时间序列分析和预测教材
- 格式:pptx
- 大小:1.45 MB
- 文档页数:148
《时间序列分析》课程教学大纲课程编号:33330775课程名称:时间序列分析课程基本情况:1.学分:3 学时:51学时(课内学时:45 课内实验:6)2.课程性质:专业必修课3.适用专业:统计学适用对象:本科4.先修课程:概率论、数理统计、随机过程5.首选教材:王燕:《应用时间序列分析》,中国人民大学出版社,2008出版。
备选教材:王振龙等编著:《时间序列分析》,中国统计出版社,2000年。
6.考核形式:闭卷考试7.教学环境:多媒体教室及实验室一、教学目的与要求本课程是数理统计学的一个重要分支,先期需完成的课程有概率论、随机过程。
通过本课程的学习,使学生掌握时间序列数据的分析方法,包括时间序列简介、平稳时间序列分析、时间序列分解、非平稳序列的随机分析、多元时间序列分析。
利用Eviews软件进行本课程的实验教学。
二、教学内容及学时分配课程内容及学时分配表三、教学内容安排第一章时间序列分析简介【教学目的】1、了解时间序列的定义及常用分析方法;2、掌握时间序列的几个基本概念:随机过程、平稳随机过程、非平稳随机过程、自相关、记忆性。
【教学重点】时间序列的相关概念。
【教学难点】随机过程、系统自相关性。
【教学方法】课堂讲授【教学内容】第一节时间序列的定义第二节时间序列分析方法第三节时间序列分析软件EVIEWS简介第二章时间序列的预处理【教学目的】1、掌握平稳性检验的原理和方法;2、掌握纯随机性检验的原理和方法。
【教学重点】平稳时间序列的定义及统计性质。
【教学难点】时间序列的相关统计量。
【教学方法】课堂讲授【教学内容】第一节平稳性检验一、特征统计量二、平稳时间序列的定义三、平稳时间序列的统计性质四、平稳时间序列的意义五、平稳时间序列的检验第二节纯随机性检验一、纯随机序列的定义二、白噪声序列的定义三、纯随机性检验第三章平稳时间序列序列分析【教学目的】1、理解ARMA模型的定义及性质。
2、掌握平稳序列建模方法。
3、掌握平稳时间序列的预测【教学重点】平稳时间序列建模【教学难点】模型识别,参数估计,序列预测【教学方法】课堂讲授与上机实验【教学内容】第一节方法性工具一、差分运算二、延迟算子三、线性差分方程第二节 ARMA模型的性质一、AR模型二、MA模型三、ARMA模型第三节平稳序列建模一、建模步骤二、样本自相关系数与偏相关系数三、模型识别四、参数估计五、模型检验六、模型优化第四节序列预测一、线性预测函数二、预测方差最小原则三、线性最小方差预测的性质四、修正预测第四章非平稳序列的确定性分析【教学目的】1、理解时间序列的分解原理。
金融时间序列分析教材金融时间序列分析是金融学中的一个重要领域,它旨在研究金融市场中的时间序列数据,并利用统计模型和方法来预测未来的金融市场走势。
本教材将介绍金融时间序列分析的基本概念、理论框架和常用方法,帮助读者掌握这一领域的基本知识和技能。
第一章介绍了金融时间序列的基本概念和特点。
金融时间序列是指金融市场中某一资产价格(如股票价格、外汇汇率等)或指标随时间变化的一组数据。
它具有时间相关性、波动性和非正态性等特点,需要特殊的方法进行分析和预测。
第二章介绍了金融时间序列的统计特征和描述统计方法。
通过观察和分析时间序列的均值、方差、自相关性和偏度等统计特征,可以揭示时间序列数据中存在的规律和趋势,为后续的分析提供基础。
第三章介绍了平稳时间序列的概念和检验方法。
平稳时间序列是指具有固定的均值和方差,并且其自相关性不随时间变化的时间序列。
通过检验时间序列的平稳性,可以为后续的建模和分析提供准确的结果。
第四章介绍了时间序列数据的建模方法。
包括传统的经典时间序列模型(如AR、MA、ARMA模型)和现代时间序列模型(如ARCH、GARCH、VAR模型)等。
这些模型可以根据时间序列的特点和要求来选择和应用,通过建立合适的模型,对金融时间序列进行预测和分析。
第五章介绍了金融时间序列中的异常值和波动性模型。
在金融市场中,时间序列中常常存在异常波动和极端事件,需要采用特殊的模型(如HAR模型、SV模型)来对其进行建模和分析,以更准确地预测金融市场的波动和风险。
第六章介绍了金融时间序列的预测方法和模型评估。
通过利用已有的时间序列数据,可以采用传统的统计方法(如滚动窗口法、指数平滑法)和机器学习方法(如回归模型、神经网络模型)来进行预测,然后通过模型评估来评估预测的准确性和可靠性。
