地下水动力学知识点总结归纳
- 格式:doc
- 大小:113.00 KB
- 文档页数:11
地下水动力学:研究地下水岩石空隙中运动规律的科--(它是模拟地下水流基本状态和地下水中溶质运移过程,对地下水从数量上和质量进行定量评价和合理开发利用,以及兴利除害的理论基础。
主要研究重力水的运动规律)渗透:重力地下水在岩石空隙中的运动渗流:整个含水层全部被地下水占据,不考虑骨架。
考虑地下水的整体运动方向,不必研究个别孔隙之间的运动途径。
满足渗流的条件:1)假想水流的性质与真实水流相同;2)、假想水流运动时所受阻力与真实水流相同;3)通过任一断面的流量和任一点的压力或水头和实际水流相同。
渗流量:流量,单位时间内通过过水断面(包括含水层空隙和骨架所占面积)的水体积,同Q表示,单位m3/d。
渗流速度:又称渗透速度、比流量,是渗流在过水断面(包括含水层空隙和骨架所占面积)上的平均流速。
它不代表任何真实水流的速度,只是一种假想速度。
记为v,单位m/d。
贮水系数:称释水系数或储水系数,指面积为一个单位、厚度为含水层全厚度M的含水层柱体中,当水头改变一个单位时弹性释放或贮存的水量。
μ* = μs M。
既适用于承压含水层,也适用于潜水含水层。
贮水率:指当水头下降(或上升)一个单位时,由于含水层内骨架的压缩(或膨胀)和水的膨胀(或压缩)而从单位体积含水层柱体中弹性释放(或贮存)的水量,量纲1/L。
μs = ρg (α+nβ)。
导水系数:是描述含水层出水能力的参数;水力坡度等于1时,通过整个含水层厚度上的单宽流量;亦即含水层的渗透系数与含水层厚度之积,T=KM。
它是定义在一维或二维流中的水文地质参数。
单位:m2/d。
非均质介质:如果在渗流场中,所有点不都具有相同的渗透系数,则称该岩层是非均质的。
各向异性介质:渗流场中某一点的渗透系数取决于方向,渗透系数随渗流方向不同而不同。
达西定律:是描述(条件:以粘滞力为主、雷诺数Re< 1~10的层流状态下的地下水渗流)基本定律,指出渗流速度V与水力梯度J成线性关系,V=KJ,或Q=KAJ,为水力梯度等于1时的渗流速度。
流体的地下水动力学流体的地下水动力学是研究地下水流动行为以及地下水运动规律的学科,涉及专业知识较多,包括水文地质学、地下水动力学等。
本文将介绍地下水动力学的基本概念、流体在地下的运动规律以及地下水资源管理等相关内容。
一、地下水动力学的基本概念地下水动力学是描述地下水流动行为的学科,它研究地下水的运动规律、影响因素以及地下水流体力学和传质过程等问题。
地下水动力学的研究对于水资源的合理开发和利用具有重要意义。
地下水动力学的基本概念包括:1. 地下水的来源和补给:地下水主要来源于降水的入渗和地表水的补给,其中入渗是地下水的重要补给方式。
2. 渗透率和孔隙度:地下岩层对水的渗透能力称为渗透率,而孔隙度则是描述岩层中可存储水的空隙比例。
3. 地下水流速和流量:地下水流速是单位时间内地下水通过单位面积的速度,流量是单位时间内通过某一断面的地下水体积。
4. 地下水压力和水头:地下水压力是地下水对岩层施加的压力,水头则是用来描述地下水压力差的概念。
5. 地下水流场和流线:地下水在地下岩层中的流动形态称为地下水流场,而地下水流场中各点连成的线路称为流线。
二、流体在地下的运动规律地下水动力学研究了流体在地下的运动规律,主要涉及泊松方程和达西定律等基本原理。
1. 泊松方程:泊松方程是描述地下水压力分布的方程,它描述了地下水压力与地下水位(或水头)之间的关系。
泊松方程可以帮助我们了解地下水的压力分布情况,并对地下水流动进行数值模拟和分析。
2. 达西定律:达西定律是描述地下水流速与水头梯度之间关系的定律,也称为达西-普朗克方程。
