.8 3.5--=4-(-4)=8.故选:D.2.若一系列函数的解析式和值域相同,但其定义域不同,则称这些函数为“同族函数”,例如函数[]2,1,2y x x =∈与函数[]2,2,1y x x =∈--即为“同族函数”.请你找出下面哪个函数解析式也能够被用来构造“同族函数”的是()A .y x=B .3y x =-C .1y x=D .1y x =+【解析】对于选项AD ,函数都为单调递增的,故不满足,因此AD 都错;对于选项C ,1y x=在区间(),0-∞和()0,∞+上都是单调递减的,且在两个区间上y 的取值一正一负,故不满足,因此C 错;对于选项B ,函数3y x =-,[]2,3x ∈和函数3y x =-,[]3,4x ∈即为“同族函数”,故满足,因此B 正确.故选:B.3.已知函数()M f x 的定义域为实数集R ,满足()1,=0,M x Mf x x M ∈⎧⎨∉⎩(M 是R 的非空子集),在R 上有两个非空真子集A ,B ,且A B =∅ ,则()()()()11A B A B f x F x f x f x +=++ 的值域为()A .20,3⎛⎤⎥⎝⎦B .{}1C .12,,123⎧⎫⎨⎬⎩⎭D .1,13⎡⎤⎢⎥⎣⎦【解析】当()R x A B ∈⋃ð时,()0A B f x ⋃=,()0A f x =,()0B f x =,()1F x ∴=同理得:当x B ∈时,()1F x =;当x A ∈时,()1F x =;故()()R 1,1,1,x A F x x B x A B ⎧∈⎪=∈⎨⎪∈⋃⎩ð,即值域为{1}.故选:B4.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石,布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer ),简单的讲就是对于满足一定条件的连续函数()f x 存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点函数”,下列为“不动点函数”的是()A .()2x f x x =+B .2()3f x x x =-+C .221,1()2,1x x f x x x ⎧-≤⎪=⎨->⎪⎩D .1()2=+f x x x【解析】对于A ,由()f x x =,得2x x x +=,即20x =,方程无解,所以A 不符合题意,对于B ,由()f x x =,得23x x x -+=,即230x +=,方程无解,所以B 不符合题意,对于C ,由()f x x =,得当1x ≤时,221x x -=,即2210x x --=,解得1x =或12x =-,所以此函数为“不动点函数”,所以C 正确,对于D ,由()f x x =,得12x x x+=,即210x +=,方程无解,所以D 不符合题意,,故选:C5.四参数方程的拟合函数表达式为()01ba d y d x x c -=+>⎛⎫+ ⎪⎝⎭,常用于竞争系统和免疫检测,它的图象是一个递增(或递减)的类似指数或对数曲线,或双曲线(如1y x -=),还可以是一条S 形曲线,当4a =,1b =-,1c =,1d =时,该拟合函数图象是()A .类似递增的双曲线B .类似递增的对数曲线C .类似递减的指数曲线D .是一条S 形曲线【解析】依题意可得拟合函数为1311y x -=++,()0x >,即()31333 114111x x y x x x +--=+==++++,()0x >,由3y x-=()1x >向左平移1个单位,再向上平移4个单位得到3 41y x -=++,()0x >,因为3y x-=在()1,+∞上单调递增,所以拟合函数图象是类似递增的双曲线;故选:A6.在函数()f x 区间D 上的导函数为()f x ',()f x '在区间D 上的导函数为()g x .若在区间D 上,()0g x <恒成立,则称函数()f x 在区间D 上为“凸函数”.已知实数m 为常数,()4323126x mx f x x =--,若对满足1m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,则b a -的最大值为()A .4B .3C .2D .1【解析】由题设,32()632x mx f x x '=--,则2()6g x x mx =--,∴对任意||1m ≤,在(,)a b 上有2()60g x x mx =--<恒成立,令2()60h m mx x =-+-<在11m -≤≤上恒成立,∴22(1)60(1)60h x x h x x ⎧-=+-<⎨=--<⎩,可得22x -<<,∴2,2a b ≥-≤,故b a -的最大值为4.故选:A7.高斯是德国著名的数学家,近代数学奠基者之一,享有数学王子的美誉,他和阿基米德、牛顿并列为世界三大数学家,用其姓名命名的“高斯函数”为[]y x =,其中[]x 表示不超过x 的最大整数,例如][3.54,2.12⎡⎤-=-=⎣⎦,已知函数()11xxe f x e -=+,令函数()()g x f x =⎡⎤⎣⎦,则()g x 的值域为()A .()1,1-B .{}1,1-C .{}1,0-D .{}1,0,1-【解析】因为11xe +>,所以2021xe <<+,所以12()1(1,1)11x x xe f x e e -==-∈-++,则()[()]g x f x =的值域{}0,1-.故选:C .8.已知函数()y f x =,若在定义域内存在实数x ,使得()()f x kf x -=-,其中k 为整数,则称函数()y f x =为定义域上的“k 阶局部奇函数”,若()()2log f x x m =+是[]1,1-上的“1阶局部奇函数”,则实数m 的取值范围是()A .⎡⎣B .(C .⎡⎣D .⎡-⎣【解析】由题意,函数()()[]2log ,,11f x x m x =+-∈,满足0x m +>,解得1m >,因为函数()()2log f x x m =+是[]1,1-上的“1阶局部奇函数”,即关于x 的方程()()f x f x -=-在[]1,1-上有解,即()()22log log 0x m x m -+++=在[]1,1-上有解,可得[]221,1,1m x x -=∈-,所以221m x =+在[]1,1x ∈-有解,又由21[1,2]x +∈,因为1m >,所以212m <≤,解得1m <≤实数m 的取值范围是(.故选:B.9.如图所示的曲线就像横放的葫芦的轴截面的边缘线,我们把这样的曲线叫葫芦曲线(也像湖面上高低起伏的小岛在水中的倒影与自身形成的图形,也可以形象地称它为倒影曲线),它每过相同的间隔振幅就变化一次,且过点33,42M π⎛⎫⎪⎝⎭,其对应的方程为12||2|sin |2x y x ωπ⎛⎫⎡⎤=- ⎪⎢⎣⎦⎝⎭(0x ≥,其中[]x 为不超过x 的最大整数,13ω<<).若该葫芦曲线上一点N 的横坐标为43π,则点N 的纵坐标为()A .13±B.C .12±D.【解析】由曲线过33,42M π⎛⎫ ⎪⎝⎭知,3231342sin 224ππωπ⎛⎫⎡⎤⨯ ⎪⎢⎥⎛⎫=- ⎪⎢⎥ ⎪⎝⎭ ⎪⎢⎥⎪⎣⎦⎝⎭,即3sin 14πω⎛⎫= ⎪⎝⎭,则3(Z)42k k ππωπ=+∈,解得42(Z)33k k ω=+∈,又13ω<<,则2ω=,若该葫芦曲线上一点N 的横坐标为43π,即43x π=,代入曲线方程得到42143||2sin 223y πππ⎛⎫⎡⎤⨯ ⎪⎢⎥⎛⎫=-⨯=⎪⎢⎥ ⎪⎝⎭ ⎪⎢⎥⎪⎣⎦⎝⎭,则y =N的纵坐标为.故选:D 10.设函数()f x 的定义域为D ,若函数()f x 满足条件:存在[]a b D ⊆,,使()f x 在[]a b ,上的值域为22a b ⎡⎤⎢⎥⎣⎦,,则称()f x 为“倍缩函数”.若函数()()2log 2xf x t =+(其中0t ≥)为“倍缩函数”,则t 的取值范围是()A .104⎛⎫ ⎪⎝⎭,B .()01,C .102⎛⎤⎥⎝⎦,D .14⎛⎫+∞ ⎪⎝⎭,【解析】由已知可得,()f x 在[]a b ,上是增函数;22log (2)2,log (2)2a b a t b t ⎧+=⎪⎪∴⎨⎪+=⎪⎩即222222aabb t t ⎧+=⎪⎨⎪+=⎩,a ∴,b 是方程2220x x t -+=的两个根,设22xm ==0m >,此时方程为20m m t -+=即方程有两个不等的实根,且两根都大于0;2(1)400t t ⎧-->∴⎨>⎩,解得:104t <<,∴满足条件t 的范围是104⎛⎫ ⎪⎝⎭,.故选:A二、多选题11.具有性质:()1f f x x ⎛⎫=- ⎪⎝⎭的函数,我们称为满足“倒负”变换的函数,下列函数中满足“倒负”变换的函数是()A .()22x f x x =-B .()1f x x x=-C .()1f x x x=+D .(),01,0,1,1,1x x f x x x x⎧⎪<<⎪==⎨⎪⎪->⎩【解析】对于A 选项,x =0在定义域内,不满足“倒负”变换;对于B 选项,()111f x x f x x x x ⎛⎫⎛⎫=-=--=- ⎪ ⎪⎝⎭⎝⎭,满足“倒负”变换;对于C 选项,()155,2222f f ⎛⎫=-=- ⎪⎝⎭,()122f f ⎛⎫≠- ⎪⎝⎭,不满足“倒负”变换;对于D 选项,当01x <<时,11x>,此时()111f x f x x x⎛⎫=-=-=- ⎪⎝⎭;当x =1时,11x=,此时()()101f f ==-;当1x >时,101x<<,此时()11f f x x x⎛⎫==- ⎪⎝⎭,()f x 满足“倒负”变换.故选:BD.12.对于函数()y f x =,若()00f x x =,则称0x 是()f x 的不动点:若()11f f x x ⎡⎤=⎣⎦,则称1x 是()f x 的稳定点,则下列函数有稳定点的是()A .()1f x x-=-B .()21f x x =+C .()31,02112x x f x x ⎧<<⎪⎪=≤<D .()2121,12x f x x x <<=⎨⎪≤<⎪⎩【解析】A :函数1()f x x=-的定义域为{}0x x ≠,假设存在稳定点1x ,则111()f x x =-,1111[()](f f x f x x =-=,所以对{}0x x x ∀∈≠,均有[()]f f x x =,故A 有稳定点;B :函数2()1f x x =+的定义域为R ,假设存在稳定点1x ,则211()1f x x =+,2421111[()](1)22f f x f x x x =+=++,而4211122x x x ++=在R 上无解,故B 无稳定点;C :()3102112x x f x x ⎧<<⎪⎪=≤<,,,当12x =时,12f ⎛⎫= ⎪⎝⎭10,2⎛⎫ ⎪⎝⎭,故31122f f f ⎫⎡⎤⎛⎫===⎪ ⎪⎢⎥⎪⎝⎭⎣⎦⎭,故C 有稳定点;D:212()112x f x x x <<=⎨⎪≤<⎪⎩,,当12x =时,2111(()224f ==,而11(0,42∈,故111[()]()242f f f ===,故D 有稳定点.故选:ACD.13.华人数学家李天岩和美国数学家约克给出了“混沌”的数学定义,由此发展的混沌理论在生物学、经济学和社会学领域都有重要作用.()f x 是定义在R上的函数,对于x ∈R ,令1()(123)n n x f x n -== ,,,,若存在正整数k 使得0k x x =,且当0<j <k 时,0j x x ≠,则称0x 是()f x 的一个周期为k 的周期点.若122()12(1)2x x f x x x ⎧<⎪⎪=⎨⎪-⎪⎩,,,下列各值是()f x 周期为2的周期点的有()A .0B .13C .23D .1【解析】A :00x =时,()100x f ==,周期为1,周期为2也正确,故A 正确;B :013x =时,1231222233333n x f x f x x ⎛⎫⎛⎫======= ⎪ ⎪⎝⎭⎝⎭ ,,,所以13不是()f x 的周期点.故B 错误;C :023x =时,1223n x x x ==== ,周期为1,周期为2也正确.故C 正确;D :01x =时,()()1201000x f x f x ====≠,,1∴不是()f x 周期为2的周期点,故D 错误.故选:AC.14.中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互转化、对称统一的形式美、和谐美.在平面直角坐标系中,如果一个函数的图象能够将某个圆的周长和面积同时平分,那么称这个函数为这个圆的“优美函数”.则下列说法中正确的有()A .对于一个半径为1的圆,其“优美函数”仅有1个B .函数()3f x x =可以是某个圆的“优美函数”C .若函数()y f x =是“优美函数”,则函数()y f x =的图象一定是中心对称图形D .函数32cos 2y x π⎛⎫=- ⎪⎝⎭可以同时是无数个圆的“优美函数”【解析】对于A ,过圆心的任一直线都可以满足要求,故A 错误;对于B ,函数3()f x x =为奇函数,关于原点对称,可以是单位圆的“优美函数”,故B 正确;对于C ,函数y =f (x )的图象是中心对称图形,函数一定是“优美函数”,但“优美函数”不一定是中心对称函数,如图,故C 错误;对于D ,函数32cos 2sin 2y x x π⎛⎫=-=- ⎪⎝⎭关于原点对称,是圆222,02x y k k +=<≤,的“优美函数”,满足无数个,故D 正确.故选:BD.15.德国著名数学家狄利克雷在数学领域成就显著,狄利克雷函数就以其名命名,其解析式为()1,=D x x 为有理数,()0D x x =,为无理数),关于函数()D x ,下列说法正确的是().A .()D x 既不是奇函数,也不是偶函数B .x ∀∈R ,()()1D D x =C .()D x 是周期函数D .,x y ∃∈R ,使得()()()D D y y D x x +=+【解析】因为有理数的相反数还是有理数,无理数的相反数还是无理数,所以对x ∀∈R ,()()D x D x -=,故()D x 是偶函数,故A 错误;当x 为有理数时,()1D x =,当x 为无理数时,()0D x =,当x 为有理数时,()()()11D D x D ==,当x 为无理数时,()()()01D D x D ==,所以()()1D D x =恒成立,B 正确;若x 是有理数,T 是有理数,则x T +是有理数;若x 是无理数,T 是有理数,则x T +是无理数,所以任取一个不为0的有理数T ,()()D x T D x +=恒成立,即()D x 是周期函数,故C 正确;若x ,y 为无理数,则x y +也为无理数,所以()()()0x y x D D D y =+=+,故D 正确.故选:BCD16.函数()f x 满足条件:①对定义域内任意不相等的实数a ,b 恒有()[()()]0a b f a f b -->;②对定义域内任意两个实数1x ,2x 都有()()121222f x f x x x f ++⎛⎫≥ ⎪⎝⎭成立,则称为G 函数,下列函数为G 函数的是()A .()21f x x =-B .()f x =C .2()43f x x x =-+-,1x <D .3()f x x =,0x >【解析】a ,b 恒有()[a b f -(a )f -(b )]0>,所以()f x 是增函数,因为对定义域内任意两个实数1x ,2x 都有1212()()()22x x f x f x f ++ 成立,所以()f x 为上凸函数,对于A ,函数()21f x x =-是增函数,且1212()()()22x x f x f x f ++=成立,所以函数为G 函数,故选项A 正确;对于B ,函数()f x =G 函数,故选项B 正确;对于C ,函数2()43f x x x =-+-,1x <是增函数,且函数的图象是上凸函数,所以函数为G 函数,故选项C 正确;对于D ,函数3()f x x =,0x >是增函数,但是函数的图象是下凹函数,所以函数不是G 函数,故选项D 错误.故选:ABC .17.已知函数()122,42,x x af x x x a x a -⎧<=⎨-++≥⎩,如果函数()f x 满足对任意()1,x a ∈-∞,都存在()2,x a ∈+∞,使得()()21f x f x =,称实数a 为函数()f x 的包容数,下列数中可以为函数()f x 的包容数的是()A .12-B .1C .4D .8【解析】记()1f x 的值域为A ,()2f x 的值域为B ,由题意可知:A B ⊆;对于A ,当12a =-时,312224x --<=;2413x x -+-≤;则4A ⎛⎫=-∞ ⎪ ⎪⎝⎭,(],3B =-∞,满足A B ⊆,A 正确;对于B ,当1a =时,10221x -<=,2426x x -++≤;则(),1A =-∞,(],6B =-∞,满足A B ⊆,B 正确;对于C ,当4a =时,13228x -<=,2488x x -++≤;则(),8A =-∞,(],8B =-∞,满足A B ⊆,C 正确;对于D ,当8a =时,1722128x -<=;241616x x -++≤-;则(),128A =-∞,(],16B =-∞-,不满足A B ⊆,D 错误.故选:ABC.18.若正整数m ,n 只有1为公约数,则称m ,n 互质.对于正整数n ,()n ϕ是小于或等于n 的正整数中与n互质的数的个数,函数()n ϕ以其首名研究者欧拉命名,称为欧拉函数,例如:()32ϕ=,()76ϕ=,()96ϕ=,则下列说法正确的是()A .()()510ϕϕ=B .()211nϕ-=C .数列(){}3nϕ为等比数列D .()()222n n ϕϕ+>,*n N ∈【解析】因为()()5104ϕϕ==,故A 正确;因为当4n =时,()151ϕ≠,故B 不正确;因为与3n 互质的数为1,2,4,5,7,8,10,11,…,32n -,31n -,共有()1131323n n ---⋅=⋅个,所以()1323n n ϕ-=⋅.则数列(){}3nϕ为等比数列,故C 正确;因为()()462ϕϕ==,故D 不正确;故选:AC 三、填空题19.若存在常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b ≥+和()G x kx b ≤+恒成立(或()F x kx b ≤+和()G x kx b ≥+恒成立),则称此直线y kx b =+为()F x 和()G x 的“隔离直线”.已知函数()()2x x x f =-∈R ,()()10g x x x=>,若函数()f x 和()g x 之间存在隔离直线3y x b =-+,则实数b 的取值范围是______.【解析】因为函数()f x 和()g x 之间存在隔离直线3y x b =-+,所以当23x x b -≤-+时,可得230x x b -+-≤对任意的x ∈R 恒成立,则23b x x ≥-+,即239(24b x ≥--+,所以94b ≥;当13x b x ≥-+时,对0x >恒成立,即13(0)b x x x≤+>恒成立,又当0x >时,13x x +≥13x x =即x =b ≤综上所述,实数b的取值范围是94b ≤≤.20.如果函数()y f x =在其定义域上有且仅有两个不同的数0x ,满足()()0000f x f x x x '=-,那么就称函数()y f x =为“单值函数”,则下列四个函数:①()322f x x x =+;②()e xf x x =;③()ln 010x x x f x x x x >⎧⎪=⎨+<⎪⎩,,;④()()sin 1f x x x =+.其中为“单值函数”的是______.(写出所有符合题意的函数的序号)【解析】①()()322234f x x x f x x x ='=++,,()()2221234202102f x f x x x x x x x x x x x x =-⇒+=+-⇒+=⇒+=⇒=-',方程只有一个解,故该函数不为“单值函数”;②()()e e e x x xf x x f x x ==+',,()()e e e e 10x x x x f x f x x x x x x=-⇒-⇒='=+⇒=,∵x ≠0,故方程无解,该函数不是“单值函数”;③()ln 010x x x f x x x x >⎧⎪=⎨+<⎪⎩,,,当0x >时,()ln 1f x x ='+,()()ln ln 110f x f x x x x x x x=-⇒=-⇒='+>;当0x <时,()211f x x '=-,()()32221121120f x f x x x x x x x x x x'=-⇒+=--⇒=-⇒=-⇒=<,故f (x )在其定义域上有且仅有两个不同的数0x ,满足()()0000f x f x x x '=-,故该函数为“单值函数”;④()()()sin 1sin 1cos f x x x f x x x x '=+=++,,()()sin 1sin 1cos cos 1f x f x x x x x x x x x=-⇒+=++-⇒='20x k k k π⇒=≠∈Z ,,,方程有无数个解,故该函数不是“单值函数”﹒故选:③.21.若函数()f x 的定义域为D ,且满足如下两个条件:①()f x 在D 内是单调递增函数;②存在[],m n D ⊆,使得()f x 在[],m n 上的值域为[]2,2m n 那么就称函数()f x 为“希望函数”,若函数()()()log 0,1x a f x a t a a =->≠是“希望函数”,则实数t 的取值范围为___________.【解析】∵函数()()()log 0,1xa f x a t a a =->≠是“希望函数”,∴()()22f m m f n n ⎧=⎪⎨=⎪⎩,即()2f x x =有两个解,∴m ,n 是方程()20x x a a t +=-的两个不等的实根,设x y a =,则0y >,∴方程等价为20y y t -+=的有两个不等的正实根,即1212140010t y y t y y =-⎧⎪=⎨⎪+=⎩ >>>,∴140t t ⎧<⎪⎨⎪>⎩,解得104t <<,故答案为:10,4⎛⎫ ⎪⎝⎭.22.若函数()f x 在区间A 上,对,,a b c A ∀∈,()f a ,()f b ,()f c 为一个三角形的三边长,则称函数()f x 为“三角形函数”.已知函数()ln f x x x m =+在区间21,e e ⎡⎤⎢⎥⎣⎦上是“三角形函数”,则实数m 的取值范围为____【解析】1()ln ln 1f x x x x x'=+⋅=+,令()0f x '>,得1e x >,令()0f x '<,得10ex <<,所以()f x 在211,e e ⎡⎤⎢⎥⎣⎦上单调递减,在1,e e ⎛⎤⎥⎝⎦上单调递增,所以min 1()()e f x f =11ln e e m =+1em =-,因为222111((e)ln eln e e e e f f m m -=+--22e 0e =--<,所以max ()(e)e f x f m ==+,所以()f x 在区间21,e e ⎡⎤⎢⎥⎣⎦上的值域为1,e e m m ⎡⎤-+⎢⎥⎣⎦,因为函数()ln f x x x m =+在区间21,e e ⎡⎤⎢⎥⎣⎦上是“三角形函数”,所以11e e e m m m -+->+,解得2e em >+.四、解答题23.函数()f x 的定义域为()0,∞+,且存在唯一常数0k >,使得对于任意的x 总有()()1f kx f x k=+,成立.(1)若()10f =,求()1f k f k ⎛⎫+ ⎪⎝⎭;(2)求证:函数()ln g x x =符合题设条件.【解析】(1)因为()()1f kx f x k=+,所以()()11f k f k =+,又()10f =,所以()1f k k =,又()1111f f k f k k k⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=⋅=+,所以11f k k ⎪⎝⎭=-⎛⎫,所以()1110f k f k k k ⎛⎫+ ⎪⎝⎭=-+=(2)因为()ln g x x =的定义域为()0,∞+,假设存在常数00k >满足()()001g k x g x k =+,即()001ln ln k x x k =+,所以001ln k k =,设()1ln h x x x =-,显然()h x 在()0,∞+上单调递增,又()11ln1101h =-=-<,()11e ln e 10e eh =-=->,所以存在唯一的常数()01,e k ∈使得()0001ln 0h k k k =-=,即存在唯一的常数()01,e k ∈使得函数()ln g x x =符合题设条件;24.已知函数()f x 和()g x 的定义域分别为1D 和2D ,若对任意的01x D ∈,都恰好存在n 个不同的实数122,,,n x x x D ∈ ,使得()()0i g x f x =(其中*1,2,,,N i n n =⋅⋅⋅∈),则称()g x 为()f x 的“n 重覆盖函数”.(1)判断下面两组函数中,()g x 是否为()f x 的“n 重覆盖函数”,并说明理由;①()()cos 04g x x x π=<<,()()11f x x x =-<<,“4重覆盖函数”;②()()22g x x x =-≤≤,()()1sin f x x x R =+∈,“2重覆盖函数”;(2)若()1sin x g x xπ-=,()0,x ∈+∞为()1f x x =,(),x s t ∈()0s t <<的“9重覆盖函数”,求t s -的最大值.【解析】(1)①:当11x -<<时,()11f x -<<,根据余弦函数的图象可知,()g x 是()f x 的“4重覆盖函数”;②:由1sin 1x -≤≤可知:()02f x ≤≤,函数()()22g x x x =-≤≤的图象如下图所示:当3π2x =时,3π3π1sin 022f ⎛⎫=+= ⎪⎝⎭,当()00g x x x ==⇒=,所以()g x 不是()f x 的“2重覆盖函数”;(2)因为(),x s t ∈,所以()1f x t s<<,因为0sin 1x π≤≤,所以当()0,x ∈+∞时,()0g x ≥,当1(0,]2x ∈时,()1sin 1sin πx x g x x xπ--==,函数1sin πy x =-和函数1y x=都是单调递减函数,故该函数单调递减,当1(,1]2x ∈时,()1sin 1sin πx x g x x xπ--==,函数1sin πy x =-是单调递增函数,函数1y x=是单调递减函数,而函数1sin πy x =-递增的速度快于函数1y x=递减的速度,所以函数单调递增,而函数1sin πy x =-的最小正周期为:12π12π⨯=,因此函数()1sin xg x xπ-=,()0,x ∈+∞的图象如下图所示:因此要想()1sin x g x xπ-=,()0,x ∈+∞为()1f x x =,(),x s t ∈()0s t <<的“9重覆盖函数”,只需()()111444*********g s s s s t s t t g t t⎧⎧≥≥⎪⎪≥-≤-⎧⎧⎪⎪⇒⇒⇒⇒-≤⎨⎨⎨⎨≤≤⎩⎩⎪⎪≤≤⎪⎪⎩⎩,所以t s -的最大值1.25.