第七章介绍了金融时间序列的因果关系和协整模型。
通过检验时间序列之间的因果关系和建立协整模型,可以揭示金融市场中不同资产之间的相互影响和长期平衡关系,为投资决策和风险管理提供依据。
时间序列分析教材本教材将介绍时间序列分析的基本概念、常用方法和应用示例,帮助读者了解和掌握时间序列分析的基本原理和操作方法。
一、时间序列分析的基本概念1、时间序列的特点:时间序列数据具有趋势性、季节性和周期性等特点,可以通过分析这些特征来预测未来的数据变化。
2、平稳时间序列:平稳时间序列是指时间序列数据的统计特性在时间上保持恒定,如均值、方差和自相关系数等。
平稳时间序列可以使用各种统计方法进行分析和预测。
3、非平稳时间序列:非平稳时间序列是指时间序列数据的统计特性在时间上发生变化,如趋势变化、季节变化和周期变化等。
非平稳时间序列需要进行差分或转化处理,使其变为平稳时间序列再进行分析。
二、时间序列分析的基本方法1、时间序列的图形表示:通过绘制时间序列的折线图、散点图和自相关图等,可以观察数据的分布、趋势和季节性等特征。
2、时间序列的分解:时间序列的分解是将时间序列数据分解为趋势、季节和随机成分三个部分,以便更好地对数据进行分析和预测。
3、时间序列的平滑方法:平滑方法包括移动平均法和指数平滑法,可以减少数据的随机波动,更好地揭示数据的趋势性。
4、时间序列的预测方法:预测方法包括线性回归模型、ARIMA模型和季节性ARIMA模型等,可以基于历史数据对未来数据进行预测。
5、时间序列的评估方法:评估方法包括残差分析、均方误差和平均绝对误差等,可以评估预测模型的准确性和可靠性。
三、时间序列分析的应用示例1、经济学中的时间序列分析:时间序列分析可以应用于宏观经济指标的预测和监测,如国内生产总值、通货膨胀率和失业率等。
2、金融学中的时间序列分析:时间序列分析可以应用于股票价格、汇率和利率等金融数据的分析和预测,帮助投资者进行投资决策。
3、气象学中的时间序列分析:时间序列分析可以应用于气象数据的分析和预测,如气温、降雨量和风速等,帮助预测天气变化和灾害风险。
四、时间序列分析的实际案例1、某股票价格的时间序列分析:通过对某只股票价格的时间序列数据进行分析,预测未来股票价格的走势,指导投资决策。
时间序列预测模型的书籍案例时间序列预测模型是一种用于分析和预测时间序列数据的统计模型。
它基于时间序列的历史数据,通过建立数学模型来预测未来的趋势和变化。
时间序列预测模型在许多领域都有广泛的应用,如经济学、金融学、气象学等。
下面是一些关于时间序列预测模型的书籍案例,它们涵盖了不同的领域和方法:1. 《时间序列分析》(Time Series Analysis)- George E.P. Box, Gwilym M. Jenkins和Gregory C. Reinsel这本经典著作是时间序列分析领域的权威之作,介绍了时间序列模型的理论基础和实践应用。
它对传统的ARIMA模型和季节性时间序列模型进行了详细的讲解。
2. 《时间序列分析与预测》(Time Series Analysis and Forecasting)- Example Smith, Navdeep Gill和Walter Liggett 这本教材介绍了时间序列分析和预测的基本原理和方法。
它包括了ARIMA、ARCH/GARCH等常用模型,并提供了实际案例和R语言代码。
3. 《金融时间序列分析与预测》(Financial Time Series Analysis and Forecasting)- Ruey S. Tsay这本书重点介绍了在金融领域中应用时间序列分析和预测的方法。
它包括了ARCH/GARCH模型、VAR模型、协整模型等,并通过实际金融数据进行案例分析。
4. 《商业预测:原理与实践》(Business Forecasting: Principles and Practice)- Rob J. Hyndman和George Athanasopoulos这本书是一本实用的商业预测教材,介绍了时间序列预测的基本原理和常用方法。
它使用R语言进行案例分析,并提供了实际业务中的预测应用示例。
5. 《Python时间序列分析》(Python for Time Series Analysis)- Alan Elliott和Wayne A. Woodward这本书介绍了使用Python进行时间序列分析的方法和工具。