算法设计与分析第5章减治法..
- 格式:ppt
- 大小:2.83 MB
- 文档页数:32
第三章 蛮力法1.选择排序SelectionSort(A[0..n-1])for i=0 to n-2 domin=ifor j=i+1 to n-1 doif A[j]<A[min]min=jswap A[i] and A[min]2.冒泡排序BubbleSort(A[0..n-1])// 输入:数组A,数组中的元素属于某偏序集// 输出:按升序排列的数组Afor i=0 to n-2 dofor j=0 to n-2-i doif A[j+1]<A[j] swap A[j] and A[j+1]3.改进的冒泡算法ALGORITHM BubbleSortImproved( A[0,…,n –1] )// 冒泡排序算法的改进// 输入:数组A,数组中的元素属于某偏序集// 输出:按升序排列的数组Afor i ← 0 to n – 2 doflag ← Truefor j ← 0 to n – 2 – i doif A[j+1] < A[j]swap(A[j], A[j+1])flag ← False// 如果在某一轮的比较中没有交换,则flag为True,算法结束returnif flag = True4. 顺序查找算法算法 SwquentialSearch2(A[0...n],k)//顺序查找算法的实现,它用了查找键来作限位器//输入:一个n个元素的数组A和一个查找键K//输出:第一个值等于K的元素的位置,如果找不到这样的元素就返回 -1A[n]<--ki<--0while A[i]!=K doi<--i+1if i<n return iElse return -15. 蛮力字符串匹配算法 BruteForceStringMatch(T[0...n-1],P[0...m-1])//该算法实现了蛮力字符串匹配代表一段文本//输入:一个n个字符的数组T[0...n-1]// 一个m个字符的数组P[0..m-1]代表一个模式//输出:如果查找成功的话,返回文本的第一个匹配字串中第一个字符的位置, // 否则返回-1For i<--0 to n-m doj<--0While j<m and P[j]=T[i+j]doj<--i+1If j=m return ireturn -1合并排序最差Θ(nlog2n)快速排序最优Θ(nlog2n)最差Θ(n2)平均Θ(1.38nlog2n)选择排序 Θ(n2)冒泡排序 Θ(n2)插入排序最差Θ(n2)最优 Θ(n)平均 Θ(n2)第四章 分治法合并排序算法 MergeSort(A[0..n-1] )排序 // 递归调用mergesort来对数组 A[0...n-1]// 输入:一个可排序数组A[0..n-1]// 输出:非降序排列的数组A[0..n-1]if n > 1n/2 -1]copy A[0.. n/2 -1] to B[0..n/2 -1]copy A[ n/2 ..n-1] to C[0..MergeSort( B )MergeSort( C )Merge( B,C,A )两个数组合并的算法算法 Merge(B[0..p-1],C[0..q-1],A[0..p+q-1])//将两个有序数组合并成一个有序的数组和C[0...q-1]//输入:两个有序数组B[0...p-1]//输出:A[0..p+q-1]中已经有序存放了B和C中的元素 i=0,j=0,k=0;while i<p and j<q do≤C[j]if B[i]A[k]=B[i], i=i+1elseA[k]=C[j], j=j+1k=k+1if i=pcopy C[j..q-1] to A[k..p+q-1]elsecopy B[i..p-1] to A[0..p+q-1]快速排序算法QuickSort(A[l..r])// 使用快速排序法对序列或者子序列排序或者序列本身A[0..n-1]// 输入:子序列A[l..r]// 输出:非递减序列Aif l < rs ← Partition( A[l..r] )QuickSort( A[l..s-1] )QuickSort( A[s+1..r] )//s是中轴元素/基准点,是数组分区位置的标志实现分区的算法Partition( A[l..r] )// 输入:子数组A[l..r]// 输出:分裂点/基准点pivot的位置p ← A[l]i ← l; j ← r+1repeat≥ prepeat i ←i + 1until A[i]≤ prepeat j ← j – 1 until A[j]swap( A[i], A[j] )≥ juntil iswap( A[i], A[j] )swap( A[l], A[j] )return j折半查找BinarySearch( A[0..n-1], k )// 输入:已排序大小为n的序列A,待搜索对象k// 输出:如果搜索成功,则返回k的位置,否则返回-1 l=0,r=n-1;While l≤rmid= (l+r)/2if k = A[mid] return