已知O 为坐标原点,R a b ∈、,对于函数()sin cos f x a x b x =+,称向量(),a M b O =为函数()f x 的伴随向量,同时称函数()f x 为向量OM 的伴随函数.已知函数()ππ2sin 62g x x x ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,(1)求()g x 的伴随向量ON,并求ON .(2)关于x 的方程()0g x t -=在π0,2⎡⎤⎢⎥⎣⎦内恒有两个不相等实数解,求实数t 的取值范围.(3)将函数()g x 图象上每一点纵坐标不变,横坐标变为原来的2倍,再把整个图象向左平移23π个单位长度得到函数()h x 的图象,已知()33A -,,()311B ,,在函数()h x 的图象上是否存在一点P ,使得AP BP ⊥,若存在,求出点P 坐标;若不存在,说明理由.【解析】(1)因为()ππ2sin 62g x x x ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭ππcos sin sin 2cos 66x x x=⋅+⋅-cos x x =,所以ON =,2ON == .(2)因为关于x 的方程()0g x t -=在π0,2⎡⎤⎢⎥⎣⎦内恒有两个不相等实数解,所以()y g x =的图象与直线y t =在π0,2⎡⎤⎢⎥⎣⎦内恒有两个不同的交点,π()2sin()6g x x =+(π02x ≤≤)的图象如图:2t ≤<.(3)依题意可得12ππ()2sin 236h x x ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦1π2sin 22x ⎛⎫=+ ⎪⎝⎭12cos 2x =,||10AB ==,AB 的中点为(0,7),假设在函数()h x 的图象上是否存在一点00(,)P x y ,使得AP BP ⊥,则点P 在以AB 为直径的圆上,该圆的圆心为(0,7),半径为5,所以2200(0)(7)25x y -+-=,即22001(2cos 7)252x x +-=,所以201(2cos 7)252x -≤,所以0152cos 752x -≤-≤,所以011cos 62x ≤≤,又011cos 12x -≤≤,所以01cos 12x =,所以220(217)25x +⨯-=,所以00x =,所以012cos 22x =,所以(0,2)P .综上所述:在函数()h x 的图象上是否存在一点P ,使得AP BP ⊥,且(0,2)P .26.若函数()f x 和()g x 的图象均连续不断,()f x 和()g x 均在任意的区间上不恒为0,()f x 的定义域为1I ,()g x 的定义域为2I ,存在非空区间()12A I I ⊆⋂,满足:x A ∀∈,均有()()0f x g x ≤,则称区间A 为()f x 和()g x 的“Ω区间”(1)写出()2sin f x x =和()sin cos g x x x =+在[0,]π上的一个“Ω区间”,并说明理由;(2)若()21e 2ln cos2ex x f x x x -=+-,且()f x 在区间(0,1]上单调递增,(0,)+∞是()f x 和()g x 的“Ω区间”,证明:()g x 在区间(0,)+∞上存在零点.【解析】(1)()2sin f x x = ,()sin cos g x x x =+,令()()0f x g x ≤则()2sin sin cos 0x x x +≤,因为[0,]x π∈,所以sin 0x ≥,sin cos 0x x ∴+≤04x π⎛⎫+≤ ⎪⎝⎭,[]0,x π∈ ,所以5,444x πππ⎡⎤+∈⎢⎥⎣⎦,令544x πππ≤+≤,解得34x ππ≤≤,3,4x ππ⎡⎤∴∈⎢⎥⎣⎦,∴()2sin f x x =和()sin cos g x x x =+在[0,]π上的一个“Ω区间”为3,4ππ⎡⎤⎢⎥⎣⎦(答案为3,4ππ⎡⎤⎢⎥⎣⎦的非空子集都可)(2)()0,∞+ 是()f x 和()g x 的“Ω区间”,()0,x ∞∀∈+ 均有()()0f xg x ≤()f x 在区间(0,1]上单调递增,而()11cos20f =->,则()10g ≤又220222212ln11112e cos21cos 0ee e e e ef ⎛⎫=+-=-+-< ⎪⎝⎭,则210e g ⎛⎫≥ ⎪⎝⎭()g x ∴在21e ,1⎡⎤⎢⎥⎣⎦内有零点,()g x ∴在区间(0,)+∞上存在零点.27.对于函数()f x ,若在其定义域内存在实数0x ,t ,使得()()()00f x t f x f t +=+成立,称()f x 是“t 跃点”函数,并称0x 是函数()f x 的“t 跃点”.(1)若函数()sin =-f x x m ,x ∈R 是“π2跃点”函数,求实数m 的取值范围;(2)若函数()()sin =+f x x m ,x ∈R ,求证:“sin 0=m ”是“对任意t ∈R ,()f x 为‘t 跃点’函数”的充要条件;(3)是否同时存在实数m 和正整数n 使得函数()cos 2h x x m =-在[]0,πn 上有2021个“π4跃点”?若存在,请求出所有符合条件的m 和n 的值;若不存在,请说明理由.【解析】(1)由已知得存在实数0x ,使得00ππsin sin sin 22x m x m m ⎛⎫+-=-+- ⎪⎝⎭,∴000πsin cos 1sin 1112m x x x ⎛⎫⎡⎤=-+-+∈+ ⎪⎣⎦⎝⎭,∴实数m 的取值范围是11⎡⎤⎣⎦.(2)由题意得“对任意t ∈R ,()()sin =+f x x m 为‘t 跃点’函数”等价于:对是任意实数t ,关于x 的方程()()()sin sin sin x t m x m t m ++=+++都有解,则对于0t =时有解,即()()()sin sin sin x m x m m +=++,∴sin 0=m ;反之,当sin 0=m 时,()πm k k =∈Z ,()()()sin sin sin x t m x m t m ++=+++等价于()()()sin sin sin x t x t +=+0x =是此方程的解,故此方程对于任意实数t 都有实数解.综上所述,“sin 0=m ”是“对任意t ∈R ,()f x 为‘t 跃点’函数”的充要条件;(3)由已知得,()ππππcos 2cos 2cos 04422h x h x h x m x m m ⎛⎫⎛⎫⎛⎫+--=+--+-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,化简得π24m x ⎛⎫=+ ⎪⎝⎭π24x ⎛⎫+ ⎪⎝⎭的最小正周期为π;根据函数π24y x ⎛⎫=+ ⎪⎝⎭在[]0,πn 上的图象可知:①当()(m ∈⋃时,在[]0,πn 有2n 个“π4跃点”,故不可能有2021个“π4跃点”;②当1m =时,在[]0,πn 有21n +个“π4跃点”,此时2120211010n n +=⇒=;③当m =m =[]0,πn 上有n 个“π4跃点”,故2021n =;综上:11010m n =⎧⎨=⎩或2021m n ⎧=⎪⎨=⎪⎩或2021m n ⎧=⎪⎨=⎪⎩.28.对于函数()()y f x x D =∈,若存在正常数T ,使得对任意的x D ∈,都有()()f x T f x +≥成立,我们称函数()f x 为“T 同比不减函数”.(1)判断函数2()f x x =是否为“T 同比不减函数”?并说明理由;(2)若函数()sin f x kx x =+是“π2同比不减函数”,求实数k 的取值范围;(3)是否存在正常数T ,使得函数()|1||1|f x x x x =+--+为“T 同比不减函数”?若存在,求T 的取值范围;若不存在,请说明理由.【解析】(1)依题意0T >,函数2()f x x =不是“T 同比不减函数”,理由如下:()2f x x =,()()()()22222f x T f x x T x xT T T x T +-=+-=+=+不恒大于零,所以()()f x T f x +≥不恒成立,所以函数2()f x x =不是“T 同比不减函数”.(2)函数()sin f x kx x =+是“π2同比不减函数”,()π2f x f x ⎛⎫+≥ ⎪⎝⎭恒成立,πππsin sin 222k x x k x ⎛⎫⎛⎫+++≥⋅+ ⎪ ⎪⎝⎭⎝⎭,ππ4sin cos ,π22x k x x k ⎛⎫- ⎪⎝⎭≥-≥π4x ⎛⎫-≤ ⎪⎝⎭,所以ππ2k ≥=.所以k的取值范围是π⎡⎫+∞⎪⎢⎪⎣⎭.(3)存在,理由如下:2,1()11,112,1x x f x x x x x x x x +≤-⎧⎪=+--+=--<<⎨⎪-≥⎩,画出()f x 的图象如下图所示,()f x T +的图象是由()f x 的图象向左平移T 个单位所得,由图可知,当4T ≥时,对任意的x D ∈,都有()()f x T f x +≥成立,所以存在正常数T ,使得函数()|1||1|f x x x x =+--+为“T 同比不减函数”,且4T ≥.29.若函数()y f x =自变量的取值区间为[a ,b ]时,函数值的取值区间恰为22[,]b a,就称区间[a ,b ]为()y f x =的一个“和谐区间”.已知函数()g x 是定义在R 上的奇函数,当,()0x ∈+∞时,()3g x x =-+.(1)求()g x 的解析式;(2)求函数()g x 在(0,)+∞内的“和谐区间”;(3)若以函数()g x 在定义域内所有“和谐区间”上的图像作为函数()y h x =的图像,求函数()y h x =的值域【解析】(1)因为()g x 为R 上的奇函数,则(0)0g =,设(,0)x ∈-∞,则(0,)x -∈+∞,()()(3)3g x g x x x =--=-+=--;3,0()0,03,0x x g x x x x --<⎧⎪∴==⎨⎪-+>⎩(2)设0a b <<,由()g x 在(0,)+∞上递单调递减,可得2()32()3g b b bg a a a ⎧==-+⎪⎪⎨⎪==-+⎪⎩,即,a b 是方程23x x =-+的两个不等正根.∵0a b <<∴12a b =⎧⎨=⎩∴()g x 在(0,)+∞内的“和谐区间”为[1,2].(3)设[a ,b ]为()g x 的一个“和谐区间”,则22a bb a<⎧⎪⎨<⎪⎩,∴a ,b 同号.当0a b <<时,同理可求()g x 在(,0)-∞内的“和谐区间”为[2,1]--.3,[1,2]()3,[2,1]x x h x x x -+∈⎧∴=⎨--∈--⎩,3,[1,2]()3,[2,1]x x h x x x -+∈⎧∴=⎨--∈--⎩的值域是[2,1][1,2]-- 30.对于定义域为D 的函数()y f x =,如果存在区间[],m n D ⊆,同时满足:①()f x 在[],n m 内是单调增函数;②当定义域是[],m n 时,()f x 的值域是[]2,2m n ,则称[],n m 是该函数的“翻倍区间”.(1)证明:[]1,2是函数()2xf x =的一个“翻倍区间”;(2)判断函数()3g x x =是否存在“翻倍区间”?若存在,求出所有“翻倍区间”;若不存在,请说明理由;(3)已知函数()31x h x x a-=+有“翻倍区间”[],m n ,求实数a 的取值范围.【解析】(1)证明:由函数()2xf x =在[]1,2上单调增函数知,()f x 的值域为[]2,4,故[]1,2是函数()2xf x =的一个“翻倍区间”;(2)假设()g x 存在一个“翻倍区间”[],m n ,由函数()g x 是R 上的单调增函数,有()()332,2,g m m m g n n n ⎧==⎪⎨==⎪⎩解得m =,n =由m n <知所有“翻倍区间”为][[,,⎡⎣;(3)由函数()h x 有“翻倍区间”[],m n 知,()h x 为[],m n 上的单调增函数,而()()33131313x a a x a h x x a x a x a+-----===++++,可得310a --<,解得13a >-,由②知()()312,312,m h m m m an h n n n a -⎧==⎪⎪+⎨-⎪==⎪+⎩可得m ,n 是方程312x x x a -=+的两个根,等价于方程312x x x a-=+在(,)a -∞-上有两个不等实根或者在(,)a -+∞上有两个不等实根,即方程()222310x a x +-+=在(,)a -∞-上有两个不等实根或者在(,)a -+∞上有两个不等实根,则有()()22Δ(23)803242()2310a a a a a a ⎧=-->⎪-⎪<-⎨⎪-+-⨯-+>⎪⎩或()()22Δ(23)803242()2310a a a a a a ⎧=-->⎪-⎪>-⎨⎪-+-⨯-+>⎪⎩,解得1332a -<<32a >+综上,实数a的取值范围为133(,()322-⋃+∞.31.根据人教2019版必修一P 87页的13题介绍:函数()y f x =的图象关于点(,)P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.题:设函数()39x t f x =+,且()110(1)15f f +=,(其中t 是常数),函数()243()2x x g x f x x -+=+-.(1)求t 的值,并证明()f x 是中心对称函数;(2)是否存在点A ,使得过点A 的直线若能与函数()y g x =围成两个封闭图形,则这两个封闭图形的面积总相等?若存在,求出点A 的坐标;若不存在,说明理由.【解析】(1)∵函数()39xt f x =+,且()()110115f f +=,11101215t t ∴+=,∴4t =,所以4()39x f x =+;依题假设存在点(,)P a b 使函数()y f x a b =+-为奇函数,则()()2f a x f a x b ++-=对x R ∀∈恒成立,439a x +∴+4239a x b -+=+,2211931312a x a x b -+--∴+=++,∴22223(33)9(31)(31)2a x x a x a xb ---+--++=++,∴22223(33)9193(33)2a x x a a x xb -----++=+++,22222193(33)199193(33)2a a x x a a a x xb -------⎡⎤++++-⎣⎦∴=+++,2221991193(33)2a a a x x b -----∴+=+++,对x R ∀∈恒成立,2190912a b-⎧-=⎪∴⎨=⎪⎩,22,9a b ∴==,∴对于4()39xf x =+存在22,9a b ==,使函数()y f x a b =+-为奇函数,∴4()39xf x =+是以22,9⎛⎫ ⎪⎝⎭为对称中心的中心对称函数.(2)设()2431(2)22x x N x x x x -+==----,所以()()()()111122222202222N x N x x x x x x x x x ⎛⎫++-=+--+---=-+--= ⎪+----⎝⎭即(2)(2)0N x N x ++-=,即()2432x x N x x -+=-关于()2,0对称,又()42(2)9f x f x ++-=,4(2)(2)9g x g x ∴++-=,()g x ∴的对称中心是22,9⎛⎫⎪⎝⎭,依题意,使得过点A 的直线若能与函数()y g x =围成两个封闭图形,则这两个封闭图形的面积总相等,则直线必过()y g x =的对称中心,所以所求为22,9A ⎛⎫⎪⎝⎭;32.定义:如果函数()y f x =在定义域内的给定区间[],a b 上存在0x (0a x b ≤≤),满足()()()0f b f a f x b a-=-,则称函数()y f x =为[],a b 上的“平均值函数”,0x 为它的平均值点.(1)函数2y x =是否为[]0,2上的“平均值函数”?如果是,请求出它的平均值点;如果不是,请说明理由.(2)若函数211221x x y m ++=-+⋅+是[]1,1-上的平均值函数,求实数m 的取值范围.【解析】(1)函数2y x =是[]0,2上的“平均值函数”.令()y f x =,因为()()20402202f f --==-,设0x 是它的平均值点,则有()0022f x x ==,解得01x =,[]10,2∈,故2y x =为[]0,2上的“平均值函数”,1是它的平均值点.(2)令()y f x =,()()()()()211121112212211131511224m m f f m ++-+-+-+⋅+--+⋅+--==---,设0x 是它的平均值点,则()031524f x m =-,即0021131522124x x m m ++-+⋅+=-,整理得0022122426190x x m m ++⋅-⋅+-=.令012x t +=,则[]1,4t ∈,则需方程2246190t mt m -+-=在[]1,4t ∈上有解,令()224619g t t mt m =-+-,[]1,4t ∈,()()2234426191611602m m m ⎛⎫∆=--⨯⨯-=-+> ⎪⎝⎭,①当()0g t =在[]1,4内有一个实根时,()()140g g ⋅≤,即(217)(1013)0m m --≥,解得172m ≥,或1310m ≤;②当()0g t =在[]1,4内有两个不等的实根时,需满足()()414221040m g g -⎧≤-≤⎪⨯⎪≥⎨⎪≥⎪⎩,可得141721310m m m ⎧⎪≤≤⎪⎪≥⎨⎪⎪≤⎪⎩,无解.综上,实数m 的取值范围是1317,,102⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭.。
2023年中考真题英语分项汇编专题10任务型阅读考点4综合任务(2023·山东青岛·统考中考真题)People in the countryside are used to having unexpected visitors—wild animals like frogs and snakes.But what if the visitor is an elephant?Pu Cuifen,a villager from Yunnan Province,experienced that two years ago.“I’ve only seen elephants in a zoo before,not expecting a wild elephant would appear at my doorstep,”said Pu.The elephants were harmful to no one,but had corn and beans on the farm.The villagers lost up to(A)50,000yuan.Earlier than that,villagers would drive away the elephants to protect their crops(庄稼),which made the animals angry and led to human injuries(伤害)or deaths.Now the government has helped to pay the money for the crops damaged(破坏)by elephants.Such things will help protect the interests of farmers,and at the same time avoid the wild animals being hurt by humans.The government has also created“dining halls”for the wild elephants to grow their favorite food,such as elephant grass and bamboo.Villagers now simply leave the elephants alone.“Our corn might get damaged,but we treat them with care and accept them with love.”said Pu.Yunnan Province is not the only example of protecting wild animals.In Tibet,Migmar used to be a hunter(猎人),but now has become a rescuer(营救者)at the wildlife rescue station of Qomolangma.He and his friends take turns to go around to check there’s no trouble or danger for wild animals every day.The wildlife rescue station was set up in(B)2019.From then on,they have saved(C)17wild animals.During this period,they learned to bandage the animals and clean their wounds,and set them free into the wild when they got well again.“Animals don’t talk, but I can feel their trust.We have the responsibility to protect them,”said Migmar.Examples of taking care of wild animals appear more around us.From damage to protection,people see more changing human-wildlife relations.Even the simplest change and action can make a difference to the world. 1.What does“that”refer to(指的是)in Paragraph Two?2.Which sentence in the passage has the similar meaning to the following one?The elephants didn’t hurt anyone,but only ate some farm plants in the field.3.Why did the government create“dining halls”for the wild elephants?4.How did Migmar and his friends save wild animals?5.Ask ONE question about one of the following numbers from the passage.(A)50,000(B)2019(C)176.What do the two examples have in common?(2023·山东青岛·统考中考真题)Chinese writing has a history of six or seven thousand years.Calligraphy(书法),the art of writing,is almost as old as writing itself.In ancient times,written Chinese was first symbols and pictures.Then,they gradually became characters. Later,characters and even full sentences were written on animal bones or shells for communication.With time passing by,a number of written forms appeared.Each had its own local style.In the3rd century BC, the First Emperor,Qinshihuang,set the same standard for the written characters—“small seal”script.It was first used in his own state of Qin,then in the whole nation.That writing system was very important in uniting(联合)the Chinese people and culture.At the same time,Cheng Miao developed another style called“clerical”script.It used short,straight brush strokes(笔画)to write quickly.By Han times,calligraphers had created a new style known as “regular”script.From the Tang Dynasty,it became the standard form used in government exams.Over the centuries,Chinese artists and people with knowledge saw beauty in the forms of their written language.They turned calligraphy into one of the fine arts,in which calligraphers expressed themselves.In theTang Dynasty,calligraphy was helpful for a person to get a place in the government.The tools of calligraphy were simple enough.What we needed were the Four Treasures of the study:a brush, ink(墨),an ink stone and a writing surface.Students of calligraphy practiced the main types of script and improved their skills by copying the works of past masters.With the increase of their knowledge and practice,they slowly developed their own styles.The art of calligraphy reached a high point in the4th century.At that time,calligrapher Wang Xizhi was often regarded as the greatest master.Calligraphy remains a living art form to this day.It has become part of the school courses to pass on the Chinese culture.7.What is the Chinese meaning of“characters”in Paragraph Two?8.Why did the writer mention Emperor Qinshihuang in the passage?9.What is the main idea of Paragraph Two?10.根据短文内容填空。
