几何体的外接球与内切球问题归纳
- 格式:docx
- 大小:48.30 KB
- 文档页数:2
外切球和内切球知识点总结一、外切球和内切球的定义1. 外切球在几何学中,外切球是指一个球与另外一个几何体(通常是一个多边形或圆柱体)相切于凸多边形或凸多面体的每一侧面的情况。
外切球的直径等于两相切多边形(或多面体)的对边之和。
以正方形为例,外切球的定义如下:对于一个正方形,以正方形的每一条边为切点做球的切线,则球的外切球的半径等于正方形的边长的一半。
2. 内切球内切球是指一个球刚好被另外一个几何体(通常是一个多边形或圆柱体)所包围,并且与该几何体的每一边或面都相切的情况。
内切球的直径等于围绕这个球的多边形(或多面体)的对边之和。
以正方形为例,内切球的定义如下:对于一个正方形,用正方形的每个顶点作为球的切点,那么这个球就是正方形的内切球。
二、外切球和内切球的性质1. 外切球的性质外切球的性质主要有以下几点:(1)外切球的半径等于多边形(或多面体)的对角线的一半。
(2)对于任意多边形,外切球与多边形的外切圆心在一条直线上。
(3)外切球的切点在多边形(或多面体)的中点处。
(4)外切球的半径等于多边形(或多面体)的外接圆的半径。
2. 内切球的性质内切球的性质主要有以下几点:(1)内切球的半径等于多边形(或多面体)的内切圆的半径。
(2)对于任意多边形,内切球的内切圆心和多边形的顶点在一条直线上。
(3)内切球的切点在多边形(或多面体)的中点处。
(4)内切球的半径等于多边形(或多面体)的外接圆的半径减去多边形(或多面体)的半径。
三、外切球和内切球的应用外切球和内切球在数学、物理、工程等领域都有着重要的应用,下面将分别介绍它们在不同领域的具体应用。
1. 数学领域在数学领域,外切球和内切球主要应用于解决几何问题和优化问题。
例如,外切球和内切球可以用来求解多边形(或多面体)的面积、体积、周长等问题,同时也可以用来解决某些最优化问题,比如求解最大最小值等。
此外,外切球和内切球还可以应用于解决一些具体的数学难题,比如利用外切球和内切球的性质证明某些几何定理、求解某些不等式等。
几何体外接球或内切球问题的类型与解法 几何体外接球和内切球问题是近几年的高考热点内容之一,尤其是几何体外接球问题,基本上近几年的高考试题中都有出现。
从题型上看是5分小题,可能是选择题,也可能是填空题;从难易程度上看,属于中、低档难度的问题。
纵观近几年高考,归结起来几何体外接球或内切球问题主要包括:①已知几何体的顶点都在同一球面上,几何体满足一定的条件,求球的体积(或几何体的体积);②已知几何体的顶点都在同一球面上,几何体满足一定的条件,求球的表面积(或几何体的表面积);③已知球内切于几何体,求内切球的体积(或表面积)等几种类型。
解答这类问题的基本思路是根据问题给出的条件,求出球的半径,然后运用球的体积(或表面积)公式通过运算就可得出结果。
各种类型问题结构上具有某些特征,解答方法也有一定的规律可寻,那么在实际解答几何体外接球或内切球问题时,到底应该如何抓住问题的结构特征,快捷,准确地解答问题呢?下面通过典型例题的详细解析来回答这个问题。
【典例1】解答下列问题:1、(理)如图,在边长为2的正方形A 1P 2P 3P 中,线段BC 的端点B ,C 分别在边1P 2P ,2P 3P 上滑动,且1P B=2P C=x ,现将∆ A 1P B , ∆ C 3P A 分别沿AB ,CA 折起使点1P , 3P 重合,重合后记为点P ,得到三棱锥P —ABC ,现有以下结论:①AP ⊥平面PBC ;②当B ,C 分别为1P 2P ,2P 3P 的中点时,三棱锥P —ABC 的外接球的表面积为6π;③x 的取值范围为(0,4-22);④三棱锥P —ABC 体积的最大值为13。
则正确结论的个数为( ) A 1 B 2 C 3 D 4(文)如图,在边长为2的正方形A 1P 2P 3P 中,边1P 2P ,2P 3P 的中点分别为B ,C ,现将∆ A 1P B ,∆ B 2P C ,∆ C 3P A 分别沿AB ,BC ,CA 折起使点1P ,2P ,3P 重合,重合后记为点P ,得到三棱锥P —ABC ,则三棱锥P —ABC 的外接球体积为 (2020成都市高三一诊)(理科图) (文科图) 【解析】【考点】①正方形定义与性质;②三棱锥定义与性质;③判断直线垂直平面的基本方法;④求三棱锥外接球表面积的基本方法;⑤求三棱锥体积的基本方法;⑥求函数最值的基本方法。