根据达西定律,地下水流速正比于水头梯度,并且与渗透率和孔隙度等因素有关。
3. 流体力学和传质过程:地下水流体力学是研究地下水流动行为的分支学科,它涉及地下水流速、流量、流体力与单位面积上岩石壁面作用力之间的关系。
此外,地下水中还存在着溶质的传质过程,即溶质在地下流体中的传输现象,它涉及浓度分布、扩散速率等问题。
地下水动力学知识点总结地下水动力学这门学科呀,可真是充满了各种有趣又实用的知识!咱们今天就来好好总结总结。
先来说说地下水的流动。
想象一下,地下水就像一群调皮的孩子,在地下的通道里跑来跑去。
它们的流动速度和方向可不是随便乱来的,这和很多因素都有关系。
比如说,含水层的渗透性就像通道的宽窄,渗透性好,地下水跑得就快;渗透性差,它们就得慢悠悠地挪。
还记得有一次,我去一个地方考察,那里有一口古老的水井。
周围的人们都说这水井的水一直都很清澈,水量也很稳定。
我就好奇呀,仔细研究了一下周围的地质情况。
发现那里的含水层渗透性不错,地下水能够稳定地补充到水井里,所以才有了这样让人称赞的好水井。
这就让我更深刻地理解了渗透性对地下水流动的重要影响。
再说说水头和水力梯度。
水头就像是地下水的“能量高度”,水力梯度则是它们流动的“动力”。
水力梯度越大,地下水流动得就越起劲。
这就好比我们爬山,山坡越陡,我们往下滑的速度可能就越快。
地下水的储存和释放在实际生活中也很重要。
含水层就像是一个大水库,能储存大量的地下水。
当我们需要用水的时候,它又能释放出来。
我曾经在一个农村地区看到,在干旱的季节里,当地居民依靠着地下含水层储存的水,度过了艰难的时期。
还有地下水向井的流动。
井就像是一个大吸盘,把周围的地下水都吸引过来。
不同类型的井,吸引地下水的能力和方式也不一样。
地下水动力学的知识在很多领域都有应用呢。
比如在水资源管理方面,了解地下水的流动规律,就能更好地规划水资源的开发和保护,避免过度开采导致地下水资源枯竭。
在地质工程中,它能帮助工程师们预测地下水流对工程建设的影响,提前做好防范措施。
总之,地下水动力学的知识点虽然看起来有点复杂,但只要我们用心去理解,多结合实际生活中的例子,就能发现其中的乐趣和实用价值。
就像我们通过那口古老的水井,明白了渗透性的重要;通过农村的用水情况,理解了储存和释放的意义。
希望大家都能掌握好这些知识,为我们更好地利用和保护地下水资源出一份力!。
内容主要有:(1)渗流理论基础;(2)地下水向河渠的稳定运动;(3)地下水向完整井的稳定运动;(4)地下水向完整井的非稳定运动;(5)地下水向边界附近井的稳定和非稳定运动。
重点考核地下水运动的基本概念、基本原理和方法。
题目类型有名词解释、判断题、作图题和计算题等,其中计算题占试题总分数的65%。
《地下水动力学》复习要点第一章 渗流理论基础一、基本内容1、基本概念:多孔介质、贮水率、贮水系数(弹性给水度)、渗流、渗流速度及与实际速度关系、水头(位置水头、测压管水头)、水力坡度、渗透系数、渗透率、导水系数、各向异性介质、各向同性介质、均质与非均质、水流折射原理、流网、dupuit 假设、第一类边界条件、第二类边界条件等2、基本定律:达西定律及适用范围3、描述地下水运动的方程:渗流连续性方程、承压水运动的基本微分方程、潜水运动的基本微分方程、越流含水层地下水非稳定流运动方程4、定解条件(初始条件、边界条件),数值方法基本思想二、要求1、理解并掌握上述概念和理论2、用达西定律分析水头线的变化或根据流网分析水文地质条件变化;3、给定水文地质条件,能正确画出反映地下水运动特点的流网图;4、给定水文地质模型和水文地质条件,写出反映地下水运动的基本方程(给定假设条件,建立数学模型,包括初始条件、边界条件)第二章 河间地块地下水的稳定运动一、基本内容有入渗时河间地块潜水的稳定运动问题(水文地质模型、假设条件、数学模型、流网、任意过水断面流量、分水岭移动规律、水头线)、无入渗时潜水的稳定运动、承压水的稳定运动,水在承压—无压含水层中的运动,非均质含水层中水的运动问题。