新定义与阅读理解创新型问题(31题)一、单选题1(2023·湖北武汉·统考中考真题)皮克定理是格点几何学中的一个重要定理,它揭示了以格点为顶点的多边形的面积S=N+12L-1,其中N,L分别表示这个多边形内部与边界上的格点个数.在平面直角坐标系中,横、纵坐标都是整数的点为格点.已知A0,30,B20,10,O0,0,则△ABO内部的格点个数是()A.266B.270C.271D.285【答案】C【分析】首先根据题意画出图形,然后求出△ABO的面积和边界上的格点个数,然后代入求解即可.【详解】如图所示,∵A0,30,B20,10,O0,0,∴S△ABO=12×30×20=300,∵OA上有31个格点,OB上的格点有2,1,4,2,6,3,8,4,10,5,12,6,14,7,16,8,18,9,20,10,共10个格点,AB上的格点有1,29,2,28,3,27,4,26,5,25,6,24,7,23,8,22,9,21,10,20,11,19,12,18,13,17,16,14,15,15,16,14,17,13,18,12,19,11,共19个格点,∴边界上的格点个数L=31+10+19=60,∵S=N+12L-1,∴300=N+12×60-1,∴解得N=271.∴△ABO内部的格点个数是271.故选:C.【点睛】本题主要考查了坐标与图形的性质,解决问题的关键是掌握数形结合的数学思想.2(2023·湖南张家界·统考中考真题)“莱洛三角形”也称为圆弧三角形,它是工业生产中广泛使用的一种图形.如图,分别以等边△ABC的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的封闭图形是“莱洛三角形”.若等边△ABC的边长为3,则该“莱洛三角形”的周长等于()A.πB.3πC.2πD.2π-3【答案】B【分析】根据等边三角形的性质及弧长公式l =n πr180求解即可.【详解】解:∵等边三角形ABC 的边长为3,∠ABC =∠ACB =∠BAC =60°,∴AB =BC =AC =60π⋅3180=π,∴该“莱洛三角形”的周长=3×π=3π,故选:B .【点睛】本题考查了等边三角形的性质,弧长公式,熟练掌握等边三角形的性质和弧长公式是解题的关键.3(2023·重庆·统考中考真题)在多项式x -y -z -m -n (其中x >y >z >m >n )中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x -y -|z -m |-n =x -y -z +m -n ,x -y -z -m -n =x -y -z -m +n ,⋯.下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0 B.1C.2D.3【答案】C【分析】根据给定的定义,举出符合条件的说法①和②.说法③需要对绝对操作分析添加一个和两个绝对值的情况,并将结果进行比较排除相等的结果,汇总得出答案.【详解】解:x -y -z -m -n =x -y -z -m -n ,故说法①正确.若使其运算结果与原多项式之和为0,必须出现-x ,显然无论怎么添加绝对值,都无法使x 的符号为负,故说法②正确.当添加一个绝对值时,共有4种情况,分别是x -y -z -m -n =x -y -z -m -n ;x -y -z -m -n =x -y +z -m -n ;x -y -|z -m |-n =x -y -z +m -n ;x -y -z -m -n =x -y -z -m +n .当添加两个绝对值时,共有3种情况,分别是x -y -z -m -n =x -y -z +m -n ;x -y -z -m -n =x -y -z -m +n ;x -y -z -m -n =x -y +z -m +n .共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C .【点睛】本题考查新定义题型,根据多给的定义,举出符合条件的代数式进行情况讨论;需要注意去绝对值时的符号,和所有结果可能的比较.主要考查绝对值计算和分类讨论思想的应用.4(2023·湖南岳阳·统考中考真题)若一个点的坐标满足k ,2k ,我们将这样的点定义为“倍值点”.若关于x 的二次函数y =t +1 x 2+t +2 x +s (s ,t 为常数,t ≠-1)总有两个不同的倍值点,则s 的取值范围是()A.s<-1B.s<0C.0<s<1D.-1<s<0【答案】D【分析】利用“倍值点”的定义得到方程t+1x2+tx+s=0,则方程的Δ>0,可得t2-4ts-4s>0,利用对于任意的实数s总成立,可得不等式的判别式小于0,解不等式可得出s的取值范围.【详解】解:由“倍值点”的定义可得:2x=t+1x2+t+2x+s,整理得,t+1x2+tx+s=0∵关于x的二次函数y=t+1x2+t+2x+s(s,t为常数,t≠-1)总有两个不同的倍值点,∴Δ=t2-4t+1s=t2-4ts-4s>0,∵对于任意实数s总成立,∴-4s2-4×-4s<0,整理得,16s2+16s<0,∴s2+s<0,∴s s+1<0,∴s<0s+1>0,或s>0s+1<0,当s<0s+1>0时,解得-1<s<0,当s>0s+1<0时,此不等式组无解,∴-1<s<0,故选:D.【点睛】本题主要考查了二次函数图象上点的坐标特征,一元二次方程根的判别式以及二次函数与不等式的关系,理解新定义并能熟练运用是解答本题的关键.5(2023·山东·统考中考真题)若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:A(1, 3),B(-2,-6),C(0,0)等都是三倍点”,在-3<x<1的范围内,若二次函数y=-x2-x+c的图象上至少存在一个“三倍点”,则c的取值范围是()A.-14≤c<1 B.-4≤c<-3 C.-14<c<5 D.-4≤c<5【答案】D【分析】由题意可得:三倍点所在的直线为y=3x,根据二次函数y=-x2-x+c的图象上至少存在一个“三倍点”转化为y=-x2-x+c和y=3x至少有一个交点,求Δ≥0,再根据x=-3和x=1时两个函数值大小即可求出.【详解】解:由题意可得:三倍点所在的直线为y=3x,在-3<x<1的范围内,二次函数y=-x2-x+c的图象上至少存在一个“三倍点”,即在-3<x<1的范围内,y=-x2-x+c和y=3x至少有一个交点,令3x=-x2-x+c,整理得:-x2-4x+c=0,则Δ=b2-4ac=-42-4×-1×c=16+4c≥0,解得c≥-4,x=--4±-42-4×-1c2×-1=-4±16+4c2,∴x1=-2+4+c,x2=-2-4+c∴-3<-2+4+c<1或-3<-2-4+c<1当-3<-2+4+c <1时,-1<4+c <3,即0≤4+c <3,解得-4≤c <5,当-3<-2-4+c <1时,-3<4+c <1,即0≤4+c <1,解得-4≤c <-3,综上,c 的取值范围是-4≤c <5,故选:D .【点睛】本题考查二次函数与一次函数交点问题,熟练掌握相关性质是关键.6(2023·福建·统考中考真题)我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416.如图,⊙O 的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计⊙O 的面积,可得π的估计值为332,若用圆内接正十二边形作近似估计,可得π的估计值为()A.3B.22C.3D.23【答案】C【分析】根据圆内接正多边形的性质可得∠AOB =30°,根据30度的作对的直角边是斜边的一半可得BC=12,根据三角形的面积公式即可求得正十二边形的面积,即可求解.【详解】解:圆的内接正十二边形的面积可以看成12个全等的等腰三角形组成,故等腰三角形的顶角为30°,设圆的半径为1,如图为其中一个等腰三角形OAB ,过点B 作BC ⊥OA 交OA 于点于点C ,∵∠AOB =30°,∴BC =12OB =12,则S △OAB =12×1×12=14,故正十二边形的面积为12S △OAB =12×14=3,圆的面积为π×1×1=3,用圆内接正十二边形面积近似估计⊙O 的面积可得π=3,故选:C .【点睛】本题考查了圆内接正多边形的性质,30度的作对的直角边是斜边的一半,三角形的面积公式,圆的面积公式等,正确求出正十二边形的面积是解题的关键.二、填空题7(2023·甘肃武威·统考中考真题)如图1,我国是世界上最早制造使用水车的国家.1556年兰州人段续的第一架水车创制成功后,黄河两岸人民纷纷仿制,车水灌田,水渠纵横,沃土繁丰.而今,兰州水车博览园是百里黄河风情线上的标志性景观,是兰州“水车之都”的象征.如图2是水车舀水灌溉示意图,水车轮的辐条(圆的半径)OA 长约为6米,辐条尽头装有刮板,刮板间安装有等距斜挂的长方体形状的水斗,当水流冲动水车轮刮板时,驱使水车徐徐转动,水斗依次舀满河水在点A 处离开水面,逆时针旋转150°上升至轮子上方B 处,斗口开始翻转向下,将水倾入木槽,由木槽导入水渠,进而灌溉,那么水斗从A 处(舀水)转动到B 处(倒水)所经过的路程是米.(结果保留π)【答案】5π【分析】把半径和圆心角代入弧长公式即可;【详解】l =n πr 180=150×π×6180=5π故填:5π.【点睛】本题考查弧长公式的应用,准确记忆公式,并正确代入公式是解题的关键.8(2023·湖北随州·统考中考真题)某天老师给同学们出了一道趣味数学题:设有编号为1-100的100盏灯,分别对应着编号为1-100的100个开关,灯分为“亮”和“不亮”两种状态,每按一次开关改变一次相对应编号的灯的状态,所有灯的初始状态为“不亮”.现有100个人,第1个人把所有编号是1的整数倍的开关按一次,第2个人把所有编号是2的整数倍的开关按一次,第3个人把所有编号是3的整数倍的开关按一次,⋯⋯,第100个人把所有编号是100的整数倍的开关按一次.问最终状态为“亮”的灯共有多少盏?几位同学对该问题展开了讨论:甲:应分析每个开关被按的次数找出规律:乙:1号开关只被第1个人按了1次,2号开关被第1个人和第2个人共按了2次,3号开关被第1个人和第3个人共按了2次,⋯⋯丙:只有按了奇数次的开关所对应的灯最终是“亮”的状态.根据以上同学的思维过程,可以得出最终状态为“亮”的灯共有盏.【答案】10【分析】灯的初始状态为“不亮”,按奇数次,则状态为“亮”,按偶数次,则状态为“不亮”,确定1-100中,各个数因数的个数,完全平方数的因数为奇数个,从而求解.【详解】所有灯的初始状态为“不亮”,按奇数次,则状态为“亮”,按偶数次,则状态为“不亮”;因数的个数为奇数的自然数只有完全平方数,1-100中,完全平方数为1,4,9,16,25,36,49,64,81,100;有10个数,故有10盏灯被按奇数次,为“亮”的状态;故答案为:10.【点睛】本题考查因数分解,完全平方数,理解因数的意义,完全平方数的概念是解题的关键.9(2023·湖南常德·统考中考真题)沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图.AB是以O 为圆心,OA 为半径的圆弧,C 是弦AB 的中点,D 在AB上,CD ⊥AB .“会圆术”给出AB 长l 的近似值s 计算公式:s =AB +CD 2OA,当OA =2,∠AOB =90°时,l -s =.(结果保留一位小数)【答案】0.1【分析】由已知求得AB 与CD 的值,代入s =AB +CD 2OA得弧长的近似值,利用弧长公式可求弧长的值,进而即可得解.【详解】∵OA =OB =2,∠AOB =90°,∴AB =22,∵C 是弦AB 的中点,D 在AB上,CD ⊥AB ,∴延长DC 可得O 在DC 上,OC =12AB =2∴CD =OD -OC =2-2,∴s =AB +CD 2OA=22+2-2 22=3,l =90×2×2π360=π,∴l -s =π-3 ≈0.1.故答案为:0.1.【点睛】本题考查扇形的弧长,掌握垂径定理。
中考数学复习《新定义及阅读理解型问题》测试题(含答案)题型解读1.考查题型:①新定义计算型;②阅读理解型;③新定义与阅读理解结合题. 2.考查内容:①新定义下的实数运算;②涉及“新定义”的阅读理解及材料分析;③与函数、多边形、圆结合,通过材料或定义进行相关证明或计算.3.在做此类题型时,首先要理解新定义的运算方式,提升从材料阅读中提取信息的能力,结合已知条件中的推理方法,学以致用,便可得以解决.1.对于实数a ,b ,定义一种新运算“⊗”为:a ⊗b =1a -b 2,这里等式右边是实数运算.例如:1⊗3=11-32=-18,则方程x ⊗(-2)=2x -4-1的解是( ) A . x =4 B . x =5 C . x =6 D . x =72.对于实数a 、b ,我们定义符号max {a ,b}的意义为:当a≥b 时,max {a ,b}=a ;当a <b 时,max {a ,b}=b ;如max {4,-2}=4,max {3,3}=3.若关于x 的函数为y =max {x +3,-x +1},则该函数的最小值是( )A . 0B . 2C . 3D . 43.我们根据指数运算,得出了一种新的运算,下表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log 216=4,②log 525=5,③log 212=-1.其中正确的是( )A . ①②B . ①③C . ②③D . ①②③4.设a ,b 是实数,定义关于@的一种运算如下:a@b =(a +b)2-(a -b)2,则下列结论:( ) ①若a@b =0,则a =0或b =0; ②a@(b +c)=a@b +a@c ;③不存在实数a ,b ,满足a@b =a 2+5b 2;④设a ,b 是矩形的长和宽,若该矩形的周长固定,则当a =b 时,a@b 的值最大. 其中正确的是( )A . ②③④B . ①③④C . ①②④D . ①②③5.对于实数a ,b ,定义运算“*”:a*b =⎩⎪⎨⎪⎧a 2-ab (a≥b)a -b (a<b ),例如:因为 4>2,所以4*2=42-4×2=8,则(-3)*(-2)=________.6.规定:log a b(a>0,a ≠1,b>0)表示a ,b 之间的一种运算. 现有如下的运算法则:log a a n=n ,log N M =log a Mlog a N(a>0,a ≠1,N>0,N ≠1,M>0), 例如:log 223=3,log 25=log 105log 102,则log 1001000=________.第7题图7.实数a ,n ,m ,b 满足a<n<m<b ,这四个数在数轴上对应的点分别是A ,N ,M ,B(如图).若AM 2=BM·AB,BN 2=AN·AB,则称m 为a ,b 的“黄金大数”,n 为a ,b 的“黄金小数”,当b -a =2时,a ,b 的黄金大数与黄金小数之差m -n =________. 8.请阅读下列材料,并完成相应的任务: 阿基米德折弦定理阿基米德(Archimedes ,公元前287~公元前212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.阿拉伯Al -Biruni(973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al -Biruni 译本出版了俄文版《阿基米德全集》,第一题就是阿基米德折弦定理. 阿基米德折弦定理:如图①,AB 和BC 是⊙O 的两条弦(即折线ABC 是圆的一条折弦),BC>AB ,M 是ABC ︵的中点,则从M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD =AB +BD.下面是运用“截长法”证明CD =AB +BD 的部分证明过程.证明:如图②,在CB 上截取CG =AB ,连接MA ,MB ,MC 和MG. ∵M 是ABC ︵的中点, ∴MA =MC. …图① 图②任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图③,已知等边△ABC 内接于⊙O,AB =2,D 为AC ︵上一点,∠ABD =45°,AE ⊥BD 于点E ,则△BDC 的周长是________.图③9.如果三角形三边的长a 、b 、c 满足a +b +c3=b ,那么我们就把这样的三角形叫做“匀称三角形”.如:三边长分别为1,1,1或3,5,7,…的三角形都是“匀称三角形”.(1)如图①,已知两条线段的长分别为a 、c(a<c),用直尺和圆规作一个最短边、最长边的长分别为a 、c 的“匀称三角形”(不写作法,保留作图痕迹);(2)如图②,△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作⊙O 的切线交AB 延长线于点E ,交AC 于点F.若BE CF =53,判断△AEF 是否为“匀称三角形”?请说明理由.10.我们知道,任意一个正整数n 都可以进行这样的分解:n =p×q(p,q 是正整数,且p≤q),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p×q 是n 的最佳分解,并规定:F(n)=pq .例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F(12)=34. (1)如果一个正整数a 是另外一个正整数b 的平方,我们称正整数a 是完全平方数.求证:对任意一个完全平方数m ,总有F(m)=1;(2)如果一个两位正整数t ,t =10x +y(1≤x≤y≤9,x ,y 是自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t 为“吉祥数”.求所有“吉祥数”中F(t)的最大值.11.已知点P(x 0,y 0)和直线y =kx +b ,则点P 到直线y =kx +b 的距离d 可用公式d =|kx 0-y 0+b|1+k 2计算. 例如:求点P(-1,2)到直线y =3x +7的距离. 解:因为直线y =3x +7,其中k =3,b =7,所以点P(-1,2)到直线y =3x +7的距离为d =|kx 0-y 0+b|1+k 2=|3×(-1)-2+7|1+32=210=105. 根据以上材料,解答下列问题:(1)求点P(1,-1)到直线y =x -1的距离;(2)已知⊙Q 的圆心Q 坐标为(0,5),半径r 为2,判断⊙Q 与直线y =3x +9的位置关系并说明理由; (3)已知直线y =-2x +4与y =-2x -6平行,求这两条直线之间的距离.12.【图形定义】如图,将正n 边形绕点A 顺时针旋转60°后,发现旋转前后两图形有另一交点O ,连接AO ,我们称AO 为“叠弦”;再将“叠弦”AO 所在的直线绕点A 逆时针旋转60°后,交旋转前的图形于点P ,连接PO ,我们称∠OAB 为“叠弦角”,△AOP 为“叠弦三角形”. 【探究证明】(1)请在图①和图②中选择其中一个证明:“叠弦三角形”(即△AOP)是等边三角形; (2)如图②,求证:∠OAB=∠OAE′. 【归纳猜想】(3)图①、图②中“叠弦角”的度数分别为__________,__________; (4)图中,“叠弦三角形”__________等边三角形(填“是”或“不是”); (5)图中,“叠弦角”的度数为__________(用含n 的式子表示).13.若抛物线L :y =ax 2+bx +c(a ,b ,c 是常数,abc ≠0)与直线l 都经过y 轴上的一点P ,且抛物线L 的顶点Q 在直线l 上,则称此直线l 与该抛物线L 具有“一带一路”关系.此时直线l 叫做抛物线L 的“带线”,抛物线L 叫做直线l 的“路线”.(1)若直线y =mx +1与抛物线y =x 2-2x +n 具有“一带一路”关系,求m ,n 的值;(2)若某“路线”L 的顶点在反比例函数y =6x 的图象上,它的“带线”l 的解析式为y =2x -4,求此“路线”L 的解析式;(3)当常数k 满足12≤k≤2时,求抛物线L :y =ax 2+(3k 2-2k +1)x +k 的“带线”l 与x 轴,y 轴所围成的三角形面积的取值范围.1. B 【解析】根据题意a ⊗b =1a -b 2,则 x ⊗(-2)=1x -(-2)2=1x -4,又∵x ⊗(-2)=2x -4-1,∴1x -4=2x -4-1,解得x =5,经检验x =5是原方程的根,∴原方程x ⊗(-2)=2x -4-1的解是x =5. 2. B 【解析】当x +3≥-x +1时,max{x +3,-x +1}=x +3,此时x ≥-1,∴y ≥2;当x +3<-x +1时,max{x +3,-x +1}=-x +1,此时x <-1,∴y >2.综上y 的最小值为2.3. B 【解析】①∵24=16,∴log 216=4,故①正确;②∵52=25,∴log 525=2,故②不正确;③∵2-1=12,∴log 212=-1,故③正确. 4. C 【解析】∵a @b =(a +b )2-(a -b )2,若a @b =0,则(a +b )2-(a -b )2=0,∴(a +b )2=(a -b )2, ∴a +b =±(a -b ),∴a =0或b =0,∴①正确;∵a @b =(a +b )2-(a -b )2,∴a @(b +c )=[a +(b +c )]2-[a -(b +c )]2=[a +(b +c )+a -(b +c )][a +(b +c )-(a -b -c )]=4ab +4ac ,∵a @b +a @c =(a +b )2-(a -b )2+(a +c )2-(a -c )2=a 2+2ab +b 2-a 2+2ab -b 2+a 2+2ac +c 2- a 2+2ac -c 2=4ab +4ac ,∴a @(b +c )=a @b +a @c ,∴②正确;∵a @b =(a +b )2-(a -b )2= a 2+2ab +b 2-a 2+2ab -b 2=4ab ,当a =b =0时,满足a @b =a 2+5b 2,∴③错误;若矩形的周长固定,设为2c ,则2c =2a +2b ,b =c -a ,a @b =(a +b )2-(a -b )2=4ab =4a (c -a )=-4(a -12c )2+c 2,∴当a =12c 时,4ab 有最大值是c 2,即a =b 时,a @b 的值最大,∴④正确.综上,正确结论有①②④.5. -1 【解析】根据新定义,当a<b 时,a*b =a -b 列出常规运算,进行计算便可.∵-3<-2,∴由定义可知,原式=-3-(-2)=-1.6. 32 【解析】根据新运算法则,得log 1001000=log 101000log 10100=log 10103log 10102=32. 7. 25-4 【解析】设AN =y ,MN =x ,由题意可知:AM 2=BM ·AB ,∴(x +y)2=2(2-x -y),解得x +y =5-1(取正),又BN 2=AN·AB ,∴(2-y)2=2y ,解得y =3-5(y <2),∴m -n =MN =x =5-1-(3-5)=25-4,故填25-4.8. 解:(1)又∵∠A =∠C ,CG =AB. ∴△MBA ≌△MGC(SAS ),∴MB =MG . 又∵MD ⊥BC , ∴BD =GD ,∴CD =CG +GD =AB +BD. (2)2+2 2.【解法提示】折线BDC 为⊙O 的一条折弦,由题意知A 为BDC ︵中点,由材料中折弦定理易得BE =DE +CD ,在Rt △ABE 中可得BE =2,所以△BCD 周长为BC +CD +DE +BE =2+2 2.9. 解:(1)作图如解图①.第9题解图①(2)△AEF是“匀称三角形”.理由如下:如解图②,第9题解图②连接AD、OD,∵AB是⊙O直径,∴AD⊥BC,∵AB=AC,∴D是BC中点,∵O是AB中点,∴OD是△ABC的中位线,∴OD∥AC.∵DF切⊙O于D点,∴OD⊥DF,∴EF⊥AF,过点B作BG⊥EF于点G,易证Rt△BDG≌Rt△CDF(AAS),∴BG=CF,∵BECF=53,∴BEBG=53,∵BG∥AF(或Rt△BEG∽Rt△AEF),∴BEBG=AEAF=53.