内切球和外接球常见解法内切球和外接球是在几何学中常用的概念,它们分别指的是一个几何体内切或外接于另一个几何体的球。
在实际问题中,内切球和外接球常常用于优化问题和几何问题的求解,其解法也有多种。
以下将介绍一些常见的解法。
1. 解法一:利用勾股定理求解。
内切球和外接球都可以利用勾股定理求解。
以内切球为例,我们可以考虑任意三角形ABC,设其内切球的半径为r,以I为内切圆心,则:AB + AC = 2r;AC + BC = 2r;AB + BC = 2r。
整理可得:r = [ABC] / (s + a + b + c),其中s为半周长,a、b、c为三角形ABC的三边长,[ABC]为三角形ABC的面积。
而外接球的半径r'则可用公式r'=[ABC] / (4S),其中S为三角形ABC的外接圆半径。
欧拉定理是内切球和外接球求解的另一个重要工具。
欧拉定理有两种形式,分别为:对于任意四面体,其四个顶点、三条棱的中点和六面体质心共九个点在同一球面上。
对于任意三角形ABC,其外接圆心、垂足交点、垂心、重心四点在同一圆上,且圆心为外接球心。
利用欧拉定理可以求得内切球半径:点O为六面体质心,点I为内切圆心,则IO等于内切球半径r。
点O为三角形外心,点H为垂心,点G为重心,则OG等于外接球半径r'。
对于一些优化问题,内切球和外接球也可以通过线性规划求解。
例如,对于一个凸多面体,求其内切球或外接球的半径最大值,可以将问题转化为线性规划问题,即:max rs.t. A_i * x <= b_i, i=1,2,...,mx_i >= 0, i=1,2,...,n其中,A_i是多面体的几何信息,b_i是多面体中某一点到各个面的距离,x是优化变量,r就是所需要求的内切球或外接球半径。
可以使用线性规划求解器求解其最优解。
立体几何外接球和内切球十大题型
立体几何中的外接球和内切球是常见的题型,下面我将列举十个常见的题型并进行解答。
1. 求立方体的外接球和内切球的半径。
外接球的半径等于立方体的对角线的一半,内切球的半径等于立方体的边长的一半。
2. 求正方体的外接球和内切球的半径。
外接球的半径等于正方体的对角线的一半,内切球的半径等于正方体的边长的一半。
3. 求圆柱体的外接球和内切球的半径。
外接球的半径等于圆柱体的底面半径,内切球的半径等于圆柱体的高的一半。
4. 求圆锥的外接球和内切球的半径。
外接球的半径等于圆锥的底面半径,内切球的半径等于圆锥的高的一半。
5. 求球的外接球和内切球的半径。
外接球的半径等于球的半径的根号3倍,内切球的半径等于球的半径的一半。
6. 求棱锥的外接球和内切球的半径。
外接球的半径等于棱锥的底面边长的一半,内切球的半径等于棱锥的高的一半。
7. 求棱柱的外接球和内切球的半径。
外接球的半径等于棱柱的底面边长的一半,内切球的半径等于棱柱的高的一半。
8. 求四面体的外接球和内切球的半径。
外接球的半径等于四面体的外接圆的半径,内切球的半径等
于四面体的内切圆的半径。
9. 求正六面体的外接球和内切球的半径。
外接球的半径等于正六面体的对角线的一半,内切球的半径等于正六面体的边长的一半。
10. 求正八面体的外接球和内切球的半径。
外接球的半径等于正八面体的对角线的一半,内切球的半径等于正八面体的边长的一半。
以上是关于立体几何中外接球和内切球的十个常见题型及其解答。
希望能对你有所帮助。
外接球和内切球问题总结归纳外接球和内切球问题总结归纳在几何学中,外接球和内切球问题是一个重要的概念。
它们不仅在数学领域有着重要的应用,同时也被广泛运用在物理学、工程学以及计算机科学等领域。
本文将对外接球和内切球问题进行深入探讨,从基础概念到应用实例,帮助读者全面理解这一主题。
一、外接球和内切球的定义1. 外接球外接球是指一个球与给定的多边形的所有顶点相切于球面的情况。
在数学中,外接球常常与三角形、四边形等几何图形相关联,其特点是与多边形的各个顶点相切,并且球心通常位于多边形的某个重要位置。
2. 内切球内切球则是指一个球完全被给定的多边形所包围,且球与多边形的边界相切。