midelse if k < A[mid] r=m-1else l=m+1return -1Strassen矩阵Strassen方法M1=A11(B12-B22)M2=(A11+A12)B22M3=(A21+A22)B11M4=A22(B21-B11)M5=(A11+A22)(B11+B22)M6=(A12-A22)(B21+B22)M7=(A11-A21)(B11+B12)第五章 减治法插入排序ALGORITHM InsertionSort( A[0..n-1] )// 对给定序列进行直接插入排序// 输入:大小为n的无序序列A// 输出:按非递减排列的序列Afor i ← 1 to n-1 dotemp ← A[i]j ← i-1while j ≥ 0 and A[j] > temp doA[j+1] ← A[j]j ← j –1A[j+1] ←temp深度优先查找算法 BFS(G)//实现给定图的深度优先查找遍历//输入:图G=<V,E>//输出:图G的顶点,按照被DFS遍历第一次访问到的先后次序,用连续的整数标记,将V中的每个顶点标记为0,表示还“未访问”count =0//记录这是第几个访问的节点标记为 unvisitedmark each vertex with 0//∈ V dofor each vertex vif v is marked with 0dfs(v)dfs(v)//递归访问所有和v相连接的未访问顶点,然后按照全局变量count的值//根据遇到它们的先后顺序,给它们附上相应的数字count = count + 1mark v with countv dofor each vertexw adjacent toif w is marked with 0dfs(w)广度优先BFS(G)/实现给定图的深度优先查找遍历//输入:图G=<V,E>//输出:图G的顶点,按照被BFS遍历第一次访问到的先后次序,用连续的整数标记,将V中的每个顶点标记为0,表示还“未访问”count =0mark each vertex with 0for each vertex v∈ V dobfs(v)bfs(v)//递归访问所有和v相连接的未访问顶点,然后按照全局变量count的值//根据遇到它们的先后顺序,给它们附上相应的数字count = count + 1mark v with countinitialize queue with vwhile queue is not empty doa = front of queuefor each vertex w adjacent to a doif w is marked with 0count = count + 1mark w with countadd w to the end of the queueremove a from the front of the queue拓扑排序第六章 变治法Gauss消去法GaussElimination(A[1..n], b[1..n])// 输入:系数矩阵A及常数项 b// 输出:方程组的增广矩阵等价的上三角矩阵for i=1 to n doA[i][n+1] =b[i]for j= i+1 to n dofor k = i to n+1 do– A[i][k]*A[j][i]/A[i][i]A[j][k] = A[j][k]堆排序堆排序主要包括两个步骤:对于给定的数组构造相应的堆。
第一章测试1.解决一个问题通常有多种方法。
若说一个算法“有效”是指( )A:这个算法能在人的反应时间内将问题解决B:(这个算法能在一定的时间和空间资源限制内将问题解决)和(这个算法比其他已知算法都更快地将问题解决)C:这个算法能在一定的时间和空间资源限制内将问题解决D:这个算法比其他已知算法都更快地将问题解决答案:B2.农夫带着狼、羊、白菜从河的左岸到河的右岸,农夫每次只能带一样东西过河,而且,没有农夫看管,狼会吃羊,羊会吃白菜。
请问农夫能不能过去?()A:不一定B:不能过去C:能过去答案:C3.下述()不是是算法的描述方式。
A:自然语言B:程序设计语言C:E-R图D:伪代码答案:C4.有一个国家只有6元和7元两种纸币,如果你是央行行长,你会设置()为自动取款机的取款最低限额。
A:40B:42C:29D:30答案:D5.算法是一系列解决问题的明确指令。
()A:对B:错答案:A6.程序=数据结构+算法()A:错B:对答案:B7.同一个问题可以用不同的算法解决,同一个算法也可以解决不同的问题。
()A:错答案:B8.算法中的每一条指令不需有确切的含义,对于相同的输入不一定得到相同的输出。
( )A:错B:对答案:A9.可以用同样的方法证明算法的正确性与错误性 ( )A:对B:错答案:B10.求解2个数的最大公约数至少有3种方法。
( )A:错B:对答案:A11.没有好的算法,就编不出好的程序。
()A:对B:错答案:A12.算法与程序没有关系。
( )A:错B:对答案:A13.我将来不进行软件开发,所以学习算法没什么用。