在Rt△AEF中,设AE=5k,则AF=3k,由勾股定理得,EF=4k,∴AF+EF+AE3=3k+4k+5k3=4k=EF,∴△AEF是“匀称三角形”.10. (1)证明:∵m是一个完全平方数,∴m=p×q,当p=q时,p×q就是m的最佳分解,∴F(m)=pq=pp=1.(2)解:由题意得,(10y+x)-(10x+y)=18,得y=x+2(y≤9),∴t=10x+y=10x+x+2=11x+2(1≤x≤7),则所有的“吉祥数”为:13,24,35,46,57,68,79共7个,∵13=1×13,24=1×24=2×12=3×8=4×6,35=1×35=5×7,46=1×46=2×23,57=1×57,68=1×68=2×34=4×17,79=1×79,∴F(13)=113,F(24)=46=23,F(35)=57,F(46)=223,F(57)=157,F(68)=417,F(79)=179,∴“吉祥数”中F(t)的最大值为:F(35)=57.11. 解:(1)∵直线y =x -1,其中k =1,b =-1, ∴点P(1,-1)到直线y =x -1的距离为: d =|kx 0-y 0+b|1+k 2=|1-(-1)-1|1+12=12=22.(2)相切.理由如下:∵直线y =3x +9,其中k =3,b =9,∴圆心Q(0,5)到直线y =3x +9的距离为d =|kx 0-y 0+b|1+k 2=|3×0-5+9|1+(3)2=42=2,又∵⊙Q 的半径r 为2,∴⊙Q 与直线y =3x +9的位置关系为相切.(3)在直线y =-2x +4上任意取一点P , 当x =0时,y =4, ∴P(0,4),∵直线y =-2x -6,其中k =-2,b =-6,∴点P(0,4)到直线y =-2x -6的距离为d =|kx 0-y 0+b|1+k 2=|-2×0-4-6|1+(-2)2=105=25,∴这两条直线之间的距离为2 5.12. (1)选择图①.证明:依题意得∠DAD′=60°,∠PAO =60°. ∵∠DAP =∠DAD′-∠PAD′=60°-∠PAD′,∠D ′AO =∠PAO -∠PAD ′=60°-∠PAD′, ∴∠DAP =∠D′AO.∵∠D =∠D′,AD =AD′, ∴△DAP ≌△D ′AO(ASA ), ∴AP =AO , 又∵∠PAO =60°,∴△AOP 是等边三角形. 选择图②.证明:依题意得∠EAE′=60°,∠PAO =60°. ∵∠EAP =∠EAE′-∠PAE′=60°-∠PAE′, ∠E ′AO =∠PAO -∠PAE′=60°-∠PAE′, ∴∠EAP =∠E′AO(ASA ). ∵∠E =∠E′,AE =AE′, ∴△EAP ≌△E ′AO , ∴AP =AO , 又∵∠PAO =60°, ∴△AOP 是等边三角形.第12题解图(2)证明:如解图,连接AC ,AD ′,CD ′. ∵AE ′=AB ,∠E′=∠B =180°×(5-2)5=108°,E ′D ′=BC ,∴△AE ′D ′≌△ABC(SAS ),∴AD ′=AC ,∠AD ′E ′=∠ACB , ∴∠AD ′C =∠ACD′, ∴∠OD ′C =∠OCD′, ∴OC =OD′,∴BC -OC =E′D′-OD′,即BO =E′O. ∵AB =AE′,∠B =∠E′, ∴△ABO ≌△AE ′O(SAS ), ∴∠OAB =∠OAE′. (3)15°,24°.【解法提示】∵由(1)得,在图①中,△AOP 是等边三角形, ∴∠DAP +∠OAB =90°-60°=30°, 在△OAB 和△OAD′中,⎩⎪⎨⎪⎧OA =OABA =D′A, ∴△ABO ≌△AD ′O(HL ), ∴∠OAB =∠D′AO , 由(1)知∠D′AO =∠DAP , ∴∠OAB =∠DAP , ∴∠OAB =12×30°=15°;∵由(1)得,在图②中,△PAO 为等边三角形, ∴∠PAE +∠BAO =∠EAB -∠PAO ,∵∠EAB=15×180°×(5-2)=108°,∴∠PAE+∠BAO=48°,同理可证得∠OAB=∠PAE,∴∠OAB=12×48°=24°.(4)是.【解法提示】由(1)(2)可知,“叠弦”AO所在的直线绕点A逆时针旋转60°后,AO=AP,且∠PAO =60°,故△AOP是等边三角形.(5)60°-180°n(n≥3).【解法提示】由(1)(2)(3)可知,“叠弦角”的度数为正n边形的内角度数减去60°之后再除以2,即∠OAB=180°(n-2)n-60°2,化简得∠OAB=60°-180°n(n≥3).13. 解:(1)由题意得n=1,∴抛物线y=x2-2x+1=(x-1)2,顶点为Q(1,0),将(1,0)代入y=mx+1,得m=-1,∴m=-1,n=1.(2)由题意设“路线”L的解析式为y=a(x-h)2+k,∵顶点Q的坐标在y=6x和y=2x-4上,∴⎩⎪⎨⎪⎧k=6hk=2h-4,解得h=-1或3,∴顶点Q的坐标为(-1,-6)或(3,2),∴y=a(x+1)2-6或y=a(x-3)2+2,又∵“路线”L过P(0,-4),代入解得a=2(顶点为(-1,-6)),a=-23(顶点为(3,2)),∴y=2(x+1)2-6或y=-23(x-3)2+2,即y=2x2+4x-4或y=-23x2+4x-4.(3)由题可知抛物线顶点坐标为(-3k2-2k+12a,4ak-(3k2-2k+1)24a),设带线l:y=px+k,代入顶点坐标得p=3k2-2k+12,11 ∴y =3k 2-2k +12x +k , 令y =0,则带线l 交x 轴于点(-2k 3k 2-2k +1,0),令x =0,则带线l 交y 轴于点(0,k), ∵k ≥12>0, ∴3k 2-2k +1=3(k -13)2+23>0, ∴带线l 与坐标轴围成三角形面积为S =12·2k 3k 2-2k +1·k =k 23k 2-2k +1=11k 2-2·1k +3, 令t =1k ,∵12≤k ≤2,∴12≤t ≤2,∴S =1t 2-2t +3,∴1S =t 2-2t +3=(t -1)2+2,故当t =2时,(1S )max =3;当t =1时,(1S )min =2.∴13≤S ≤12.。
材料阅读题、新定义专题(1)1、定义一种新的运算a ﹠b=a b ,如2﹠3=23=8,那么试求(3﹠2)﹠2= .2、定义运算a ⊗b =a (1﹣b ),下列给出了关于这种运算的几点结论:①2⊗(﹣2)=6;②a ⊗b =b ⊗a ;③若a +b =0,则(a ⊗b )+(b ⊗a )=2ab ; ④若a ⊗b =0,则a =0.其中正确结论序号是 .3、对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[]12.1=,[]33=,[]35.2-=-,若5104=⎥⎦⎤⎢⎣⎡+x ,则x 的取值可以是( ). A.40 B.45 C.51 D.564、将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成a b c d,定义a b c d ad bc =-,上述记号就叫做2阶行列式.若1111x x x x +--+ 6=,则x =__________.5、读一读:式子“1+2+3+4+…+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为 ,这里“∑”是求和符号,通过对以上材料的阅读,计算 =______.6、定义新运算:对于任意实数a ,b ,都有a ⊕b =a (a -b )+1,等式右边是通常的加法、减法及乘法运算,比如: 2⊕5=2⨯(2-5)+1=2⨯(-3)+1=-5(1)求(-2)⊕3的值(2)若3⊕x 的值小于13,求x 的取值范围,并在数轴上表示出来.7.在△ABC中,P是AB上的动点(P异于A,B),过点P的一条直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线.如图,∠A=36°,AB=AC,当点P在AC的垂直平分线上时,过点P的△ABC 的相似线最多有条.8.在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为“梦之点”.例如点(-1,-1),(0,0),,…都是“梦之点”,显然,这样的“梦之点”有无数个。
阅读理解看得懂的问题,请仔细看;看不懂的问题,请硬着头皮看。
阅读:要理解新定义,不允许一知半解就解题转化:把它转化为熟悉的相关数学知识解决1. 我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称正方形、长方形、直角梯形(任选两个均可);(2)如图1,已知格点(小正方形的顶点)O (0,0),A (3,0),B (0,4),请你画出以格点为顶点,OA ,OB 为勾股边且对角线相等的勾股四边形OAMB ;(3)如图2,将△ABC 绕顶点B 按顺时针方向旋转60°,得到△DBE ,连接AD ,DC ,∠DCB=30度.求证:DC 2+BC 2=AC 2,即四边形ABCD 是勾股四边形.2.阅读下面的情景对话,然后解答问题老师:我们新定义一种多边形:把一个n (n 为大于等于3的整数)边形的内角及外角从小到大分别排序后,若按这个顺序得到的n 个内角的比与n 个外角的比相等,则这个多边形叫做内外等比多边形(说明:每个顶点处只取一个外角)小华:平行四边形一定是内外等比四边形 小明:三角形有内外等比三角形吗?哪些三角形是呢? (1)根据“内外等比多边形的定义”,请你判断小华的命题的真假,并说明理由(2)已知内外等比四边形ABCD 的四个内角分别是∠1、∠2、∠3、∠4,∠1:∠2:∠3:∠4=()d c b a d c b a ≤≤≤:::,请探索a 、b 、c 、d 之间的关系,并说明理由。
(3)请回答小明问题:“三角形有内外等比三角形吗?哪些三角形是呢?”,并说明理由。
3.通过学习勾股定理的逆定理,我们知道在一个三角形中,如果两边的平方和等于第三边的平方,那么这个三角形为直角三角形。
类似的,我们定义:对于任意三角形,设其三个内角的度数分别为 x 、 y 和z ,若满足222z y x =+,则称这个三角形为勾股三角形(1)根据“勾股三角形”的定义,请你直接判断:“直角三角形是勾股三角形”是真命题还是假命题? (2)若某一勾股三角形的内角度数分别为 x 、 y 和 z ,且z y x <<,,2160=xy 求y x +的值 (3)已知△ABC 中,AB=6,AC=1+3,BC=2,求证:△ABC 是勾股三角形4.探究问题:(1)阅读理解:①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离;②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB•CD+BC•DA=AC•BD.此为托勒密定理;(2)知识迁移:①请你利用托勒密定理,解决如下问题:如图(C),已知点P为等边△ABC外接圆的BC弧上任意一点.求证:PB+PC=PA;②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法:第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆;第二步:在BC弧上任取一点P′,连接P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+;第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段的长度即为△ABC的费马距离.(3)知识应用:2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值.5.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V )、面数(F )、棱数(E )之间存在的一个有趣的关系式,被称为欧拉公式。
新定义与阅读理解问题一、单选题A.1B.4C.6D()(A.113︒B.92二、填空题16.定义一种新的运算:a☆三、解答题17.若定义一种运算:a b∆()(32-=--+⨯-2Δ32(3)23参考答案:1.A【分析】本题考查了有理数的混合运算,理解题中的新定义是解此类题的关键.根据题中的新定义计算即可求出4-※2的值.【详解】解:根据新定义得:4-※22422=-⨯+84=-+4=-,故选:A 2.B【分析】本题考查了新运算,解一元一次方程,掌握新运算正确计算是解题的关键,根据()310312x ⎡⎤+⨯=⎣⎦★,()336x +⨯=-解方程即可.【详解】解:根据新定义得()31012x =★★()310312x ⎡⎤+⨯=⎣⎦★()3104x +=★()36x =-★()336x +⨯=-5x =-故选:B 3.D【分析】据提供的“F ”运算,对正整数n 分情况(奇数、偶数)循环计算,由于449n =为奇数应先进行F ①运算,发现从第4次运算结果开始循环,且奇数次运算的结果为8,偶数次为1,而第201次是奇数,这样循环计算一直到第201次“F ”运算,得到的结果为8.本题主要考查了新定义运算,有理数的混合运算.熟练掌握“F ”运算法则,找到结果存在的规律,根据有理数的混合运算求出答案,是解题的关键.【详解】解:第一次:344951352⨯+=,故选:A.8.C【分析】本题主要考查了等腰三角形的性质、相似三角形的性质等知识带你,由10.12x =,22x =-【分析】本题考查有理数的混合运算,新定义问题,根据已知公式得出24420x +=,解之可得答案.【详解】解:420x ⊗= ,24420x ∴+=,即2416x =,解得:12x =,22x =-.故答案为:122,2x x ==-.11.5【分析】此题考查了解一元一次方程和平方根解方程.根据题中的新定义分两种情况化简已知等式,求出x 的值即可.【详解】解:当4x ≥时,则1629x +=,解得13x =,不符合题意;当4x <时,则2429x +=,解得15=x ,25x =-(舍去),综上,x 的值为5.故答案为:5.12.3-【分析】本题考查了一次函数图象上点的坐标特征,根据“衍生函数”的定义,找出一次函数21y x =-+的“衍生函数”是解题的关键.【详解】解:由定义知,一次函数21y x =-+的“衍生函数”为()()210210x x y x x ⎧-+≥⎪=⎨+<⎪⎩,∵点()2,P m -在一次函数的“衍生函数”图象上,20x =-<,∴()2213m =⨯-+=-.故答案为:3-.13.1【分析】本题考查了解一元一次方程.理解题意,正确的列一元一次方程是解题的关键.由题意知,()3434341a =⨯+++※,3420=※,即()3434120a ⨯+++=,计算求解即可.【详解】解:由题意知,()3434341a =⨯+++※,3420=※,∵圆与三角形的三条边都有两个交点,截得的三条弦相等,∴圆心O就是三角形的内心,过C时,且在等腰直角三角形∴当O、、过点O分别作弦CG CF DE。
题型六新定义阅读理解题1. (2016重庆B卷)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=pq.例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F(12)=3 4.(1)如果一个正整数a是另外—个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y是自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18.那么我们称这个数t为“吉祥数”.求所有“吉祥数”中F(t)的最大值.2. (2017重庆A卷)对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123.对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213 +321+132 =666,666÷111=6,所以,F(123) =6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=F(s)F(t).当F(s)+F(t)=18时,求k的最大值.3. (2015重庆A卷)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”.再如22,545,3883 ,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字为x(1≤x≤4,x 为自然数),十位上的数字为y,求y与x的函数关系式.4. (2017张家界)阅读理解题:定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部.它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2-i)+(5+3i)=(2+5)+(-1+3)i=7+2i;(1+i)×(2-i)=1×2-i+2×i-i2=2+(-1+2)i+1=3+i;根据以上信息,完成下列问题:(1)填空:i3=________,i4=________;(2)计算:(1+i)×(3-4i);(3)计算:i+i2+i3+ (i2017)5. (2018原创)若整数m是8的倍数,那么称整数m为“发达数”.例如,因为16是8的倍数,所以16是“发达数”.(1)已知整数m等于某个奇数的平方减1,求证:m是“发达数”.(2)已知两位正整数t=10x+y(1≤x≤y≤9,其中x,y为自然数),交换其个位上的数字和十位上的数字得到新数s,如果s加上t的和是“发达数”,求所有符合条件的两位正整数t.6. (2017重庆南开模拟)若将自然数中能被3整除的数,在数轴上的对应点称为“3倍点”,取任意的一个“3倍点”P,到点P距离为1的点所对应的数分别记为a,b.定义:若数K=a2+b2-ab,则称数K为“尼尔数”.例如:若P所表示的数为3,则a=2,b=4,那么K=22+42-2×4=12;若P所表示的数为12,则a =11,b=13,那么K=132+112-13×11=147,所以12,147是“尼尔数”.(1)请直接判断6和39是不是“尼尔数”,并且证明所有“尼尔数”一定被9除余3;(2)已知两个“尼尔数”的差是189,求这两个“尼尔数”.7. (2017重庆一外一模)若一个三位数t=abc(其中a,b,c不全相等且都不为0),重新排列各数位上的数字必可得到一个最大数和一个最小数,此最大数和最小数的差叫作原数的差数,记为T(t).例如,357的差数T(357)=753-357=396. (1)已知一个三位数a1b(其中a>b>1)的差数T(a1b)=792,且各数位上的数字之和为一个完全平方数,求这个三位数.(2)若一个三位数ab2(其中a、b都不为0)能被4整除,将个位上的数字移到百位得到一个新数2ab被4除余1,再将新数的个位数字移到百位得到另一个新数b2a 被4除余2,则称原数为4的“闺蜜数”.例如:因为612=4×153,261=4×65+1,126=4×31+2,所以612是4的一个闺蜜数.求所有小于500的4的“闺蜜数”t,并求T(t)的最大值.8. (2017重庆八中一模)一个三位正整数M,其各位数字均不为零且互不相等,若将M的十位数字与百位数字交换位置,得到一个新的三位数,我们称这个三位数为M的“友谊数”,如:168的“友谊数”为“618”;若从M的百位数字、十位数字、个位数字中任选两个组成一个新的两位数,并将得到的所有两位数求和,我们称这个和为M的“团结数”,如:123的“团结数”为12+13+21+23+31+32=132.(1)求证:M与其“友谊数”的差能被15整除;(2)若一个三位正整数N,其百位数字为2,十位数字为a、个位数字为b,且各位数字互不相等(a≠0, b≠0).若N的“团结数”与N之差为24,求N的值.9. (2017重庆大渡口区模拟)我们知道:一个整数的个位数是偶数,则它一定能被2整除;一个整数的各位数字之和能被3整除,则它一定能被3整除.若一个整数既能被2整除又能被3整除,那么这个整数一定能被6整除.数字6象征顺利、吉祥,我们规定,能被6整除的四位正整数abcd(千位数字为a,百位数字为b,十位数字为c,个位数字为d)是“吉祥数”.请解答下面几个问题:(1)已知785x是“吉祥数”,则x=________.(2)若正整数abcd是“吉祥数”,试说明:d+4(a+b+c)能被2整除.(3)小明完成第(2)问后认为:四位正整数abcd是“吉祥数”,那么d+4(a+b+c)也能被6整除.你认为他说得对吗?请说明理由.10. —个正整数,由N个数字组成,若它的第一位数可以被1整除,它的前两位数可以被2整除,前三位数可以被3整除,…,一直到前N位数可以被N整除,则这样的数叫做“精巧数”.如:123的第—位“1”可以被1整除,前两位数“12”可以被2整除,“123”可以被3整除,则123是一个“精巧数”.(1)若四位数123k是一个“精巧数”,求k的值;(2)若一个三位“精巧数”2ab各位数字之和为—个完全平方数,请求出所有满足条件的三位“精巧数”.11. (2017重庆巴蜀模拟)阅读材料:欢喜数——若一个四位数的前2位数是后2位数的2倍,则称该数为“欢喜数”,如1005、2211等都是欢喜数;半和数——一个数,若各个数位上的数字之和等于十位上的数字的2倍,则称该数为“半和数”,如132等都是半和数;平方差数——一个三位数字,若十位上数字等于百位数字与个位数字的平方差,则称该数为“平方差数”.根据上面的材料,回答下列问题:(1)证明所有的三位“半和数”均能被11整除;(2)若一个四位正整数abbc是欢喜数,bmc既是半和数又是平方差数,求m的值.12. 一个三位自然数m,将它任意两个数位上的数字对调后得一个首位不为0的新三位自然数m′(m′可以与m相同),记m′=abc,在m′所有的可能情况中,当|a +2b-c|最小时,我们称此时的m′是m的“幸福美满数”,并规定K(m)=a2+2b2-c2.例如:318按上述方法可得新数有:381、813、138;因为|3+2×8-1|=18,|8+2×1-3|=7,|1+2×3-8|=1,1<7<18,所以138是318的“幸福美满数”,K(318)=12+2×32-82=-45.(1)若三位自然数t的百位上的数字与十位上的数字都为n(1≤n≤9,n为自然数),个位上的数字为0,求证:K(t)=0;(2)设三位自然数s=100+10x+y(1≤x≤9,1≤y≤9,x,y为自然数),且x<y.交换其个位与十位上的数字得到新数s′,若19s+8s′=3888,那么我们称s为“梦想成真数”,求所有“梦想成真数”中K(s)的最大值.13. (2018原创)如果一个自然数从高位到个位是由一个数字或几个数字重复出现组成,那么我们把这样的自然数叫循环数,被重复的一个或几个数字称为“循环节”,我们把“循环节”的数字个数叫做循环数的阶数,例如:252525,它由“25”依次重复出现组成,所以252525是循环数.它是2阶6位循环数;再如:11是1阶2位循环数,789789789是3阶9位循环数,345634563456是4阶12位循环数….(1)请你直接写出3个2阶6位循环数,猜想任意一个2阶6位循环数能否被7整除,并说明理由;(2)已知一个能被13整除的2阶4位循环数,设循环节为xy,(0<x<5),求y与x 之间的函数关系.14. (2018原创)若一个三位数,其个位数加上十位数等于百位数,可表示为t=100(x +y)+10y+x,则称实数t为“加成数”.将t的百位作为个位,个位作为十位,十位作为百位,组成一个新的三位数h,规定q=t-h,f(m)=q9.例如:321是一个“加成数”,将其百位作为个位,个位作为十位,十位作为百位,得到的数h=213,∴q=321-213=108,f(m)=1089=12.(1)当f(m)最小时,求此时对应的“加成数”t的值;(2)若f(m)是24的倍数,则称f(m)是“节气数”,猜想这样的“节气数”有多少个,并求出所有的“节气数”.15. (2017重庆渝中区校级二模)对于一个三位正整数t,将各数位上的数字重新排序后(包括本身),得到一个新的三位数abc(a≤c),在所有重新排列的三位数中,当|a+c-2b|最小时,称此时的abc为t的“最优组合”,并规定F(t)=|a-b|-|b -c|,例如:124重新排序后为:142、214,因为|1+4-4|=1,|1+2-8|=5,|2+4-2|=4,所以124为124的“最优组合”,此时F(124)=-1.(1)三位正整数t中,有一个数位上的数字是另外两数位上的数字的平均数,求证:F(t)=0(2)一个正整数,由N个数字组成,若从左向右它的第一位数能被1整除,它的前两位数能被2整除,前三位数能被3整除,…,一直到前N位数能被N整除,我们称这样的数为“善雅数”.例如:123的第一位数1能被1整除,它的前两位数12能被2整除,前三位数123能被3整除,则123是一个“善雅数”.若三位“善雅数”m=200+10x+y(0≤x≤9,0≤y≤9,x、y为整数),m的各位数字之和为一个完全平方数,求出所有符合条件的“善雅数”中F(m)的最大值.16. (2018原创)如果两个实数a ,b ,使得a 2+b 与a +b 2都是有理数,我们则称(a ,b )是“完美数对”.如:(12)2+13=14+13=712,12+(13)2=12+19=1118,因为712,1118是有理数,所以(12,13)是“完美数对”;(2)2+1=3,2+12=1+2,因为1+2为无理数,所以(2,1)不是“完美数对”.(1)请判断(12+2,12-2)是否是“完美数对”,并说明理由;(2)若(a ,b )是“完美数对”,且a +b =2,证明:a ,b 都是有理数.17. 1742年6月7日,德国数学家哥德巴赫在写给著名数学家欧拉的一封信中,提出了两个大胆的猜想,其中的“任何不小于7的奇数,都可以表示为三个质数之和”称为“弱哥德巴赫猜想”,并已经得到了成功的证明.根据“弱哥德巴赫猜想”,任意一个不小于7的奇数m,都可以进行这样的拆分:m=a+b+c(a、b、c均为质数,且a≥b≥c),在m的所有这种拆分中,如果a、c两数之差a-c最小,我们就称a+b+c是m的最优拆分.并规定:P(m)=a-c.例如9可以分解成2+2+5,3+3+3,因为5-2>3-3,所以3+3+3是9的最优拆分,且P(9)=0.(1)由上述条件,可得:P(11)=________;若P(n)=1,则n=________;若P(n)=0,证明n必定能被3整除;(2)t是一个两位正整数,且t的十位数字、个位数字分别为x、y(1≤x≤y≤9,x、y为整数).