在实际应用中,内切球往往能够最大化地利用多边形所包围的空间,因此在工程设计和优化问题中具有重要意义。
二、外接球和内切球的性质1. 外接球的性质外接球的半径通常与多边形的边或者角有着特定的关系。
以三角形为例,外接圆的半径等于三角形三条边的乘积除以其周长的两倍。
这一性质在计算三角形的外接圆时具有重要意义,同时也为几何问题的解决提供了基础。
2. 内切球的性质内切球的半径与多边形的边界有着紧密的联系。
以正方形为例,内切圆的半径等于正方形的边长的一半。
这一性质在优化问题中有着重要的应用,能够帮助设计者最大化地利用空间,提高效率和节约成本。
三、外接球和内切球的应用1. 工程设计外接球和内切球在工程设计中有着广泛的应用。
例如在建筑设计中,内切球可以帮助设计者合理利用建筑空间,提高使用效率;在机械设计中,外接球则可以帮助设计者确定零部件的匹配度和适用性。
2. 计算机科学外接球和内切球也在计算机科学领域有着重要的应用。
例如在计算机图形学中,外接球和内切球经常被用来描述物体的外形和几何特征,同时也可以用于物体的碰撞检测和三维建模。
个人观点和总结外接球和内切球作为一个基础的数学概念,在几何学、工程学和计算机科学等领域有着重要的应用。
通过对外接球和内切球的定义、性质和应用进行深入探讨,我们可以更好地理解其在实际问题中的作用和意义,进一步拓展其在更多领域的应用。
立体几何外接球及内切球问题一、球与柱体规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题.1.1球与正方体如图1所示,正方体1111D C B A ABCD -,设正方体的棱长为a ,G H F E ,,,为棱的中点,O 为球的球心。
常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFHG 和其内切圆,则2a r OJ ==; 二是与正方体各棱相切的球,截面图为正方形EFHG 和其外接圆,则a R OG 22==; 三是球为正方体的外接球,截面图为长方形11A ACC 和其外接圆,则23'1a R O A ==. 例 1: 棱长为1的正方体的8个顶点都在球的表面上,分别是棱,的中点,则直线被球截得的线段长为( ) A .B .C . D1.2 球与长方体长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的棱长为其体对角线为.当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径例 2 在长、宽、高分别为2,2,4的长方体内有一个半径为1的球,任意摆动此长方体,则球经过的空间1111ABCD A B C D -O E F ,1AA 1DD EF O 2112+,,,a b c l 2l R ==部分的体积为( ) A.10π3B.4πC.8π3D.7π31.3球与正棱柱:①结论:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点. ②球与一般的正棱柱的组合体,常以外接形态居多.本类题目的解法:构造直角三角形法:设正三棱柱111C B A ABC -的高为h ,底面边长为a ; 如图2所示,D 和1D 分别为上下底面的中心。
根据几何体的特点,球心必落在高1DD 的中点O ,a AD R AO h OD 33,,2===,借助直角三角形AOD 的勾股定理,可求22332⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=a h R 。
外接球内切球题型总结和内切球是高中数学中常见的几何题型。
它们看似简单,但实际上需要一定的思维和推理能力。
在这篇文章中,我将总结和内切球的题型,并提供一些解题思路和方法。
一、题型是指一个球完全地包围住一个几何体,即几何体的各个顶点都在球的表面上。
以下是一些常见的题型:1. 外接圆题型外接圆是指一个圆正好切合于一个三角形的三条边上。
在解决外接圆题型时,我们通常可以利用其性质来推导出一些关系式来简化问题。
例如,假设一个三角形的三个顶点分别是A、B、C。
若存在一个外接圆,那么圆心必然在三角形的垂直平分线的交点处。