二、学习要求根据给定问题的水文地质条件,用相关公式计算过水断面流量或水位。
三、常用公式 1、承压含水层(达西定律) l H H m m kq 21212++= x lH H H H 211--= 2、无入渗潜水含水层(达西定律)l h h h h k q 21212-+= x lh h h h 2122212-+= 3、有入渗时潜水 wx wl l h h k q +--=2122221 )(22122212x lx kw x l h h h h -+-+= 4、分水岭位置 l h h w k l a 222221--= 5、其它流动问题(水平层状含水层、非均质含水层、承压—无压含水层、厚度或水流厚度沿流向变化等)第三章 地下水向完整井的稳定运动一、 基本概念:完整井、不完整井、水井及周围水位(水头)、稳定井流条件(定水头边界、越流、入渗补给)、井损与水跃、影响半径与引用影响半径、叠加原理、均匀流及平面或剖面流网二、学习要求1、掌握地下水向承压水井和潜水井运动问题的假设条件、数学模型、平面或剖面流网特征2、利用有关公式计算抽水量、降深或利用抽水试验资料(已知降深或水位),求含水层参数(导水系数或渗透系数)3、应用叠加原理地下水向完整井群的稳定运动问题。
(完整版)地下⽔动⼒学知识点总结基本问题潜⽔含⽔层的贮⽔能⼒可表⽰为Q=HF;承压含⽔层的贮⽔能⼒可表⽰为Q=HF;式中Q——含⽔层⽔位变化时H的贮⽔能⼒,H——⽔位变化幅度;F——地下⽔位受⼈⼯回灌影响的范围。
从中可以看出,因为承压含⽔层的弹性释⽔系数远远⼩于潜⽔含⽔层的给⽔度,因此在相同条件下进⾏⼈⼯回灌时,潜⽔含⽔层的贮⽔能⼒远远⼤于承压含⽔层的贮⽔能⼒。
⽔跃:抽⽔井中的⽔位与井壁外的⽔位之间存在差值的现象(seepage face)。
井损(well loss)是由于抽⽔井管所造成的⽔头损失。
①井损的存在:渗透⽔流由井壁外通过过滤器或缝隙进⼊抽⽔井时要克服阻⼒,产⽣⼀部分⽔头损失h1。
②⽔进⼊抽⽔井后,井内⽔流井⽔向⽔泵及⽔笼头流动过程中要克服⼀定阻⼒,产⽣⼀部分⽔头差h2。
③井壁附近的三维流也产⽣⽔头差h3。
通常将(h1+h2+h3)统称为⽔跃值.趋于等速下降。
113承压⽔井的Dupuit公式的⽔⽂地质概念模型(1)含⽔层为均质、各向同性,产状⽔平、厚度不变(等厚)、,分布⾯积很⼤,可视为⽆限延伸;或呈圆岛状分布,岛外有定⽔头补给;(2)抽⽔前地下⽔⾯是⽔平的,并视为稳定的;含⽔层中的⽔流服从Darcy’s Law,并在⽔头下降的瞬间将⽔释放出来,可忽略弱透⽔层的弹性释⽔;(3)完整井,定流量抽⽔,在距井⼀定距离上有圆形补给边界,⽔位降落漏⽃为圆域,半径为影响半径;经过较长时间抽⽔,地下⽔运动出现稳定状态;(4)⽔流为平⾯径向流,流线为指向井轴的径向直线,等⽔头⾯为以井为共轴的圆柱⾯,并和过⽔断⾯⼀致;通过各过⽔断⾯的流量处处相等,并等于抽⽔井的流量。
123承压⽔井的Dupuit公式的表达式及符号含义或式中,s w—井中⽔位降深,m;Q—抽⽔井流量,m3/d;M—含⽔层厚度,m;K—渗透系数,m/d;r w—井半径,m;R—影响半径(圆岛半径),m。
133Theim公式的表达式若存在两个观测孔,距离井中⼼的距离分别为r1,r2,⽔位分别为H1,H2,在r1到r2区间积分得:式中s1、s2分别为r1和r2处的⽔位降深。