若t的十位数字、个位数字和的8倍加上t所得的和为99,则我们称这个数t为“期盼数”,求所有“期盼数”中P(t)的最大值.18. 对于一个大于100的整数,若将它的后两位之前的数移到个位之后,重新得到一个新数,称之为原数的“兄弟数”. 比如:2017的兄弟数为1720, 168的兄弟数为681.根据以上阅读材料,回答下列问题.(1)求证:—个三位数与其兄弟数之差一定能被9整除;(2)已知一个六位数的兄弟数恰好是原六位数的4倍,求满足条件的原六位数.19. (2017重庆南开模拟)一个自然数m,若将其数字重新排列可得—个新的自然数n,如果m=3n,我们称m是一个“希望数”,例如:3105=3×1035,71253=3×23751,371250=3×123750.(1)请说明41不是希望数,并证明任意两位数都不可能是“希望数”;(2)一个四位“希望数”M记为abcd,已知abcd=3·cbad,且c=2,请求出这个四位“希望数”.20. (2017重庆西大附中月考)一个三位正整数N,各个数位上的数字互不相同且都不为0,若从它的百位、十位、个位上的数字任意选择两个数字组成两位数,所有这些两位数的和等于这个三位数本身,则称这样的三位数N为“公主数”.例如:132,选择百位数字1和十位效字3所组成的两位数为:13和31,选择百位数字1和个位数字2所组成的两位数为:12和21,选择十位数字3和个位数字2所组成的两位数为:32和23,因为13+31+12+21+32+23=132,所以132是“公主数”.—个三位正整数,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数为“伯伯数”.(1)判断123是不是“公主数”?请说明理由.(2)证明:当一个“伯伯数”xyz是“公主数”时,则z=2x.(3)若一个“伯伯数”与132的和能被13整除,求满足条件的所有“伯伯数”.21. (2018原创)若实数a 可以表示成两个连续自然数的倒数差,即a =1n -1n +1,那么我们称a 为第n 个“1阶倒差数”,例如12=1-12,∴12是第1个“1阶倒差数”,16=12-13,∴16是第2个“1阶倒差数”.同理,若b =1n -1n +2,那么,我们称b 为第n 个“2阶倒差数”.(1)判断132是否为“1阶倒差数”;直接写出第5个“2阶倒差数”;(2)若c ,d 均是由两个连续奇数组成的“2阶倒差数”,且1d -1c =22,求c ,d 的值.22. (2017重庆八中二模)若在一个两位正整数N 的个位数字与十位数字之间添上数字2,组成一个新的三位数,我们称这个三位数为N 的“诚勤数”,如34的“诚勤数”为324;若将—个两位正整数M 加2后得到一个新数,我们称这个新数为M 的“立达数”,如34的“立达数”为36.(1)求证:对任意一个两位正整数A ,其“诚勤数”与”立达数”之差能被6整除;(2)若一个两位正整数B 的“立达数”的各位数字之和是B 的各位数字之和的一半,求B 的值.23. (2017重庆南岸区二模)若一个两位正整数m 的个位数为8,则称m 为“好数”.(1)求证:对任意“好数”m ,m 2-64一定为20的倍数;(2)若m=p2-q2,且p,q为正整数,则称数对(p,q)为“友好数对”.规定:H(m)=qp.例如68=182-162,称数对(18,16)为“友好数对”,则H(68)=1618=89.求小于50的“好数”中,所有“友好数对”的H(m)的最大值.24. (2018原创)定义,对于一个多位自然数a,若其从左向右各个数位上的数恰好是前一数位数字加1,我们称自然数a是“格调数”.例如,12,123,1234等都是“格调数”.根据数的特点,我们可以发现,最小的“格调数”是12,最大的“格调数”是123456789.而如果一个“格调数”有七位时,第一位上的数字最大只能是3,这样的“格调数”是3456789.(1)已知四位“格调数”m和n,若m-n=3333,求m的值;(2)规定:任意一个能被18整除的数,称为“发财数”.对于任意一个三位“格调数”t=100a+10(a+1)+(a+2),交换其个位和百位上的数字,得到新的三位数k,令q=k-t,猜想q是否为“发财数”,请说明理由.25. (2017重庆一中一模)人和人之间讲友情,有趣的是,数与数之间也有相类似的关系,若两个不同的自然数的所有真因数(即除了自身以外的正因数)之和相等,我们称这两个数为“亲和数”.例如:18的正因数有1、2、3、6、9、18,它的真因数之和为1+2+3+6+9=21;51的正因数有1、3、17、51,它的真因数之和为1+3+17=21,所以称18和51为“亲和数”.数还可以与动物形象地联系起来,我们称一个两头(首位与末位)都是1的数为“两头蛇数”.例如:121、1351等.(1)8的真因数之和为________;求证:一个四位的“两头蛇数”与它去掉两头后得到的两位数的3倍的差,能被7整除;(2)一个百位上的数为4的五位“两头蛇数”能被16的“亲和数”整除,若这个五位“两头蛇数”的千位上的数字小于十位上的数字,求满足条件的五位“两头蛇数”.26. (2018原创)依次排列的几个数,如:a,b,c,…,对任意相邻的两个数,都用右边的数减去左边的数,并将所得的差写在这两个数之间,从而产生一个新数串:a,b-a,b,c-b,c,…,我们称这样的一次操作为“差变增数列”.例如,对于依次排列的两个数,1,2,做一次“差变增数列”所得数串为1,1,2;再做一次“差变增数列”所得数串为1,0,1,1,2.(1)已知依次排列的3个数:2,8,7,做一次“差变增数列”,所得新数串所有数字的和是________;做m次“差变增数列”后,所得新数串所有数字的和为________(用含m的代数式表示);(2)若依次排列的3个数:x,8,y;其中,0≤x<y≤9,且x,y均为整数,做100次“差变增数列”后所得数串的所有数字和为216,求x和y的值.27. (2017重庆江北区一模)一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和平数”.例如:1423,x=1+4,y=2+3,因为x=y,所以1423是“和平数”.(1)直接写出:最小的“和平数”是________,最大的“和平数”是________;(2)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;(3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.例如:1423与4132为一组“相关和平数”.求证:任意的一组“相关和平数”之和是1111的倍数.28. (2017重庆南岸区一模)对任意一个正整数m,如果m=k(k+1),其中k是正整数,则称m为“矩数”,k为m的最佳拆分点.例如,56=7×(7+1),则56是一个“矩数”,7为56的最佳拆分点.(1)求证:若“矩数”m是3的倍数,则m一定是6的倍数;(2)把“矩数”p与“矩数”q的差记为D(p,q),其中p>q,D(p,q)>0.例如,20=4×5,6=2×3,则D(20,6)=20-6=14.若“矩数”P的最佳拆分点为t,“矩数”q的最佳拆分点为s,当D(p,q)=30时,求st的最大值.29. (2017重庆一外二模)若一个多位自然数t=abc…fg的各数位上的数字满足b-a=c-b=…=g-f=k(k≠0),则称该数为“k”类自然数,把自然数t各数位上的数字从左往右数,所有奇数位上的数字之和的平方减去所有偶数位上的数字之和的平方,记为F(t).例如:135是一个“2”类自然数.F(135)=(1+5)2-32=274321是一个“-1”类自然数.F(4321)=(4+2)2-(3+1)2=20(1)证明:任意一个三位“k”类自然数与它百位上的数字之和一定能被4整除;(2)如果—个四位自然数,交换其个位数字与千位数字得到的新数减去原数所得的差能够被18整除,则称这个数为“成年数”.若一个“k”类自然数t是“成年数”,求F(t)的最小值.30. 阅读下列材料解决问题:两个多位正整数,若它们各数位上的数字和相等,则称这两个多位数互为“调和数”.例如:37与82,它们各数位上的数字和分别为3+7,8+2,∵3+7=8+2=10,∴37与82互为“调和数”;又如:123与51,它们各数位上的数字和分别为1+2+3,5+1,∵1+2+3=5+1=6,∴123与51互为“调和数”.(1)若两个三位数a43、2bc(0≤b≤a≤9,0≤c≤9且a、b、c为整数)互为“调和数”,且这两个三位数之和是17的倍数,求这两个“调和数”;(2)若A、B是两个不相等的两位数,A=xy,B=mn,A、B互为“调和数”,且A 与B之和是B与A之差的3倍,求证:y=-x+9.答案1. (1)证明:∵m是一个完全平方数,∴m=p×q,当q=p时,p·q就是m的最佳分解,∴F(m)=pq=pp=1;(2)解:由题意得,(10y+x)-(10x+y)=18,得y=x+2,∴t=10x+y=10x+x+2=11x+2(1≤x≤7),则所有的吉祥数为:13,24,35,46,57,68,79共7个,∵13=1×13,24=1×24=2×12=3×8=4×6,35=1×35=5×7,46=1×46=2×23,57=1×57=3×19,68=1×68=2×34=4×17,79=1×79,则F(13)=113,F(24)=23,F(35)=57,F(46)=223,F(57)=319,F(68)=417,F(79)=179,∵57>23>417>319>223>113>179,∴“吉祥数”中F (t )的最大值为F (35)=57.2. 解:(1)F (243)=(423+342+234)÷111=9,F (617)=(167+716+671)÷111=14;(2)∵s ,t 都是相异数.∴F (s )=(302+10x +230+x +100x +23)÷111=x +5,F (t )=(510+y +100y +51+105+10y )÷111=y +6,∵F (s )+F (t )=18,∴x +5+y +6=x +y +11=18,∴x +y =7,∵1≤x ≤9,1≤y ≤9,且x ,y 都是正整数.∴⎩⎨⎧x =1y =6或⎩⎨⎧x =2y =5或⎩⎨⎧x =3y =4或⎩⎨⎧x =4y =3或⎩⎨⎧x =5y =2或⎩⎨⎧x =6y =1, ∵s 是相异数,∴x ≠2,x ≠3,∵t 是相异数,∴y ≠1,y ≠5,∴满足条件的有⎩⎨⎧x =1y =6或⎩⎨⎧x =4y =3或⎩⎨⎧x =5y =2, ∴⎩⎨⎧F (s )=6F (t )=12或⎩⎨⎧F (s )=9F (t )=9或⎩⎨⎧F (s )=10F (t )=8, ∴k =F (s )F (t )=612=12或k =F (s )F (t )=99=1或k =F (s )F (t )=108=54, ∵12<1<54,∴k 的最大值为54.3. 解:(1)1331,2442,1001;猜想:任意一个四位“和谐数”能被11整除.理由:设一个四位“和谐数”记为xyyx ,用十进制表示为: 1000x +100y +10y +x =1001x +110y =11(91x +10y ), ∵x 、y 是0~9之间的整数,∴11(91x +10y )能被11整除;∴任意一个四位“和谐数”能被11整除;(2)设这个三位的“和谐数”为xyx ,用十进制表示为: 100x +10y +x =101x +10y ,∵它是11的倍数,∴101x +10y 11为整数, ∵101x +10y 11=99x +11y +2x -y 11=9x +y +2x -y 11,x ,y 是0~9之间的整数,∴2x -y 11是整数. 又∵1≤x ≤4,0≤y ≤9,∴2≤2x ≤8,-9≤-y ≤0,∴-7≤2x -y ≤8,∵要使2x -y 11是整数, 则2x -y 只能是0,∴2x -y =0,即y =2x ,∴y 与x 之间的函数关系式是y =2x (1≤x ≤4,x 为自然数).4. 解:(1)-i ;1;【解法提示】∵i 2=-1,∴i 3=i 2·i =-i ,i 4=i 2·i 2=(-1)×(-1)=1.(2)原式=3-4i +3i -4i 2=3-i +4=7-i ;(3)根据题意可得i =i ,i 2=-1,i 3=-i ,i 4=1,i 5=i ,i 6=-1,…,i 2016=1,i2017=i,∵i+i2+i3+i4=0,2016÷4=504,∴i+i2+i3+i4+…+i2017=i2017=i.5.解:(1)设这个奇数为2n+1,n为任意整数,由题意知m=(2n+1)2-1=4n2+4n+1-1=4n(n+1),4n(n+1)8=n(n+1)2,是整数,即4n(n+1)是8的倍数,∴m是“发达数”;(2)由题意知s=10y+x,∴s+t=10y+x+10x+y=11x+11y=11(x+y),又∵1≤x≤y≤9,∴2≤x+y≤18,要使11(x+y)是发达数,则x+y是发达数,∴x+y=8或x+y=16,当x+y=8时,x=1,y=7,t=17,x=2,y=6,t=26,x=3,y=5,t=35,x=4,y=4,t=44,当x+y=16时,x =7,y =9,t =79,x =8,y =8,t =88,故所有符合条件的两位正整数t 有17,26,35,44,79,88.6. 解:(1)6不是尼尔数,39是尼尔数.证明:设P 表示的数为3m ,则a =(3m -1),b =(3m +1),K =(3m -1)2+(3m +1)2-(3m -1)(3m +1)=9m 2+3,∵m 为整数,∴m 2为整数,∴9m 2+3被9除余3;(2)设这两个尼尔数分别是K 1,K 2,将P 1,P 2分别记为3m 1,3m 2.∴K 1-K 2=9m 12-9m 22=189,∴m 12-m 22=21,∵m 1,m 2都是整数,∴m 1+m 2=7,m 1-m 2=3,∴⎩⎨⎧m 1=5m 2=2, ∴⎩⎨⎧K 1=228K 2=39. 7. 解:(1)∵一个三位数a 1b (其中a >b >1)的差数T (a 1b )=792,∴a=9,∵三位数a1b(其中a>b>1)的各数位上的数字之和为一个完全平方数,∴1+a+b=n2,10<1+a+b≤19,∴n=4,∴b=16-9-1=6,∴这个三位数是916;(2)∵一个三位数ab2(其中a、b都不为0)能被4整除,∴b=1或3或5或7或9,∵将新数个位数字移到百位得到另一个新数b2a被4除余2并且a<5,∴a=2,∴所有小于500的4的“闺蜜数”t是212,232,252,272,292,T(t)的最大值是922-229=693.8. (1)证明:设M=xyz(x≠y≠z≠0),则M的友谊数是yxz,∴xyz-yxz=(100x+10y+z)-(100y+10x+z)=90x-90y=90(x-y)=15×6(x -y),∵6(x-y)是整数,∴xyz-yxz能被15整除.故M 与其“友谊数”的差能被15整除;(2)解:由团结数定义可知,N 的团结数为:(20+a )+(20+b )+(10a +2)+(10a +b )+(10b +2)+(10b +a )=22a +22b +44,∵N 的团结数与N 之差为24,∴(22a +22b +44)-(200+10a +b )=24,即a =15-74b ,∵a 、b 为整数,1≤a ≤9,1≤b ≤9,a ≠b ,∴⎩⎨⎧a =8b =4或⎩⎨⎧a =1b =8, ∴N =284或218.9. 解:(1)4;(2)∵正整数abcd 能被6整除,∴d 能被2整除.设d =2k ( k 为自然数),则d +4(a +b +c )=2k +4(a +b +c )=2[k +2(a +b +c )].∴d +4(a +b +c )能被2整除;(3)小明的说法正确.理由如下:∵四位正整数abcd能被6整除,∴a+b+c+d能被3整除.设a+b+c+d=3m(m为自然数),则d+4(a+b+c)=(a+b+c+d)+3(a+b+c)=3m+3(a+b+c).∴d+4(a+b+c)既能被2整除,也能被3整除,∴也能被6整除.10.解:(1)根据精巧数的定义,得123k能被4整除,则1230+k能被4整除,∵1230+k=1228+(2+k),∴2+k能被4整除,又∵0≤k≤9,且k为整数,∴k=2或6;(2)∵2ab是“精巧数”,∴a为偶数,且2+a+b是3的倍数,∵a<10,b<10,∴2+a+b<22,∵2ab各位数字之和为一个完全平方数,∴2+a+b=32=9,∴当a=0时,b=7,当a=2时,b=5,当a=4时,b=3,当a=6时,b=1,∴所有满足条件的三位“精巧数”有:207,225,243,261.11. (1)证明:设三位数abc是一个半和数,则a+b+c=2b,∴a+c=b.∵这个三位数为100a+10b+c=100a+10(a+c)+c=110a+11c=11(10a+c),且10a+c为整数,∴这个三位数是11的倍数,能被11整除.(2)解:∵四位数abbc是欢喜数,∴10a+b=2(10b+c),∴10a-19b-2c=0①.∵bmc是半和数,∴b+c=m.∵bmc是平方差数,∴m =b 2-c 2=(b +c )(b -c ),∴b -c =1,∴b =1+c ②,②代入①得a =21c +1910, ∵a 是1~9的正整数,∴c =1,∴b =2,∴m =2+1=3.12. (1)证明:由题意得,t 按上述方法可得新数:n 0n ,nn 0,∵|n +2×0-n |=0,|n +2n -0|=3n ,0<3n ,∴n 0n 是t 的“幸福美满数”,K (t )=n 2+2×02-n 2=0;(2)解:s =100+10x +y ,s ′=100+10y +x ,19s +8s ′=3888,即19(100+10x +y )+8(100+10y +x )=3888.得到2x +y =12,∵x <y ,且均为自然数,∴⎩⎨⎧x =2y =8或⎩⎨⎧x =3y =6, ∴“梦想成真数”为128或136,通过计算,K (128)=-55,K (136)=-17或-25,又∵-55<-25<-17,∴K(s)的最大值为-17.13.解:(1)依照2阶6位循环数的定义,可任意写出3个2阶6位循环数:131313;272727;868686.任意一个2阶6位循环数能被7整除,理由如下:结合数字的特点可得知:2阶6位循环数为任意的一个两位数×10101得出的.∵10101÷7 =1443.∴任意一个2阶6位循环数能被7整除;(2)结合(1)的规律可知:2阶4位循环数为任意的一个两位数×101得出的.∵101为质数.∴xy为13的倍数,又∵0<x<5,∴y=3x.∵当x=4时,y=3×4=12,当x=5时,y=3×5=15均不符合题意.∴0<x<4,且x为整数,∴y与x之间的函数关系为y=3x(x=1,2,3).14.解:(1)根据题意知t=100(x+y)+10y+x,∴h=100y+10x+x+y,∴q=t-h=(100x+100y+10y+x)-(100y+10x+x+y)=90x+9y,∴f(m)=q9=90x+9y9=10x+y.∵0不能在百位,∴t的十位和百位均不可以为0,∴x的最小值为0,y的最小值为1,∴f(m)的最小值为1,此时“加成数”t为110;(2)∵f(m)是24的倍数,∴10x+y=24n(n=1,2,3,…),∵0≤x≤8,1≤y≤9,且1≤x+y≤9,∴当n=1时,10x+y=24,x=2,y=4,当n=3时,10x+y=72,x=7,y=2;综上,这样的“节气数”有2个,分别为24,72.15. (1)证明:∵三位正整数t中,有一个数位上的数字是另外两数位上的数字的平均数,∴重新排序后,其中两个数位上数字的和是另一个数位上的数字的2倍,∴a+c-2b=0,∴F(t)=0;(2)解:∵m=200+10x+y是“善雅数”,∴x为偶数,且2+x+y是3的倍数,∵x<10,y<10,∴2+x+y<30,∵m的各位数字之和为一个完全平方数,∴2+x+y=32=9,∴当x=0时,y=7,当x=2时,y=5,当x=4时,y=3,当x=6时,y=1,∴所有符合条件的“善雅数”有:207,225,243,261,∴所有符合条件的“善雅数”中F(m)的最大值是|2-3|-|3-4|=0.16. (1)解:是.理由如下:∵(12+2)2+(12-2)=14+2+2+12-2=114,是有理数; (12+2)+(12-2)2=12+2+14-2+2=114,是有理数. ∴(12+2,12-2)是“完美数对”; (2)证明:∵(a ,b )是“完美数对”, ∴a 2+b 与a +b 2都是有理数,∴(a 2+b )-(a +b 2)=(a -b )(a +b -1)是有理数. 设t =(a -b )(a +b -1)=(a -b )×(2-1)=a -b , ∴t =a -b 是有理数. 解⎩⎨⎧a +b =2a -b =t ,得⎩⎪⎨⎪⎧a =1+t2b =1-t 2,∵t 是有理数,∴a ,b 都是有理数. 17. 解:(1)2;8;证明:假设P (n )的质数为a ,b ,c , 由P (n )=0可知,a =b =c ,∴P(n)=a+a+a=3a,∴3a÷3=a,为整数,∴若P(n)=0,n必定能被3整除;(2)(x+y)×8+10x+y=99,∴2x+y=11;∵1≤x≤y≤9,∴期盼数:35,27,19,35=11+11+13;27=7+7+13;19=7+7+5;P(35)=2,P(27)=6,P(19)=2,∴P(t)max=6.18. (1)证明:设原来的三位数为:100a+10b+c,其兄弟数为:100b+10c+a,则(100a+10b+c)-(100b+10c+a)=99a-90b-9c=9(11a-10b-c),∵(11a-10b-c)为整数,∴一个三位数与其兄弟数之差一定可以被9整除.(2)解:设这个六位数的前4位是M,后2位是N,则这个数可表示为:(100M+N),其兄弟数可表示为:(10000N+M),∴4×(100M+N)=10000N+M,∴化简得19M=476N,∴N一定是19的倍数,∵N是2位数,∴满足条件的N=19,38,57,76,95;又∵M是4位数,∴N=19,38都不满足条件,舍去;∴N=57,76,95,相应的:M=1428,1904,2380,∴满足条件的六位数有三个142857,190476,238095.19. (1)证明:∵3×14=42≠41,∴41不是希望数.假设存在两位数是希望数,记为ab,∴ab=3ba.∵3b为一位数,且b是3a的个位数,∴b=1,2,3.当b=1时,a=7,3×17=51≠71;当b=2时,a=4,3×24=72≠42;当b=3时,a=1,3×31=93≠13.综上可知:假设不成立,即任意两位数都不可能是“希望数”;(2)解:∵abcd=3·cbad,∴3d的个位是d,∴d=0或5.当d=0时,∵3a的个位是c,c=2,∴a=4,此时3c=6>4,不合适;当d=5时,∵3a的个位+1是c,c=2,∴a=7,又∵abcd=3·cbad,∴3b+2=10+b,解得:b=4.∴这个四位“希望数”为7425.20. (1)解:123的百位与十位数字组成的数为12,21,百位与个位数字组成的数为13,31, 十位与个位数字组成的数为23,32,则各数和为12+21+13+31+23+32=132≠123,显然不是公主数;(2)证明:∵xyz是一个公主数,∴(10x+y+10y+x)+(10x+z+10z+x)+(10y+z+10z+y) =100x+10y+z,∴78x=12y+21z①;∵xyz是一个伯伯数,∴y=x+z②,代入①得66x=33z,∴z=2x;(3)解:设这个伯伯数为xyz,则y=x+z,∴100x+10y+z=110x+11z.∵110x+11z+132=11(10x+z+12),∵能被13整除,∴10x+z+12是13的倍数.当10x +z +12=26时,x =1,z =4,y =5,这个数为154; 当10x +z +12=39时,x =2,z =7,y =9,这个数为297; 当10x +z +12=52时,x =4,z =0,y =4,这个数为440; 当10x +z +12=65时,x =5,z =3,y =8,这个数为583; 当10x +z +12=78时,x =6,z =6,y =12,不符合; 当10x +z +12=91时,x =7,z =9,y =16,不符合. 故满足条件的数有154,297,440,583. 21. 解:(1)132不是“1阶倒差数”,235;【解法提示】∵32=1×32=2×16=4×8,不是两个连续自然数的积, ∴132不是“1阶倒差数”. 第5个“2阶倒差数”为15-17=235.(2)设m 是由两个连续奇数2x -1,2x +1组成的“2阶倒差数”,则m =12x -1-12x +1=2x +1-(2x -1)(2x +1)(2x -1)=24x 2-1. ∵c ,d 是两个连续奇数组成的“2阶倒差数”,∴可设c =24y 2-1,d =24z 2-1, ∵1d -1c =22,∴4z 2-12-4y 2-12=22, 即z 2-y 2=11, ∴(z +y )(z -y )=11>0, ∴z >y . ∵11=1×11,∴⎩⎨⎧z +y =11z -y =1,解得⎩⎨⎧y =5z =6, ∴c =24×52-1=299,d =24×62-1=2143.22. (1)证明:设A =xy ,则其“诚勤数”为x 2y ,“立达数”为10x +y +2, ∴x 2y -(10x +y +2)=100x +20+y -10x -y -2=90x +18=6(15x +3), ∵15x +3为整数, ∴6(15x +3)能被6整除,即对任意一个两位正整数A ,其“诚勤数”与“立达数”之差能被6整除; (2)解:设B =10a +b ,1≤a ≤9,0≤b ≤9(13加上2后各数字之和变小,说明个位发生了进位),B +2=10a +b +2,则B 的“立达数”为10(a +1)+(b +2-10),a +1+b +2-10=12(a +b ), 整理得:a +b =14, ∵1≤a ≤9,0≤b ≤9,∴⎩⎨⎧a =8(舍)b =6、⎩⎨⎧a =6b =8,⎩⎨⎧a =9(舍)b =5、⎩⎨⎧a =5b =9,经检验:86和95不符合题意舍去,∴所求两位数为68或59.23. (1)证明:设m =10t +8,1≤t ≤9,且t 为整数.∴m 2-64=(10t +8)2-64=100t 2+160t +64-64=20(5t 2+8t ). ∵1≤t ≤9,t 为正整数, ∴5t 2+8t 是正整数. ∴m 2-64一定为20的倍数;(2)解:∵m =p 2-q 2,p ,q 为正整数,∴10t +8=(p +q )(p -q ), 当t =1时,18=1×18=2×9=3×6,没有满足条件的p ,q . 当t =2时,28=1×28=2×14=4×7.其中满足条件的p ,q 的数对有(8,6),即28=82-62,∴H (28)=68=34.当t =3时,38=1×38=2×19,没有满足条件的p ,q . 当t =4时,48=1×48=2×24 =3×16=4×12=6×8. 满足条件的p ,q 的数对为⎩⎨⎧p -q =2p +q =24或⎩⎨⎧p -q =4p +q =12或⎩⎨⎧p -q =6p +q =8,解得⎩⎨⎧p =13q =11或⎩⎨⎧p =8q =4或⎩⎨⎧p =7q =1. 即48=132-112=82-42=72-12. ∴H (48)=1113或H (48)=48=12或H (48)=17. ∵1113>34>12>17, ∴H (m )的最大值为1113.24. 解:(1)∵m ,n 都是四位“格调数”,则设m =a (a +1)(a +2)(a +3),n =b (b +1)(b +2)(b +3), 即m =1000a +100(a +1)+10(a +2)+(a +3)=1111a +123, n =1000b +100(b +1)+10(b +2)+(b +3)=1111b +123, ∴m -n =1111a +123-(1111b +123)=1111(a -b )=3333,∴a-b=3,即a=b+3.∵m是四位“格调数”,∴1≤a≤6,∴1≤b+3≤6,∴1≤b≤3,∴b为1,2或3,则a为4,5或6,∴m为4567,5678或6789;(2)q是“发财数”.∵t=100a+10(a+1)+(a+2)=111a+12,∴k=100(a+2)+10(a+1)+a=111a+210,∴q=k-t=(111a+210)-(111a+12)=210-12=198,∵198÷18=11,∴198是18的整倍数,即198是“发财数”,∴q是“发财数”.25. 解:(1)7;证明:设这个四位“两头蛇数”为1ab1,由题意得:1ab 1-3ab =1001+100a +10b -30a -3b =1001+70a +7b =7(143+10a +b ) ∵a 、b 为整数, ∴143+10a +b 为整数,∴一个四位的“两头蛇数”与它去掉两头后得到的两位数的三倍能被7整除; (2)∵16的真因数有:1,2,4,8. ∴1+2+4+8=15, ∵15=1+3+11, ∴16的“亲和数”为33.设这个五位“两头蛇数”为1x 4y 1, 由题意得:1x4y133为整数,∴315+30x +10x +10y +633为整数,∴10x +10y +6=66, ∴x +y =6,∵0≤x ≤9,0≤y ≤9,且为整数,x <y ∴⎩⎨⎧x =0y =6或⎩⎨⎧x =1y =5或⎩⎨⎧x =2y =4.∴这个五位“两头蛇数”为10461或11451或12441.26.解:(1)22;17+5m.【解法提示】将3个数:2,8,7,做一次“差变增数列”,得到的数字为2,6,8,-1,7,所有数字的和为2+6+8+(-1)+7 =22;∵将数串a,b,c做一次“差变增数列”得到a,b-a,b,c-b,c,所有数字和的增加量M=(a+b-a+b+c-b+c)-(a+b+c)=c-a,∴将一个数串每做一次“差变增数列”,所有数字的和的增加量相同,均为原数最后一个数与第一个数的差∵数串2,8,7中,7-2=5.∴每做一次“差变增数列”,所有数字的和增加5,∴做m次“差变增数列”后,所得数字的和为2+8+7+5m,即17 +5m. (2)∵数串:x,8,y,∴做100次“差变增数列”,所得数字的和为x+8+y+100(y-x)=-99x+101y+8,根据题意得-99x+101y+8 =216,即y=208+99x101,∵y是整数,∴208+99x是101的正整数倍,。