因此,我们只需要求出垂直平分线的交点即可确定圆心的位置。
2. 题型与外接圆类似,也可以用类似的思路来解决。
我们可以通过求出几何体的垂直平分面的交线来确定球心的位置。
举个例子,假设我们有一个四面体ABCD,我们需要求出其。
首先,我们可以通过连接四面体的两个对角线来得到一个交点E。
然后,我们找出四面体的垂直平分面,分别与对角线DE、CE、BE、AE相交,这些相交点的集合就是球心所在的平面。
最后,我们通过球心与四面体任意一个顶点的距离就可以确定球的半径。
二、内切球题型内切球是指一个球正好与一个几何体的各个面相切。
以下是一些常见的内切球题型:1. 内切圆题型内切圆是指一个圆正好与一个三角形的三边内切。
解决内切圆题型时,我们通常可以利用其性质来推导出一些关系式。
例如,假设我们有一个三角形ABC,其内切圆的半径为r,圆心为O。
根据内切圆的性质,我们可以知道三角形的三个角都是圆心O的切点。
因此,我们可以利用三角函数的关系式来求解r。
2. 内切球题型内切球题型相对来说会更加复杂一些。
我们需要找到几何体的内切面以及球心的位置。
举个例子,假设我们有一个四面体ABCD的内切球。
我们可以通过连接四面体相对面的交点的连线找到内切球的球心。
然后,我们继续找到相应的内切面,通过求解距离或者长度的关系还可以进一步确定内切球的半径。
简单几何体的外接球与内切球问题定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。
定义2:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球。
1内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等。
2、正多面体的内切球和外接球的球心重合。
3、正棱锥的内切球和外接球球心都在高线上,但不重合。
4、基本方法:构造三角形利用相似比和勾股定理。
5、体积分割是求内切球半径的通用做法。
一、直棱柱的外接球1 长方体的外接球:长方体中从一个顶点出发的三条棱长分别为a,b,c,则体对角线长为l「a2 b2 c2,几何体的外接球直径2R为体对2 2 2角线长I即R= a b C22、正方体的外接球:正方体的棱长为a,则正方体的体对角线为3a,其外接球的直径2R为、.3a。
3、其它直棱柱的外接球:方法:找出直棱柱的外接圆柱,圆柱的外接球就是所求直棱柱的外接球。
例1、一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为9,底面周长为3,则这个球的体积为.8例2、已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A. 16 二B. 20 二C. 24 二D. 32 二二、棱锥的外接球1、正棱锥的外接球方法:球心在正棱锥的高线上,根据球心到各个顶点的距离是球半径,列出关于半径的方程。
例3、正四棱锥S-ABCD的底面边长和各侧棱长都为.2,点S、A、B、C、D都在同一球面上,贝卩此球的体积例5、若正四面体的棱长为4,则正四面体的外接球的表面积为__________________ 。
例6、一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是:()(A) 343(B) ;(C)(D)3122、补体方法的应用(1)、正四面体(2)、三条侧棱两两垂直的三棱锥(3)、四个面均为直角三角形的三棱锥例7、如果三棱锥的三个侧面两两垂直, 它们的面积分别为6cm2、4cm2和3cm2,那么它的外接球的体积是例9、在三棱锥 A - BCD 中,AB —平面BCD,CD — BC , AB = 3, BC = 4, CD = 5则三棱锥A-BCD外接球的表面积_______________例10、如图为一个几何体的三视图,则该几何体的外接球的表面积为()三、圆柱、圆锥的外接球旋转体的外接球,可以通过研究轴截面求球的半径。
几何体的外接球与内切球问题归纳
2020.9.10
课前测验:
1.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.