( )A:对B:错答案:B14.gcd(m,n)=gcd(n,m m od n)并不是对每一对正整数(m,n)都成立。
( )A:错B:对答案:A15.既然程序设计语言可以描述算法,所以算法就是程序。
( )A:错B:对答案:A第二章测试1.并不是所有的算法,规模更大的输入需要更长的运行时间。
( )A:对答案:B2.算法效率分析框架主要关心一个算法的基本操作次数的增长次数,并把它作为算法效率的主要指标。
生成组合对象的算法(减治法)下面将详细介绍生成组合对象的减治法算法:1.定义问题:首先需要明确所要生成的组合对象的特征和属性。
例如,如果生成组合对象是包含固定数量的不同颜色的气球,那么问题的定义就是生成所有可能的气球颜色组合。
2.划分子问题:接下来,需要将问题划分为更小的子问题。
对于生成组合对象的问题,可以将其分解为生成单个组合对象的子问题。
在上述例子中,可以将其划分为生成单个气球颜色的子问题。
3.设计基本情况:在减治法中,需要定义一个基本情况,当问题的规模达到基本情况时,可以直接解决问题。
在上述例子中,当只有一个气球需要生成时,就可以直接生成所有可能的颜色。
4.减小问题规模:使用递归方法将问题规模逐渐减小。
在上述例子中,可以通过迭代每种颜色的气球来生成组合对象。
每次迭代,都解决一个气球颜色的子问题,并将其与其他已生成的气球组合。
5.合并子问题:将解决子问题的结果合并为整体解决方案。
在上述例子中,可以将每个气球颜色子问题的解合并为组合对象的解。
通过将每种颜色的气球与已生成的组合对象组合,可以生成所有可能的组合对象。
6.返回解决方案:最后,返回所有生成的组合对象作为最终的解决方案。
减治法的关键是确定如何划分子问题,并设计适当的方法来减小问题规模和合并子问题的解。
对于生成组合对象的问题,子问题的划分可以根据组合对象的特征和属性进行确定。
递归方法的使用可以确保问题规模不断减小,直到达到基本情况。
需要注意的是,生成组合对象可能会涉及到大量的计算和存储。
为了提高算法的效率,可以考虑使用剪枝等技术来减少不必要的计算和存储。
总结:生成组合对象的减治法算法通过将问题划分为较小的子问题,并逐步减小问题规模和合并子问题的解决方案来解决复杂问题。
这种算法的关键是确定子问题的划分和适当的规模减小和合并方法。
减治法是解决生成组合对象问题的一种有效方法,可以根据具体问题的特征和属性进行具体的实现。
第5章减治法(Decrease and Conquer)减治法的基本思想规模为n的原问题的解与较小规模(通常是n/2)的子问题的解之间具有关系:(1)原问题的解只存在于其中一个较小规模的子问题中;(2)原问题的解与其中一个较小规模的解之间存在某种对应关系。
由于原问题的解与较小规模的子问题的解之间存在这种关系,所以,只需求解其中一个较小规模的子问题就可以得到原问题的解。
2减治法的基本思想一旦建立了这种关系,就可以从顶至下(递归),也可以从底至上(非递归)的来运用Example, n!A top down (recursive) solutionA bottom up (iterative) solution3减治法的类型减治法有三种变种:1)减去一个常量2)减去一个常数因子3)减去的规模是可变的gcd(m, n)4减(一)治技术a problem of size nsubproblemof size n-1a solution to thesubprobleme.g., n!a solution tothe original problem5减(半) 治技术a problem of size nsubproblemof size n/2a solution to thesubprobleme.g., Binary searcha solution tothe original problem67典型的分治法subproblem 2 of size n /2subproblem 1 of size n /2a solution to subproblem 1 a solution to the original problema solution to subproblem 2a problem of size ne.g., mergesort减治与分治的区别考虑以下指数问题: 计算a n减一法Bottom-up: iterative (brute Force) Top-down:recursive分治法:减常因子法:a n= a*a*a*a*...*aa n= a n-1* a if n > 1= a if n = 1a n= a ⎣n/2 ⎦* a ⎡n/2⎤if n > 1= a if n = 1a n = (a n/2 ) 2if n is even and positive= (a(n-1)/2 ) 2 * a if n is odd and > 1 = a if n = 1O (log2n) O (n log2n)89111)2/(0)(>=⎩⎨⎧+=n n n T n T 所以,通常来说,应用减治法处理问题的效率是很高的,一般是O (log 2n)数量级。