新定义与阅读理解题类型一 新法则、运算学习型1.我们规定:若(,),(,),m a b n c d ==则.m n ac bd =+如(1,2),(3,5),m n ==则13+25=13.m n =⨯⨯(1)已知(2,4),(2,-3),m n ==求m n ;(2)已知(,1),(,1)m x a n x a x =-=-+求,y m n =问,y m n =的函数图象与一次函数1y x =-的图象是否相交,请说明理由.解:(1)22+4(3)=8;m n =⨯⨯--(2)不相交,理由如下:2()(1)m n x a x =-++=22(21)1x a x a --++,∴22(21)1y x a x a =--++,与一次函数y=x-1联立得:22(21)11,x a x a x --++=-化简得22220,x ax a -++=∵2224(2)4(2)80,b ac a a -=--+=-<∴方程无实数解,两函数图象无交点.2.对x ,y 定义一种新运算 T ,规定:T (x,y )=2ax by x y++(其中a 、b 均为非零常数),这里等式右边是通常的四则运算,;例如T (0,1)=01201a b b ⨯+⨯=⨯+.已知T (1,-1) =-2,T (4,2)=1. (1)求a,b 的值;(2)若T (m ,m +3) =-1,求m 的值.解:(1)(1,1)2,21a b T --==--即a -b =-2 ,T (4,2)=42182a b +=+,即2a +b =5 ,解得a=1,b=3;(2)根据题意得3(3)12(3)m mm m++=-++,解得127m=-,经检验,127m=-是方程的解.3.定义新运算:(a,b)⊗(c,d)=(ac,b d),(a,b)⊕(c,d)=(a+c,b+d)(a,b)*(c,d)=a2+c2-b d .(1)求(1,2)*(3,-4)的值;(2)已知(1,2)⊗(p,q)=(2,-4),分别求出p与q的值;(3)在(2)的条件下,求(1,2)⊕(p,q)的结果;(4)已知x2+2xy+y2=5,x2-2xy+y2=1,求(x,5)*(y,xy)的值.解:(1)∵(a,b)*(c,d)=a2+c2-bd,∴(1,2)*(3,-4)=12+32-2×(-4) =1+9+8 =18;(2)∵(a,b)⊗(c,d)=(ac,bd),∴(1,2)⊗(p,q)=(p,2q),∵(1,2)⊗(p,q)=(2,-4),∴p=2,2q=-4,∴q=-2;(3)∵q=-2,p=2,(a,b)⊕(c,d)=(a+c,b+d),∴(1,2)⊕(p,q) =(1,2)⊕(2,-2) =(3,0);(4)∵x2+2xy+y2=5,x2-2xy+y2=1,∴x2+y2=3,xy=1,∵(a,b)*(c,d)=a2+c2-bd,∴(x,5)*(y,xy) =x2+y2-5xy =3-5 =-2.4. 我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad ).如图①,在△ABC 中,AB =AC ,顶角A 的正对记作sad A ,这时sad A =BC AB=底边腰,容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解答下列问题:(1)sad 60°= ___________,sad 90°=____________;(2)如图②,已知sin A =35,其中∠A 为锐角,试求sad A 的值.第4题图解:(1)1,2;(2)∵sin A =35,BC ⊥AC,∴设AB =5a ,BC =3a ,则AC =4a ,如解图,在AB 上取AD =AC =4a ,作DE ⊥AC 于点E ,则DE =AD ·sin A =4a ·35=125a ,AE =AD ·cos a =4a ·45=165a,CE =4a 165-a =45a ,CD =2222412410()()555a a CE DE a +=+=,∴sad A =105CD AC =.第4题解图类型二 新概念学习型1.观察下表我们把某格中字母和所得到的多项式称为特征多项式,例如第1格的“特征多项式”为4x +y ,回答下列问题:(1)第3格的“特征多项式”为_________,第4格的“特征多项式”为_________,第n 格的“特征多项式”为_________;(2)若第1格中的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16. ①求x ,y 的值;②在①的条件下,第n 格的“特征多项式”是否有最小值?若有,求出最小值和相应的n 值,若没有,请说明理由.解:(1)16x +9y ,25x +16y ,(n +1)2x +n 2y ;(2)①依题意得4109416x y x y +=-⎧⎨+=-⎩, 解得247267x y ⎧=-⎪⎪⎨⎪=⎪⎩. ②有,理由如下:设最小值为W ,依题意得:22222426(1)(1)77W n x n y n n =++=-++ 224824777n n =-- 22312(12)77n =--, ∴有最小值3127-,相应的n 值为12.2.已知抛物线21111y a x b x c =++,22222y a x b x c =++,且满足111222(0,1)a b c k k a b c ===≠,则抛物线12,y y 互为“友好抛物线”. (1)若y 2有最大值8,则y 1也有最大值,这样的说法对吗,为什么?(2)结合二次函数的特点和你对“友好抛物线”的理解,写出至少2条结论.解:(1)不对.理由如下: 如果y 2的最值是m ,则y 1的最值是221112221244844a c b a c b k k a a --==, 当k>0时,y 1有最大值为8k ;当k<0时,y 1有最小值为8k .(2)①当a 1与a 2符号相反时其开口方向相反,当12a a ≠时,两抛物线开口大小不同,②y 1与y 2的对称轴相同; ③如果1y 与x 轴有2个不同的交点,则y 2与x 轴也有两个不同的交点.(写出2条合理结论即可)3.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B 、C 、D 分别是“果圆”与坐标轴的交点,抛物线的解析式为y =x 2-2x -3,AB 为半圆的直径,求这个“果圆”被y 轴截得的弦CD 的长.第3题图解:如解图,连接AC ,BC ,第3题解图∵抛物线的解析式为y=x2-2x-3,∴点D的坐标为(0,-3),∴OD=3,设y=0,则0=x2-2x-3,解得:x=-1或x=3,∴A(-1,0),B(3,0)∴AO=1,BO=3,∵AB为半圆的直径,∴∠ACB=90°,∵CO⊥AB,∴CO2=AO•BO=3,∴CO=3,∴CD=CO+OD=3+3.4.定义:如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“匀称三角形”,这条中线为“匀称中线”.(1)请根据定义判断下列命题的真假;(请在真命题后的括号内打“√”,假命题后的括号内打“×”)①等腰直角三角形一定不存在匀称中线. ( )②如果直角三角形是匀称三角形,那么匀称中线一定是较长直角边上的中线. (2)已知:如图①,在Rt△ABC中,∠C=90°,AC>BC,若△ABC是“匀称三角形”,求BC:AC:AB的值;(3)拓展应用:如图②,△ABC是O的内接三角形,AB>AC,∠BAC=45°,将△ABC绕点A逆时针旋转45°得到△ADE,点B的对应点为D,连接CD交O于M,连接AM.①请根据题意用实线在图②中补全图形;②若△ADC是“匀称三角形”,求tan∠AMC的值.第4题图解:(1)①√;②√.(2)∵∠C=90°,AC>BC,如解图①,由(1)可知△ABC的匀称中线是AC边上的中线,设D为AC的中点,则BD为匀称中线.设AC=2a,则CD=a,BD=2a.∵∠C=90°,∴BC=3a,∴AB=22a a a+=,(2)(3)7∴BC:AC:AB=3:2:7;第4题解图①(3)①根据题意补全图形如解图②;第4题解图②②∵△ABC 绕点A 逆时针旋转45°得到△ADE ,∴∠DAE =∠BAC =45°,AD =AB ,∴∠DAC =90°,AD>AC ,∵△ADC 是匀称三角形,∴AD :AC =2:3,即AB :AC =2:3,如解图③,过点C 作CH ⊥AB 于点H ,第4题解图③则∠AHC =∠BHC =90°,设AC =3k ,则AH =CH =26322kk =,AB=2k , ∴BH =646222k k k --=, ∴tan B =632625462k CH BH k +==-, 在O 中,由∠AMC =∠B 得tan ∠AMC =tan B=3265+. 类型三 新解题方法型 1.如果我们要计算231222++++++99100…22的值,我们可以用如下的方法:解:设231222++S =++++99100…22,①等式两边同乘以2,则有:231012222+++2S =+++99100…22,②②-①得,101221,S S -=-即231011222++21++++=-99100…22.【理解运用】计算:(1)231333++++++99100…33;(2)2313333+-+-+-99100…3.解:(1)设231333++S =++++99100…33,①等式两边同乘以3,得:231013333+++3S =+++99100…33,②②-①得,101231,S =- 即101312S -=, 则原式=101312-. (2)设2313333+S =-+-+-99100…3,①等式两边同乘以3,得:23433333S =-+-+100101…-3+3,②②+①得,101431,S =+ 即101314S +=, 则原式=101314+. 2. 阅读材料:已知方程210a a +-=,求一个一元二次方程,使它的根分别是已知方程根的2倍. 解:设所求方程的根为x ,则x =2a , ∴2xa =, 把2x a =代入210a a +-=,得2()()1022x x +-=,化简得2240x x +-=,所以所求方程为2240x x +-=.这种代换法求新方程的方法,我们称为“换根法”.根据以上阅读材料,解决下列问题:(1)已知方程220a a +-=,求关于m 的一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为___________;(2)已知关于x 的一元二次方程20(0)ax bx c a ++=≠有两个不相等的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.解:(1)220m m --=;【解法提示】设所求方程的根为m ,则m =-a ,∴a =-m ,把a =-m 代入220a a --=中,得2()20m m ---=,所以所求方程为220m m --=;(2)设所求方程的根为n ,则1(0)n x x=≠, 所以1(0)x n n =≠, 把1x n =代入2ax bx c ++=0中, 得211()()a b c n n++=0, 化简得:20cn bn a ++=,当c =0时,20ax bx +=,方程20ax bx +=有一个根为0(0没有倒数,舍去),所以c ≠0,∴所求方程为20(0)cn bn a c ++=≠.3. 在△ABC 中,AB 、BC 、AC 三边的长分别为5、10、13,求这个三角形的面积. 小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图 所示,这样不需求△ABC 的高,而借用网格就能计算出它的面积.第3题图(1)△ABC 的面积等于___________;思维拓展:(2)我们把上述求△ABC 面积的方法叫做构图法,若△ABC 三边的长分别为5217(0)a a a a >、2、,请利用图②的正方形网格(每个小正方形的边长为a )画出相应的△ABC ,并求出它的面积;探索创新(3)若△ABC 三边的长分别为2216m n +、2294m n +、2244m n +(0,0,m n >>且m n =),试运用构图法求出这个三角形的面积. 解:(1)72;(2)画图如解图①:第3题解图①21112422243222ABC S a a a a a a a a a =⨯-⨯⨯-⨯⨯-⨯=;(3)构造△ABC 如解图②所示,第3题解图11134432225222ABC S m n m n m n m n mn =⨯-⨯⨯-⨯⨯-⨯⨯=. 4. 阅读下列材料:已知任意三角形的三边长,如何求三角形面积?古希腊的几何学家海伦(HerOn,约公元50年)解决了这个问题,在他的著作《度量》一书中给出了计算公式------海伦公式:()()()S p p a p b p c =---(其中A ,B ,C 是三角形的三边长,2a b c p ++=,S 为三角形的面积),并给出了证明.例如:在△ABC 中,a =3,b =4,c =5,那么它的面积可以这样计算:∵a =3,b =4,c =5, ∴62a b c p ++==, ∴()()()63216S p p a p b p c =---=⨯⨯⨯=.事实上,对于已知任意三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.根据上述材料,解答下列问题:如图,△ABC 中,BC =5,AC =6,AB =9.(1)用海伦公式求△ABC 的面积;(2)求△ABC 得内切圆半径r .第4题图解:(1)∵BC =5,AC =6,AB =9, ∴(569)102p ++==, ∴10(105)(106)(109)102S =⨯---=;(2)如解图,连接AO ,BO ,CO ,第4题解图∵ABC AOB BOC AOC S S S S =++, ∴111102956222r r r =⨯+⨯+⨯, 即956()102222r ++=, ∴10102r =, 解得2r =,∴△ABC 的内切圆半径为2.。
新定义阅读理解题(2019·重庆A卷)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征,在数的学习过程中,我们会对其中一些具有某种特性数进行研究.如学习自然数时,我们研究了奇数、偶数、质数、合数等,现在我们来研究另一种特殊的自然数——“纯数”.定义:对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”.例如:32是“纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2 019和2 020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.【分析】(1)根据纯数的定义逐一判断2 019和2 020即可;(2)判断不大于100的“纯数”的个数,可先从个位数字入手,确定个位数字的特点,再确定十位数字的特点,即可得到对应的“纯数”.【自主解答】1.(2018·重庆A卷)对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2) 如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=m33.求满足D(m)是完全平方数的所有m.2.(2020·原创)若在一个两位正整数N的个位数字与十位数字之间添上数字2,组成一个新的三位数,我们称这个三位数为N的“中2数”,记作F(N),如34的“中2数”为F(34)=324;若将一个两位正整数M加2后得到一个新数,我们称这个新数为M的“尾2数”,记作P(M),如34的“尾2数”为P(34)=36.对于任意一个两位正整数T,令Q(T)=F(T)-P(T)9.(1)判断Q(T)是否为整数,并说明理由;(2)对于一个两位正整数M,若P(M)的各位数之和是M的各位数之和的一半,求M的值.3.(2017·重庆A 卷)对于任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后,可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n),例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位和个位上的数字得到132,这三个新三位数的和为213+321+132=666,∴F(123)=6. (1)计算:F(243),F(617);(2)若s ,t 都是“相异数”,其中s =100x +32,t =150+y(1≤x ≤9,1≤y ≤9,x ,y 都是正整数),规定:k =F (s )F (t ),当F(s)+F(t)=18时,求k 的最大值.4.(2020·原创)事实:我们知道若一个正整数的各个数位上的数字之和能被3整除,则这个数就能被3整除,反之也成立.定义:对于一个两位数m和一个三位数n,它们各个数位上的数字都不为0,将数m任意一个数位上的数字作为一个新的两位数的十位数字,将数n任意一个数位上的数字作为该新的两位数的个位数字,按照这样方式产生的所有新的两位数的和我们称之为“二三联合”,用F(m,n)表示.例如数12与345的“二三联合”为F(12,345)=13+14+15+23+24+25=114.(1)填空:F(11,369)=________ ;F(16,123)=________ ;(2)若一个两位数s=21x+y,一个三位数t=121x+y+199(其中1≤x≤4,1≤y≤5,且x,y均为整数),交换三位数t的百位数字和个位数字得到新数t′,当t′与s的个位数字的3倍的和能被11整除,称这样的两个数s和t为“珊瑚数对”,求所有“珊瑚数对”中的“二三联合”的最大值.5.(2019·九龙坡区模拟)数学不仅是一门科学,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣一个要求.大臣说:“就在这个棋盘上放一些米粒吧,第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒…一直到第64格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里有这么多米吗?题中问题就是求1+21+22+23+…+263是多少?请同学们阅读以下解答过程就知道答案了.设S=1+21+22+23+…+263,则2S=2(1+21+22+23+24+…+263)=2+22+23+24+…+263+264.2S-S=2(1+21+22+23+24+…+263)-(1+21+22+23+24+…+263),即:S=264-1.事实上,按照这位大臣的要求,放满一个棋盘上的64个格子需要1+21+22+23+…+263=(264-1)粒米.那么264-1到底多大呢?借助计算机中的计算器进行计算,可知答案是一个20位数:18 446 744 073 709 551 615,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:(1)我国古代数学名著《算法统宗》中有一问题:“远望巍巍塔七层,红光点点倍加增;共灯三百八十一,请问尖头几盏灯?”意思是一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有多少盏灯?(2)计算:1+3+9+27+…+3n;(3)某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,…,依此类推.求满足如下条件的所有正整数N:10<N<100,且这一列数前N项和为2的正整数幂.请直接写出所有满足条件的软件激活码正整数N的值.参考答案【例1】解:(1)当n=2 019时,n+1=2 020,n+2=2 021,∵9+0+1=10,需进位,∴2 019不是“纯数”;当n=2 020时,n+1=2 021,n+2=2 022,个位:0+1+2=3,不需要进位;十位:2+2+2=6,不需要进位;百位:0+0+0=0,不需要进位;千位:2+2+2=6,不需要进位;∴2 020是“纯数”.(2)当n=0时,n+1=1,n+2=2,则0+1+2=3,不需要进位,∴0是“纯数”;当n=1时,n+1=2,n+2=3,1+2+3=6,不需要进位,∴1是“纯数”;当n=2时,n+1=3,n+2=4,2+3+4=9,不需要进位,∴2是“纯数”;当n=3时,n+1=4,n+2=5,3+4+5=12,需要进位,∴3不是“纯数”,综上可知,当这个自然数是一位自然数时,只能是0,1,2;当这个自然数是两位自然数时,这个自然数可以是10,11,12,20,21,22,30,31,32,共9个,当这个自然数是三位自然数时,100是“纯数”,∴不大于100的自然数中,“纯数”的个数为3+9+1=13.跟踪训练1.解:(1)1 188;2 475; 9 900.(答案不唯一)猜想:任意一个“极数”是99的倍数.理由如下:设任意一个“极数”为xy(9-x)(9-y)(其中1≤x≤9,0≤y≤9,且x,y均为整数),则xy(9-x)(9-y)=1 000x+100y+10(9-x)+9-y=1 000x+100y+90-10x+9-y=99(10x+y+1).∵x,y为整数,∴10x+y+1为整数,∴任意一个“极数”是99的倍数.(2)设m=xy(9-x)(9-y),由题意可知,D(m)=99(10x+y+1)33=3(10x+y+1),∵1≤x≤9,0≤y≤9,∴33≤3(10x+y+1)≤300,∵D(m)是完全平方数,∴D(m)可取的值为36,81,144,225,当D(m)=36时,3(10x +y +1)=36,则x =1,y =1,m =1 188; 当D(m)=81时,3(10x +y +1)=81,则x =2,y =6,m =2 673; 当D(m)=144时,3(10x +y +1)=144,则x =4,y =7,m =4 752; 当D(m)=225时,3(10x +y +1)=225,则x =7,y =4,m =7 425.综上所述,满足D(m)为完全平方数的m 的值为1 188,2 673,4 752,7 425. 2.解:(1)Q(T)是整数.理由如下: 设两位正整数T 为ab ,则T =10a +b , ∴F(T)=a2b =100a +20+b , P(T)=10a +b +2,∴F(T)-P(T)=100a +20+b -(10a +b +2) =90a +18=9(10a +2), ∵a 为整数,∴10a+2为整数, ∴Q(T)=F (T )-P (T )9是整数.