2..正三棱锥底面边长为3,侧棱与底面成60°角,则正三棱锥的外接球的体积为()
A.4πB.16πC.D.
3.一个四面体所有棱长都为4,四个顶点在同一球面上,则球的表面积为()
A.24πB.C.D.12π
4.已知三棱锥P﹣ABC的四个顶点在球O的球面上,P A=PB=PC,且两两垂直,△ABC是边长为2的正三角形,则球O的体积为()
A.8πB.4πC.πD.π
5.在正三棱柱ABC﹣A′B′C′中,AA′=,AB=2,则该正三棱柱外接球的表面积是()A.7πB.C.D.8π
例1、在三棱锥P﹣ABC中,P A=PB=PC=2,且P A,PB,PC两两互相垂直,则三棱锥P﹣ABC的外接球的体积为()
A.4πB.8πC.16πD.2π
变式训练:已知三棱锥S﹣ABC,△ABC是直角三角形,其斜边,SC⊥平面ABC,SC=6,则三棱锥的外接球的表面积为()
A.144πB.72πC.100πD.64π
例2、已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA=2,AB=1,AC=2,∠BAC =,则球O的体积为()
A.B.C.D.
变式训练:已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SA⊥平面ABC,∠BAC=120°,SA=AB =AC=2,则球O的表面积为()
A.4πB.C.20πD.36π
例3、已知正三棱锥S﹣ABC的侧棱长为,底面边长为6,则该正三棱锥外接球的体积是()A.16πB.C.64πD.
变式训练:已知四棱锥的各个顶点都在同一个球的球面上,且侧棱长都相等,高为4,底面是边长为3
的正方形,则该球的表面积为()
A.B.C.36πD.34π
例4、已知正三棱锥S﹣ABC的底面是面积为的正三角形,高为2,则其内切球的表面积为()A.B.C.D.
变式训练:已知正三棱锥A﹣BCD中,底面边长BC为3,侧棱长AB为,求此正三棱锥的内切球的表面积为.
【课后练习】
1、已知某三棱柱的侧棱垂直于底面,且底面是边长为2的正三角形,若其外接球的表面积为,则该三棱柱的高为()
A.B.3C.4D.
2、已知△ABC中,∠B=90°,DC⊥平面ABC,AB=4,BC=5,CD=3,则三棱锥D﹣ABC的外接球表面积为()
A.B.25πC.50πD.
3、已知直三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=3,∠BAC=120°,AA1=8,则球O的表面积为()
A.25πB.πC.100πD.π
4、已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为π.
5、已知三棱锥P﹣ABC中,PB⊥平面ABC,∠ABC=90°,P A=,AB=BC=1,则三棱锥P﹣ABC 的外接球的表面积为()
A.12πB.6πC.24πD.
6、在三棱锥A﹣BCD中,△ABC和△BCD都是边长为的等边三角形,且平面ABC⊥平面BCD,则三棱锥A﹣BCD外接球的表面积为()
A.8πB.12πC.16πD.20π
7、在四面体S﹣ABC中,AB⊥BC,AB=BC=3,,平面SAC⊥平面BAC,则该四面体外接球的表面积为()
A.8πB.12πC.16πD.24π
8、在三棱锥S﹣ABC中,SB=SC=AB=BC=AC=2,侧面SBC与底面ABC垂直,则三棱锥S﹣ABC外接球的表面积是.
9、在三棱锥S﹣ABC中,SA⊥平面ABC,AB⊥BC,AB=BC=2,若其外接球的表面积为12π,则SA=()
A.1B.2C.D.4
10、在四面体S﹣ABC中,SA⊥平面ABC,AB=AC=BC=3,SA=2,则该四面体的外接球的半径为()A.1B.C.2D.4。