(2)设M =ab ,1≤a≤9,0≤b≤9, ∴M+2=10a +b +2,∵M+2的各数位上的数之和比M 各数位上的数之和小, ∴M+2后,个位发生了进位,∴b≥8,且M +2=10(a +1)+(b +2-10), ∴a+1+b +2-10=12(a +b),整理得a +b =14,∴a=6,b =8,或a =5,b =9,∴M 为68或59.3.解:(1)F(243)=(423+342+234)÷111=9, F(617)=(167+716+671)÷111=14. (2)∵s,t 都是相异数,∴F(s)=(302+10x +230+x +100x +23)÷111=x +5, F(t)=(510+y +100y +51+105+10y)÷111=y +6, ∵F(s)+F(t)=18,∴x+5+y +6=x +y +11=18, ∴x+y =7,∵1≤x≤9,1≤y≤9,且x ,y 都是正整数,∴⎩⎪⎨⎪⎧x =1y =6或⎩⎪⎨⎪⎧x =2y =5或⎩⎪⎨⎪⎧x =3y =4或⎩⎪⎨⎪⎧x =4y =3或⎩⎪⎨⎪⎧x =5y =2或⎩⎪⎨⎪⎧x =6y =1, ∵s 是相异数,∴x≠2,x≠3, ∵t 是相异数,∴y≠1,y≠5,∴满足条件的有⎩⎪⎨⎪⎧x =1y =6或⎩⎪⎨⎪⎧x =4y =3或⎩⎪⎨⎪⎧x =5y =2,∴⎩⎪⎨⎪⎧F (s )=6F (t )=12或⎩⎪⎨⎪⎧F (s )=9F (t )=9或⎩⎪⎨⎪⎧F (s )=10F (t )=8, ∴k=F (s )F (t )=612=12或k =F (s )F (t )=99=1或k =F (s )F (t )=108=54,∵12<1<54, ∴k 的最大值为54.4.解:(1)F(11,369)=13+16+19+13+16+19=96; F(16,123)=11+12+13+61+62+63=222.(2)已知s=21x+y=20x+(x+y),t=121x+y+199=100(x+2)+20x+(x+y -1),∵1≤x≤4,1≤y≤5,且x,y均为整数,∴t′+3(x+y)=100(x+y-1)+20x+x+2+3(x+y)=124x+103y-98,∵t′+3(x+y)能被11整除,∴t′+3(x+y)11=121x+99y-9911+3x+4y+111=11x+9y-9+3x+4y+111为整数,∴3x+4y+111是整数,∵1≤x≤4,1≤y≤5,∴8≤3x+4y+1≤33,∴当3x+4y+1=11时,x=2,y=1,此时s=43,t=442;当3x+4y+1=22时,得x=3,y=3,此时s=66,t=565;当3x+4y+1=33时,x=4,y=5,此时s=89,t=688.∴F(s,t)的最大值为F(89,688)=554.5.解:(1)设塔的顶层有x盏灯,依题意得:x+21x+22x+23x+24x+25x+26x=381,解得:x=3,答:塔的顶层共有3盏灯.(2)设S=1+3+9+27+…+3n,则3S=3(1+3+9+27+…+3n)=3+9+27+…+3n+3n+1,∴3S-S=(3+9+27+3n+3n+1)-(1+3+9+27+3n),∴2S=3n+1-1,∴S=3n +1-12, 即:1+3+9+27+…+3n =3n +1-12. (3)由题意这列数分n +1组:前n 组含有的项数分别为:1,2,3,…,n ,最后一组x 项,根据材料可知每组和公式,求得前n 组每组的和分别为:21-1,22-1,23-1,…,2n -1,前n 组共有项数为N′=1+2+3+…+n =n (n +1)2, 前n 组所有项数的和为S n =21-1+22-1+23-1+…+2n -1=(21+22+23+…+2n )-n =2n +1-2-n ,由题意可知:2n +1为2的整数幂.只需最后一组x 项将-2-n 消去即可,则①1+2+(-2-n)=0,解得:n =1,总项数为N =1×(1+1)2+2=3,不满足10<N<100,②1+2+4+(-2-n)=0,解得:n =5,总项数为N =5×(5+1)2+3=18,满足10<N<100,③1+2+4+8+(-2-n)=0,解得:n =13,总项数为N =13×(13+1)2+4=95,满足10<N<100,④1+2+4+8+16+(-2-n)=0,解得:n =29,总项数为N =29×(29+1)2+5=440,不满足10<N<100,∴所有满足条件的软件激活码正整数N 的值为:18或95.。
2022年中考历史真题分项汇编(全国通用)(第02期)专题18 民族团结与祖国统一、国防建设与外交成就考点77 民族大团结1.(2022年黑龙江大庆)下图为黑龙江省大庆市政区图其中①是杜尔伯特蒙古族自治县,它的建立体现了我国实行的政治制度是A.民族区域自治制度B.与中国共产党领导的多党合作和政治协商制度C.人民代表大会制度D.选举制度2.(2022年广西梧州)广西在农历三月三开展壮族歌圩、抢花炮、打扁担、打铜鼓等民族风俗活动,让孩子们感受壮乡民族风情、壮族传统文化的魅力。
这反映少数民族重视A.经济开发B.文化传承C.科技创新D.民族平等3.(2022年广西北部湾经济区)历史学习要学会区分史实和史论,史论就是根据史实得出的历史结论。
下列属于史论的是A.民族区域自治制度对维护民族团结具有重大意义B.周恩来在万隆会议上提出了“求同存异”的方针C.袁隆平经多年反复试验成功培育出籼型杂交水稻D.中国于2001年12月成为了世界贸易组织的成员4.(2022年广东)如下表。
这表明,20世纪60年代,我国民族自治地方民族自治地方工业发展情况工业总产值1957年工业总产值为29.5亿元,1965年为66.8亿元,增长133.2%。
工业主要产品产量1963年同1958年相比,发电量增长2.5倍,钢产量增长3.5倍,棉纱产量增长2倍,化肥产量增长20多倍。
A.工业取得较大成就B.建立了社会主义公有制C.彻底摆脱贫困落后D.文化教育事业迅速发展5.(2022年山东临沂)阅读材料,结合所学知识回答问题材料一习近平提出“中国梦”、邓小平提出“小康”等理念都是源自儒家学说。
儒家学说对历代中国人的世界观都有着深远的影响。
——摘自共产党员网(1)“中国梦”这一“理念”的思想来源最早可以追溯到我国古代的哪位思想家?这位思想家处理人际关系的最高行为准则和道德规范是什么?中国全面建成“小康”社会的根本保证是什么?材料二每个人都有理想和追求,都有自己的梦想。
2018年中考复习专题2(新定义阅读理解问题)新定义学习型阅读理解题,是指题目中首先给出一个新定义(新概念或新公式),通过阅读题目提供的材料,理解新定义,再通过对新定义的理解来解决题目提出的问题。
其主要目的是通过对新定义的理解与运用来考查学生的自学能力,便于学生养成良好的学习习惯。
解决此类题的关键是(1)深刻理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论;(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”; 归纳“举例”提供的做题方法;归纳“举例”提供的分类情况;(3)依据新定义,运用类比、归纳、联想、分类讨论以及数形结合的数学思想方法解决题目中需要解决的问题。
★例1:【2014——2015海淀期末】对于正整数n ,定义210()=()10,,≥n n F n f n n ⎧<⎨⎩,其中f(n )表示n 的首位数字、末位数字的平方和.例如:F(6)=62=36,F(123)=f(123)=12+32=10.规定F 1(n )=F(n ),F k +1(n )=F(F K (n ))(K 为正整数).例如:F 1(123)=F(123)=10,F 2(123)=F(F 1(123))=F(10)=1.(1)求:F 2(4)=,F 2015(4)=; (2)若F 3m (4)=89,则正整数m 的最小值是.答案:(1)37,26;(2)6.练习①:【2013通州一模】定义一种对正整数n 的“F 运算”:①当n 为奇数时,结果为31n +;②当n 为偶数时,结果为k n 2(其中k 是使得k n 2为奇数的正整数),并且运算重复进行.例如,取6n =,则:12363105F F F −−−→−−−→−−−→① ②②第次第次第次……,若1n =,则第2次“F 运算”的结果是 ;若13n =,则第2013次“F 运算”的结果是 . 答案:1,4练习②:【2014门头沟二模】我们知道,一元二次方程x 2=-1没有实数根,即不存在一个实数的平方等于-1,若我们规定一个新数“i ”,使其满足i 2=-1 (即方程x 2=-1有一个根为i ),并且进一步规定: 一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有i 1=i ,i 2=-1,i 3= i 2·i =(-1)(-1)·i =-i , i 4=( i 2)2=(-1) 2=1,从而对任意正整数n ,则i 6=______________;由于i 4n+1=i 4n ﹒i=(i 4)n ﹒i=i,同理可得i 4n+2=﹣1, i 4n+3=﹣i , i 4n =1那么i + i 2+ i 3+ i 4+…+ i 2012+ i 2013的值为_____ 答案:-1,i★例2:【2009宣武一模】任何一个正整数n 都可以进行这样的分解:n =p ×q (p 、q 是正整数,且p ≤q ),如果p ×q 在n 的所有这种分解中两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解,并规定:()p F n q=.例如18可以分解成1×18、2×9或3×6,这时就有31(18)62F ==.给出下列关于F(n )的说法:(1)1(2)2F =;(2)3(24)8F =;(3)(27)3F =;(4)若n 是一个完全平方数,则F(n )=1.其中正确说法的个数是( )A.1 B.2 C.3 D.4 ★例3:【2012年北京中考】在平面直角坐标系x o y 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下定义:若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|;若|x 1-x 2|<|y 1-y 2|,则点P 1与点P 2的“非常距离”为|y 1-y 2|.例如:点P 1(1,2),点P 2(3,5),因为|1-3|<|2-5|,所以点P 1与点P 2的“非常距离”为|2-5|=3,也就是图1中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q 与垂直于x 轴的直线P 2Q 的交点)。
(王泽平)2018中考亮点好题汇编——阅读性新定义专题1.(安徽第18题)观察以下等式:第1个等式:11+20+11×20=1 第2个等式:21+31+21×31=1第3个等式:31+42+31×42=1第4个等式:41+53+41×53=1第5个等式:51+64+51×64=1……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n 个等式:用含n 的等式表示),并证明.【分析】以序号n 为前提,依此观察每个分数,可以用发现,每个分母在n 的基础上依次加1,每个分子分别是1和n ﹣1【解答】解:(1)根据已知规律,第6个分式分母为6和7,分子分别为1和5 故应填:(2)根据题意,第n 个分式分母为n 和n +1,分子分别为1和n ﹣1 故应填:证明:=∴等式成立【点评】本题是规律探究题,同时考查分式计算.解答过程中,要注意各式中相同位置数字的变化规律,并将其用代数式表示出来.2.(甘肃定西17题)如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为πa.【分析】首先根据等边三角形的性质得出∠A=∠B=∠C=60°,AB=BC=CA=a,再利用弧长公式求出的长=的长=的长==,那么勒洛三角形的周长为×3=πa.【解答】解:如图.∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的长=的长=的长==,∴勒洛三角形的周长为×3=πa.故答案为πa.【点评】本题考查了弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),也考查了等边三角形的性质.3.(广西省桂林18题)将从1开始的连续自然数按右图规律排列:规定位于第m行,第n列的自然数10记为(3,2),自然数15记为(4,2)......按此规律,自然数2018记为【分析】根据表格可知,每一行有4个数,其中奇数行的数字从左往右是由小到大排列;偶数行的数字从左往右是由大到小排列.用2018除以4,根据除数与余数确定2018所在的行数,以及是此行的第几个数,进而求解即可.【解答】解:由题意可得,每一行有4个数,其中奇数行的数字从左往右是由小到大排列;偶数行的数字从左往右是由大到小排列. ∵2018÷4=504…2, 504+1=505,∴2018在第505行,∵奇数行的数字从左往右是由小到大排列, ∴自然数2018记为(505,2). 故答案为(505,2).【点评】本题考查了规律型:数字的变化类,通过观察得出表格中的自然数的排列规律是解题的关键.4.(广州中考第10题)在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m ,其行走路线如图5所示,第1次移动到A 1,第2次移动到A 2,…,第次移动到A n ,则△OA 2A 2018的面积是( m 2) . (A)504 (B) 21009(C) 21011 (D)10091【分析】由OA4n=2n知OA2018=+1=1009,据此得出A2A2018=1009﹣1=1008,据此利用三角形的面积公式计算可得.【解答】解:由题意知OA4n=2n,∵2018÷4=504…2,∴OA2018=+1=1009,∴A2A2018=1009﹣1=1008,则△OA2A2018的面积是×1×1008=504m2,故选:A.【点评】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.5.(贵州遵义第15题).现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则牛一羊一值金二两.【分析】设一牛值金x两,一羊值金y两,根据“牛五羊二值金八两;牛二羊五值金六两”,即可得出关于x、y的二元一次方程组,两方程相加除以7,即可求出一牛一羊的价值.【解答】解:设一牛值金x两,一羊值金y两,根据题意得:,(①+②)÷7,得:x+y=2.故答案为:二.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.6.(河北第7题)有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A.BC.D.【分析】直接利用已知盘子上的物体得出物体之间的重量关系进而得出答案.【解答】解:设的质量为x,的质量为y,的质量为:a,假设A正确,则,x=1.5y,此时B,C,D选项中都是x=2y,故A选项错误,符合题意.故选:A.【点评】此题主要考查了等式的性质,正确得出物体之间的重量关系是解题关键.7.(湖北施恩 16题)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为个.【分析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别为2、0×6、3×6×6、2×6×6×6、1×6×6×6×6,然后把它们相加即可. 【解答】解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1838, 故答案为:1838.8.(湖北荆门第17题) 将数1个1,2个12,3个13,…,n 个1n(n 为正整数)顺次排成一列:11111111,,,,,,,,,22333n n,记11a =,212a =,312a =,…,11S a =,212S a a =+, 3123S a a a =++,…,12n n S a a a =+++,则2018S =.【分析】由1+2+3+…+n=结合+2=2018,可得出前2018个数里面包含:1个1,2个,3个,…,63个,2个,进而可得出S 2018=1×1+2×+3×+ (63)+2×=63,此题得解. 【解答】解:∵1+2+3+…+n=,+2=2018,∴前2018个数里面包含:1个1,2个,3个, (63),2个,∴S2018=1×1+2×+3×+…+63×+2×=1+1+…+1+=63.故答案为:63.【点评】本题考查了规律型中数字的变化类,根据数列中数的排列规律找出“前2018个数里面包含:1个1,2个,3个,…,63个,2个”是解题的关键.9.(湖北宜昌第8题)1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a,b,c的值分别为()A.a=1,b=6,c=15 B.a=6,b=15,c=20C.a=15,b=20,c=15 D.c=20,b=15,c=6【分析】根据图形中数字规模:每个数字等于上一行的左右两个数字之和,可得a、b、c的值.【解答】解:根据图形得:每个数字等于上一行的左右两个数字之和,∴a=1+5=6,b=5=10=15,c=10+10=20,故选:B.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.10.(湖南省常德第8题)阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定:=a×d﹣b×c,例如:=3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组的解可以利用2×2阶行列式表示为:;其中D=,D x=,D y=.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A.D==﹣7 B.D x=﹣14C.D y=27 D.方程组的解为【分析】分别根据行列式的定义计算可得结论.【解答】解:A、D==﹣7,正确;B、D x==﹣2﹣1×12=﹣14,正确;C、D y==2×12﹣1×3=21,不正确;D、方程组的解:x===2,y===﹣3,正确;故选:C.【点评】本题是阅读理解问题,考查了2×2阶行列式和方程组的解的关系,理解题意,直接运用公式计算是本题的关键.11.(湖南省娄底第12题)已知:[x]表示不超过x的最大整数.例:[3.9]=3,[﹣1.8]=﹣2.令关于k的函数f(k)=[]﹣[](k是正整数).例:f(3)=[]﹣[]=1.则下列结论错误的是()A.f(1)=0 B.f(k+4)=f(k)C.f(k+1)≥f(k)D.f(k)=0或1【分析】根据题意可以判断各个选项是否正确,从而可以解答本题.【解答】解:f(1)=[]﹣[]=0﹣0=0,故选项A正确;f(k+4)=[]﹣[]=[+1]﹣[+1]=[]﹣[]=f(k),故选项B 正确;C、当k=3时,f(3+1)=[]﹣[]=1﹣1=0,而f(3)=1,故选项C错误;D、当k=3+4n(n为自然数)时,f(k)=1,当k为其它的正整数时,f(k)=0,所以D选项的结论正确;故选:C.【点评】本题考查解一元一次不等式组、函数值,解答本题的关键是明确题意,可以判断各个选项中的结论是否成立.12.(山东省滨州第12题)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A. BC.D.【分析】根据定义可将函数进行化简.【解答】解:当﹣1≤x<0,[x]=﹣1,y=x+1当0≤x<1时,[x]=0,y=x当1≤x<2时,[x]=1,y=x﹣1……故选:A.【点评】本题考查函数的图象,解题的关键是正确理解[x]的定义,然后对函数进行化简,本题属于中等题型.13.(山东德州第17题)对于实数a,b,定义运算“◆”:a◆ b=,例如4◆3,因为4>3.所以4◆3==5.若x,y满足方程组,则x◆y=.【分析】根据二元一次方程组的解法以及新定义运算法则即可求出答案.【解答】解:由题意可知:,解得:∵x<y,∴原式=5×12=60故答案为:60【点评】本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法以及正确理解新定义运算法则,本题属于基础题型.13.(山东省泰安第16题)观察“田”字中各数之间的关系:则c的值为.【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【解答】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为28.观察左下和右上角,每个“田”字的右上角数字依次比左下角大0,2,4,6等,到第8个图多14.则c=28+14=270故应填:270或28+14【点评】本题以探究数字规律为背景,考查学生的数感.解题时注意同等位置的数字变化规律,用代数式表示出来.15.(山东淄博第17题)将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是.【分析】观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;【解答】解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.【点评】本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.16.(四川自贡第17题)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有个○.【分析】每个图形的最下面一排都是1,另外三面随着图形的增加,每面的个数也增加,据此可得出规律,则可求得答案.【解答】解:观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…,第n个图形共有:1+3n,∴第2018个图形共有1+3×2018=6055,故答案为:6055.【点评】本题为规律型题目,找出图形的变化规律是解题的关键,注意观察图形的变化.17.(浙江义乌第8题)利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20,如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是()A.B. C.D.【分析】根据规定的运算法则分别计算出每个选项第一行的数即可作出判断.【解答】解:A、第一行数字从左到右依次为1、0、1、0,序号为1×23+0×22+1×21+0×20=10,不符合题意;B、第一行数字从左到右依次为0,1,1,0,序号为0×23+1×22+1×21+0×20=6,符合题意;C、第一行数字从左到右依次为1,0,0,1,序号为1×23+0×22+0×21+1×20=9,不符合题意;D、第一行数字从左到右依次为0,1,1,1,序号为0×23+1×22+1×21+1×20=7,不符合题意;故选:B.【点评】本题主要考查图形的变化类,解题的关键是根据题意弄清题干规定的运算规则,并将图形的变化问题转化为数字问题.18.(山西第21题)请阅读下列材料,并完成相应的任务: 在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办消去.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:请问如何在一个三角形ABC 的AC 和BC 两边上分别取一点X 和Y ,使得AX BY XY ==.(如图)解决这个问题的操作步骤如下:第一步,在CA 上作出一点D ,使得CD CB =,连接BD .第二步,在CB 上取一点'Y ,作'//Y Z CA ,交BD 于点'Z ,并在AB 上取一点'A ,使''''Z A Y Z =.第三步,过点A 作//''AZ A Z ,交BD 于点Z .第四步,过点Z 作//ZY AC ,交BC 于点Y ,再过点Y 作//YX ZA ,交AC 于点X .则有AX BY XY ==.下面是该结论的部分证明:证明:∵//''AZ A Z ,∴''BA Z BAZ ∠=∠,又∵''A BZ ABZ ∠=∠.∴''BA Z BAZ ∆∆. ∴'''Z A BZ ZA BZ=. 同理可得'''Y Z BZ YZ BZ =.∴''''Z A Y Z ZA YZ=. ∵''''Z A Y Z =,∴ZA YZ =.任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ 的形状,并加以证明;(2)请再仔细阅读上面的操作步骤....,在(1)的基础上完成AX BY XY ==的证明过程; (3)上述解决问题的过程中,通过作平行线把四边形'''BA Z Y 放大得到四边形BAZY ,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是_ D(或位似)_______. A.平移 B.旋转 C.轴对称 D.位似【分析】(1)四边形AXYZ是菱形.首先由“两组对边相互平行的四边形是平行四边形”推知四边形AXYZ是平行四边形,再由“邻边相等的平行四边形是菱形”证得结论;(2)利用菱形的四条边相等推知AX=XY=YZ.根据等量代换得到AX=BY=XY.(3)根据位似变换的定义填空.【解答】解:(1)四边形AXYZ是菱形.证明:∵ZY∥AC,YX∥ZA,∴四边形AXYZ是平行四边形.∵ZA=YZ,∴平行四边形AXYZ是菱形.(2)证明:∵CD=CB,∴∠1=∠3.∵ZY∥AC,∴∠1=∠2.∴∠2=∠3.∴YB=YZ.∵四边形AXYZ是菱形,∴AX=XY=YZ.∴AX=BY=XY.(3)通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y 的位置,此时四边形BA'Z'Y'∽四边形BAZY,所以该变换形式是位似变换.故答案是:D(或位似).【点评】考查了相似综合题型,掌握菱形的判定与性质,相似三角形的判定与性质,位似变换,位似图形的两个图形必须是相似形.19.(山西2题)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》 B.《几何原本》 C.《海岛算经》 D.《周髀算经》【分析】根据数学常识逐一判别即可得.【解答】解:A、《九章算术》是中国古代数学专著,作者已不可考,它是经历代各家的增补修订,而逐渐成为现今定本的;B、《几何原本几何原本》是古希腊数学家欧几里得所著的一部数学著作;C、《海岛算经》是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所撰;D、《周髀算经》原名《周髀》,是算经的十书之一,中国最古老的天文学和数学著作;故选:B.【点评】本题主要考查数学常识,解题的关键是了解我国古代在数学领域的成就.20.(贵州黔东南第25题)“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n中黑点的个数分别是60个、6n个.请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第5个点阵中有61 个圆圈;第n个点阵中有(3n2﹣3n+1)个圆圈.(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.【分析】根据规律求得图10中黑点个数是6×10=60个;图n中黑点个数是6n 个;(1)第2个图中2为一块,分为3块,余1,第2个图中3为一块,分为6块,余1;按此规律得:第5个点阵中5为一块,分为12块,余1,得第n个点阵中有:n ×3(n﹣1)+1=3n2﹣3n+1,(2)代入271,列方程,方程有解则存在这样的点阵.【解答】解:图10中黑点个数是6×10=60个;图n中黑点个数是6n个,故答案为:60个,6n个;(1)如图所示:第1个点阵中有:1个,第2个点阵中有:2×3+1=7个,第3个点阵中有:3×6+1=17个,第4个点阵中有:4×9+1=37个,第5个点阵中有:5×12+1=60个,…第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,故答案为:60,3n2﹣3n+1;(2)3n2﹣3n+1=271,n2﹣n﹣90=0,(n﹣10)(n+9)=0,n1=10,n2=﹣9(舍),∴小圆圈的个数会等于271,它是第10个点阵.【点评】本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键.21.(贵州遵义第16题)每一层三角形的个数与层数的关系如下图所示,则第2018层的三角形个数为_________【分析】根据题意和图形可以发现随着层数的变化三角形个数的变化规律,从而可以解答本题.【解答】解:由图可得,第1层三角形的个数为:1,第2层三角形的个数为:3,第3层三角形的个数为:5,第4层三角形的个数为:7,第5层三角形的个数为:9,……第n层的三角形的个数为:2n﹣1,∴当n=2018时,三角形的个数为:2×2018﹣1=4035,故答案为:4035.【点评】本题考查规律型:图形的变化类,解答本题的关键是明确题意,发现题目中三角形个数的变化规律,利用数形结合的思想解答.22.(山东聊城第17题)若x 为实数,则[]x 表示不大于x 的最大整数,例如[1.6]1=,[]3π=,[ 2.82]3-=-等. []1x +是大于x 的最小整数,对任意的实数x 都满足不等式[][]1x x x ≤<+. ①,利用这个不等式①,求出满足[]21x x =-的所有解,其所有解为 .【分析】根据题意可以列出相应的不等式,从而可以求得x 的取值范围,本题得以解决.【解答】解:∵对任意的实数x 都满足不等式[x ]≤x <[x ]+1,[x ]=2x ﹣1, ∴2x ﹣1≤x <2x ﹣1+1, 解得,0<x ≤1, ∵2x ﹣1是整数, ∴x=0.5或x=1,故答案为:x=0.5或x=1.【点评】本题考查了解一元一次不等式组,解答本题的关键是明确题意,会解答一元一次不等式.23.(山东潍坊第15题)用教材中的计算器进行计算,开机后依次按下,把显示结果输入如图的程序中,则输出的结果是 .【分析】先根据计算器计算出输入的值,再根据程序框图列出算式,继而根据二次根式的混合运算计算可得.【解答】解:由题意知输入的值为32=9,则输出的结果为[(9÷3)﹣]×(3+)=(3﹣)×(3+)=9﹣2=7故答案为:7.【点评】本题主要考查计算器﹣基础知识,解题的关键是根据程序框图列出算式,并熟练掌握二次根式的混合运算顺序和运算法则.24.(山东枣庄第18题)将从1开始的连续自然数按以下规律排列:第1行1第2行234第3行98765第4行10111213141516第5行252423222120191817…则2018在第行.【分析】通过观察可得第n 行最大一个数为n 2,由此估算2018所在的行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025, ∴2018在第45行. 故答案为:45.【点评】本题考查了数字的变化规律,解题的关键是通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.25、(四川遂宁第22题)请阅读以下材料:已知向量a ⃗=(x 1,y 1),b⃗⃗=(x 2,y 2)满足下列条件: ○1|a ⃗|=√x 12+y 12,|b ⃗⃗|=√x 22+y 22 ○2a ⃗⨂b ⃗⃗=|a ⃗|×|b ⃗⃗|cosα(角a 的取值范围是00<a<900) ○3a ⃗⨂b ⃗⃗=x 1x 2+y 1y 2 利用上述所给条件解答问题:如:已知a ⃗=(1,√3),b⃗⃗=(−√3,3),求角a 的大小 解:∵|a ⃗|=√x 12+y 12=√12+(√3)2=2|b ⃗⃗|=√x 22+y 22=√(−√3)2+32=√12=2√3∴a ⃗⨂b ⃗⃗⃗=|a ⃗|∙|b⃗⃗|cosa =2×2√3cosa =4√3cosa 又∵a ⃗⨂b⃗⃗=x 1x 2+y 1y 2=1×(−√3)+√3×3=2√3 ∴4√3cosa =2√3cosa =12,∴a =60°解a 的值为600请仿照以上解答过程,完成下列问题: 已知a ⃗=(1,0),b ⃗⃗=(1,−1),求角a 的大小【分析】模仿例题,根据关于cosα的方程即可解决问题.【解答】解:∵||===1,===,∴⊗=||×||cosα=cosα又∵⊗=x1x2+y1y2=l×1+0×(﹣1)=1∴cosα=1∴cosα=,∴α=45°【点评】本题考查平面向量、坐标与图形的性质、解直角三角形等知识,解题的关键是理解题意,学会模仿例题解决问题,属于中考常考题型.36.(四川宜宾第13题)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积来近似估计圆O的面积,则S= .(结果保留根号)【分析】根据正多边形的定义可得出△ABO为等边三角形,根据等边三角形的性质结合OM的长度可求出AB的长度,再利用三角形的面积公式即可求出S的值.【解答】解:依照题意画出图象,如图所示.∵六边形ABCDEF为正六边形,∴△ABO为等边三角形,∵⊙O的半径为1,∴OM=1,∴BM=AM=,∴AB=,∴S=6S=6×××1=2.△ABO故答案为:2.【点评】本题考查了正多边形和圆、三角形的面积以及数学常识,根据等边三角形的性质求出正六边形的边长是解题的关键.27.(浙江嘉兴第24题)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.(1)概念理解:如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是”等高底”三角形,请说明理由.(2)问题探究:如图2,△ABC是“等高底”三角形,BC是”等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA′交直线BC于点D.若点B是△AA′C的重心,求的值.(3)应用拓展:如图3,已知l1∥l2,l1与l2之间的距离为2.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l2上,有一边的长是BC的倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,A′C所在直线交l2于点D.求CD的值..【分析】(1)过A作AD⊥BC于D,则△ADC是直角三角形,∠ADC=90°,依据∠ACB=30°,AC=6,可得AD=AC=3,进而得到AD=BC=3,即△ABC是“等高底”三角形;(2)依据△ABC是“等高底”三角形,BC是“等底”,可得AD=BC,依据△ABC关于BC所在直线的对称图形是△A'BC,点B是△AA′C的重心,即可得到BC=2BD,设BD=x,则AD=BC=2x,CD=3x,由勾股定理得AC=x,即可得到==;(3)①当AB=BC时,画出图形分两种情况分别求得CD=x=或CD= AC=2;当AC=BC时,画出图形分两种情况讨论,求得CD=AB=BC=2.【解答】解:(1)△ABC是“等高底”三角形;理由:如图1,过A作AD⊥BC于D,则△ADC是直角三角形,∠ADC=90°,∵∠ACB=30°,AC=6,∴AD=AC=3,∴AD=BC=3,即△ABC是“等高底”三角形;(2)如图2,∵△ABC是“等高底”三角形,BC是“等底”,∴AD=BC,∵△ABC关于BC所在直线的对称图形是△A'BC,∴∠ADC=90°,∵点B是△AA′C的重心,∴BC=2BD,设BD=x,则AD=BC=2x,CD=3x,由勾股定理得AC=x,∴==;(3)①当AB=BC时,Ⅰ.如图3,作AE⊥BC于E,DF⊥AC于F,∵“等高底”△ABC的“等底”为BC,l1∥l2,l1与l2之间的距离为2,AB=BC,∴BC=AE=2,AB=2,∴BE=2,即EC=4,∴AC=2,∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,∴∠DCF=45°,设DF=CF=x,∵l1∥l2,∴∠ACE=∠DAF,∴==,即AF=2x,∴AC=3x=2,∴x=,CD=x=.Ⅱ.如图4,此时△ABC等腰直角三角形,∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,∴△ACD是等腰直角三角形,∴CD=AC=2.②当AC=BC时,Ⅰ.如图5,此时△ABC是等腰直角三角形,∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,∴A'C⊥l1,∴CD=AB=BC=2;Ⅱ.如图6,作AE⊥BC于E,则AE=BC,∴AC=BC=AE,∴∠ACE=45°,∴△ABC绕点C按顺时针方向旋转45°,得到△A'B'C时,点A'在直线l1上,∴A'C∥l2,即直线A'C与l2无交点,综上所述,CD的值为,2,2.【点评】本题属于相似形综合题,主要考查了重心的性质,等腰直角三角形的性质,旋转的性质以及勾股定理的综合运用,解决问题的关键是依据题意画出图形,根据分类讨论的思想进行解答.28.(贵州贵阳第18题)如图①,在Rt△ABC中,以下是小亮探究与之间关系的方法:∵sinA=,sinB=∴c=,c=∴=根据你掌握的三角函数知识.在图②的锐角△ABC中,探究、、之间的关系,并写出探究过程.【分析】三式相等,理由为:过A作AD⊥BC,BE⊥AC,在直角三角形ABD中,利用锐角三角函数定义表示出AD,在直角三角形ADC中,利用锐角三角函数定义表示出AD,两者相等即可得证.【解答】解:==,理由为:过A作AD⊥BC,BE⊥AC,在Rt△ABD中,sinB=,即AD=csinB,在Rt△ADC中,sinC=,即AD=bsinC,∴csinB=bsinC,即=,同理可得=,则==.【点评】此题考查了解直角三角形,熟练掌握锐角三角函数定义是解本题的关键.。
专题18 新定义与阅读理解题1.(2019•湖北宜昌•3分)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记p =2a b c++,那么三角形的面积为S 如图,在△ABC 中,∠A ,∠B ,∠C 所对的边分别记为a ,b ,c ,若a =5,b =6,c =7,则△ABC 的面积为A .B .C .18D .192【答案】A【解析】∵a =7,b =5,c =6,∴p =5672++=9,∴△ABC 的面积S .故选A .【名师点睛】考查了二次根式的化简,解题的关键是代入后正确的运算,难度不大.2.(2019•山东临沂)一般地,如果x 4=a (a ≥0),则称x 为a 的四次方根,一个正数a 的四次方根有两个.它=10,则m =__________. 【答案】±10=10,∴m 4=104,∴m =±10.故答案为:±10.【名师点睛】本题考查了方根的定义.关键是求四次方根时,注意正数的四次方根有2个.3.(2019•湖北十堰)对于实数a ,b ,定义运算“◎”如下:a ◎b =(a +b )2﹣(a ﹣b )2.若(m +2)◎(m ﹣3)=24,则m =__________. 【答案】﹣3或4【解析】根据题意得[(m +2)+(m ﹣3)]2﹣[(m +2)﹣(m ﹣3)]2=24, (2m ﹣1)2﹣49=0,(2m ﹣1+7)(2m ﹣1﹣7)=0, 2m ﹣1+7=0或2m ﹣1﹣7=0, 所以m 1=﹣3,m 2=4. 故答案为:﹣3或4.【名师点睛】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.4.(2019•湖南常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M 、N 的坐标分别为(0,1),(0,-1),P 是二次函数y =41x 2的图象上在第一象限内的任意一点,PQ 垂直直线y =-1于点Q ,则四边形PMNQ 是广义菱形.其中正确的是__________.(填序号) 【答案】①④【解析】①根据广义菱形的定义,正方形和菱形都有一组对边平行,一组邻边相等,①正确; ②平行四边形有一组对边平行,没有一组邻边相等,②错误; ③由给出条件无法得到一组对边平行,③错误;④设点P (m ,14m 2),则Q (m ,-1),∴MP 14m 2+1|,PQ =14m 2+1, ∵点P 在第一象限,∴m >0,∴MP =14m 2+1,∴MP =PQ , 又∵MN ∥PQ ,∴四边形PMNQ 是广义菱形.④正确. 故答案为:①④.【名师点睛】本题考查新定义,二次函数的性质,特殊四边形的性质;熟练掌握平行四边形,菱形,二次函数的图象及性质,将广义菱形的性质转化为已学知识是求解的关键.5.(2019•浙江湖州)七巧板是我国祖先的一项卓越创造,被誉为“东方魔板”.由边长为4的正方形ABCD 可以制作一副如图1所示的七巧板,现将这副七巧板在正方形EFGH 内拼成如图2所示的“拼搏兔”造型(其中点Q 、R 分别与图2中的点E 、G 重合,点P 在边EH 上),则“拼搏兔”所在正方形EFGH 的边长是__________.【答案】【解析】如图2中,连接EG,作GM⊥EN交EN的延长线于M.在Rt△EMG中,∵GM=4,EM=2+2+4+4=12,∴EG∴EH【名师点睛】本题考查正方形的性质,七巧板,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.6.(2019•广西贵港)我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,且b2﹣4a>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x=﹣1或x=3时,函数的最小值是0;⑤当x=1时,函数的最大值是4.其中正确结论的个数是__________.【答案】4【解析】①∵(﹣1,0),(3,0)和(0,3)坐标都满足函数y=|x2﹣2x﹣3|,∴①是正确的;②从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线x=1,因此②也是正确的;③根据函数的图象和性质,发现当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大,因此③也是正确的;④函数图象的最低点就是与x轴的两个交点,根据y=0,求出相应的x的值为x=﹣1或x=3,因此④也是正确的;⑤从图象上看,当x<﹣1或x>3,函数值要大于当x=1时的y=|x2﹣2x﹣3|=4,因此⑤时不正确的;故答案是:4.【名师点睛】理解“鹊桥”函数y=|ax2+bx+c|的意义,掌握“鹊桥”函数与y=|ax2+bx+c|与二次函数y=ax2+bx+c 之间的关系;两个函数性质之间的联系和区别是解决问题的关键;二次函数y=ax2+bx+c与x轴的交点、对称性、对称轴及最值的求法以及增减性应熟练掌握.7.(2019•四川自贡)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:设S=1+2+22+…+22017+22018①,则2S=2+22+…+22018+22019②,②﹣①得2S﹣S=S=22019﹣1,∴S=1+2+22+…+22017+22018=22019﹣1.请仿照小明的方法解决以下问题:(1)1+2+22+…+29=__________;(2)3+32+…+310=__________;(3)求1+a+a2+…+a n的和(a>0,n是正整数,请写出计算过程).【答案】(1)210﹣1.(2)11312-.(3)111naa+--.【解析】(1)设S=1+2+22+…+29①,则2S=2+22+…+210②,②﹣①得2S﹣S=S=210﹣1,∴S=1+2+22+…+29=210﹣1;故答案为:210﹣1.(2)设S=1+3+32+33+34+…+310 ①,则3S=3+32+33+34+35+…+311 ②,②﹣①得2S=311﹣1,所以S=1131 2-,即1+3+32+33+34+ (310)1131 2-;故答案为:1131 2-;(3)设S=1+a+a2+a3+a4+…+a n①,则aS=a+a2+a3+a4+…+a n+a n+1②,②﹣①得:(a﹣1)S=a n+1﹣1,所以S=111naa+--,即1+a+a2+a3+a4+…+a n=111naa+--,【名师点睛】本题考查了规律型:数字的变化类:认真观察、仔细思考,善用联想,利用类比的方法是解决这类问题的方法.8.(2019·黔东南州)某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:9.(2019·贵州安顺)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=log a N,比如指数式24=16可以转化为对数式4=log216,对数式2=log525,可以转化为指数式52=25.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N>0),理由如下:设log a M=m,log a N=n,则M=a m,N=a n,∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N)又∵m+n=log a M+log a N∴log a(M•N)=log a M+log a N根据阅读材料,解决以下问题:(1)将指数式34=81转化为对数式;(2)求证:log a MN=log a M﹣log a N(a>0,a≠1,M>0,N>0)(3)拓展运用:计算log69+log68﹣log62=.【解析】(1)4=log381(或log381=4),故答案为:4=log381;(2)证明:设log a M=m,log a N=n,则M=a m,N=a n,∴MN=mnaa=a m﹣n,由对数的定义得m﹣n=log aMN,又∵m﹣n=log a M﹣log a N,∴log a MN=log a M﹣log a N;(3)log69+log68﹣log62=log6(9×8÷2)=log636=2.故答案为:2.10.(2019·湖北咸宁)定义:有一组邻边相等且对角互补的四边形叫做等补四边形.理解:(1)如图1,点A,B,C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD,C D.求证:四边形ABCD是等补四边形;探究:(2)如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由.运用:(3)如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,CD=10,AF=5,求DF的长.【解析】(1)如图1,∵四边形ABCD为圆内接四边形,∴∠A+∠C=180°,∠ABC+∠ADC=180°,∵BD平分∠ABC,∴∠ABD=∠CBD,∴»»AD CD,∴AD=CD,∴四边形ABCD是等补四边形;(2)AD平分∠BCD,理由如下:如图2,过点A分别作AE⊥BC于点E,AF垂直CD的延长线于点F,则∠AEB =∠AFD =90°,∵四边形ABCD 是等补四边形,∴∠B +∠ADC =180°, 又∠ADC +∠ADF =180°,∴∠B =∠ADF , ∵AB =AD ,∴△ABE ≌△ADF (AAS ),∴AE =AF , ∴AC 是∠BCF 的平分线,即AC 平分∠BCD ; (3)如图3,连接AC ,∵四边形ABCD 是等补四边形,∴∠BAD +∠BCD =180°, 又∠BAD +∠EAD =180°,∴∠EAD =∠BCD , ∵AF 平分∠EAD ,∴∠FAD =12∠EAD , 由(2)知,AC 平分∠BCD , ∴∠FCA =12∠BCD ,∴∠FCA =∠FAD , 又∠AFC =∠DFA ,∴△ACF ∽△DAF ,∴AF CF DF AF =,即5105DF DF +=,∴DF ﹣5. 【名师点睛】本题考查了新定义等补四边形,圆的有关性质,全等三角形的判定与性质,角平分线的判定,相似三角形的判定与性质等,解题关键是要能够通过自主学习来进行探究,运用等. 11.(2019•山东威海)(1)阅读理解如图,点A ,B 在反比例函数y =1x的图象上,连接AB ,取线段AB 的中点C .分别过点A ,C ,B 作x轴的垂线,垂足为E,F,G,CF交反比例函数y=1x的图象于点D.点E,F,G的横坐标分别为n﹣1,n,n+1(n>1).小红通过观察反比例函数y=1x的图象,并运用几何知识得出结论:AE+BG=2CF,CF>DF,由此得出一个关于11n-,11n+,2n,之间数量关系的命题:若n>1,则__________.(2)证明命题小东认为:可以通过“若a﹣b≥0,则a≥b”的思路证明上述命题.小晴认为:可以通过“若a>0,b>0,且a÷b≥1,则a≥b”的思路证明上述命题.请你选择一种方法证明(1)中的命题.【解析】(1)∵AE+BG=2CF,CF>DF,AE=11n-,BG=11n+,DF=1n,∴11n-+11n+>2n.故答案为:11n-+11n+>2n.(2)方法一:∵11n-+11n+﹣2n=22222(1)(1)n n n n nn n n++--+-+=2(1)(1)n n n-+,∵n>1,∴n(n﹣1)(n+1)>0,∴11n-+11n+﹣2n>0,∴11n-+11n+>2n.方法二:∵11112n nn+-+=221nn->1,∴11n-+11n+>2n.【名师点睛】本题考查反比例函数图形上的点的坐标特征,反比例函数的图象等知识,解题的关键是理解题意,灵活运用所学知识解决问题.12.(2019•湖南长沙)根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).①四条边成比例的两个凸四边形相似;(__________命题) ②三个角分别相等的两个凸四边形相似;(__________命题) ③两个大小不同的正方形相似.(__________命题)(2)如图1,在四边形ABCD 和四边形A 1B 1C 1D 1中,∠ABC =∠A 1B 1C 1,∠BCD =∠B 1C 1D 1,11AB A B =11BCB C =11CDC D .求证:四边形ABCD 与四边形A 1B 1C 1D 1相似. (3)如图2,四边形ABCD 中,AB ∥CD ,AC 与BD 相交于点O ,过点O 作EF ∥AB 分别交AD ,BC 于点E ,F .记四边形ABFE 的面积为S 1,四边形EFCD 的面积为S 2,若四边形ABFE 与四边形EFCD 相似,求21S S 的值.【解析】(1)①四条边成比例的两个凸四边形相似,是假命题,角不一定相等. ②三个角分别相等的两个凸四边形相似,是假命题,边不一定成比例. ③两个大小不同的正方形相似.是真命题. 故答案为假,假,真.(2)如图1中,连接BD ,B 1D 1.∵∠BCD =∠B 1C 1D 1,且11BC B C =11CD C D , ∴△BCD ∽△B 1C 1D 1,∴∠CDB =∠C 1D 1B 1,∠C 1B 1D 1=∠CBD , ∵11AB A B =11BC B C =11CD C D ,∴11BD B D =11AB A B , ∵∠ABC =∠A 1B 1C 1,∴∠ABD =∠A 1B 1D 1,∴△ABD ∽△A 1B 1D 1, ∴11AD A D =11AB A B ,∠A =∠A 1,∠ADB =∠A 1D 1B 1, ∴11AB A B =11BC B C =11CD C D =11AD A D ,∠ADC =∠A 1D 1C 1,∠A =∠A 1,∠ABC =∠A 1B 1C 1,∠BCD =∠B 1C 1D 1, ∴四边形ABCD 与四边形A 1B 1C 1D 1相似.(3)如图2中,∵四边形ABCD 与四边形EFCD 相似,∴DE AE =EF AB , ∵EF =OE +OF ,∴DE AE =OE OF AB+, ∵EF ∥AB ∥CD ,∴DE AD =OE AB ,DE OC OF AD AB AB==, ∴DE AD +DE AD =OE AB +OF AB ,∴2DE AD =DE AE, ∵AD =DE +AE ,∴2DE AE +=1AE,∴2AE =DE +AE ,∴AE =DE , ∴21S S =1. 【名师点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,相似多边形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考压轴题.。