超清晰遗传算法详解
- 格式:pdf
- 大小:89.18 KB
- 文档页数:7
遗传算法简述及代码详解声明:本文内容整理自网络,认为原作者同意转载,如有冒犯请联系我。
遗传算法基本内容遗传算法为群体优化算法,也就是从多个初始解开始进行优化,每个解称为一个染色体,各染色体之间通过竞争、合作、单独变异,不断进化。
遗传学与遗传算法中的基础术语比较染色体:又可以叫做基因型个体(individuals)群体/种群(population):一定数量的个体组成,及一定数量的染色体组成,群体中个体的数量叫做群体大小。
初始群体:若干染色体的集合,即解的规模,如30,50等,认为是随机选取的数据集合。
适应度(fitness):各个个体对环境的适应程度优化时先要将实际问题转换到遗传空间,就是把实际问题的解用染色体表示,称为编码,反过程为解码/译码,因为优化后要进行评价(此时得到的解是否较之前解优越),所以要返回问题空间,故要进行解码。
SGA采用二进制编码,染色体就是二进制位串,每一位可称为一个基因;如果直接生成二进制初始种群,则不必有编码过程,但要求解码时将染色体解码到问题可行域内。
遗传算法的准备工作:1) 数据转换操作,包括表现型到基因型的转换和基因型到表现型的转换。
前者是把求解空间中的参数转化成遗传空间中的染色体或者个体(encoding),后者是它的逆操作(decoding)2) 确定适应度计算函数,可以将个体值经过该函数转换为该个体的适应度,该适应度的高低要能充分反映该个体对于解得优秀程度。
非常重要的过程。
遗传算法基本过程为:1) 编码,创建初始群体2) 群体中个体适应度计算3) 评估适应度4) 根据适应度选择个体5) 被选择个体进行交叉繁殖6) 在繁殖的过程中引入变异机制7) 繁殖出新的群体,回到第二步实例一:(建议先看实例二)求 []30,0∈x 范围内的()210-=x y 的最小值1) 编码算法选择为"将x 转化为2进制的串",串的长度为5位(串的长度根据解的精度设 定,串长度越长解得精度越高)。
遗传算法的使用方法和技巧指南遗传算法是一种启发式优化算法,它模拟了自然界中的生物进化过程来解决问题。
它具有强大的搜索能力和全局优化能力,在各个领域都有广泛的应用。
本文将介绍遗传算法的基本原理、使用方法以及一些重要的技巧指南。
一、遗传算法的基本原理遗传算法基于生物进化的思想,通过模拟人工选择、交叉和变异等过程来生成和更新解的种群,并利用适应度函数对种群进行评估和选择,以期望通过迭代的方式找到最优解。
遗传算法的基本流程如下:1. 初始化种群:随机生成一组个体作为初始种群。
2. 适应度评估:根据问题的特定要求,计算每个个体的适应度值。
3. 选择操作:利用适应度值选择父代个体进行繁殖,常用的选择算法有轮盘赌选择和竞争选择等。
4. 交叉操作:通过交叉运算生成新的后代个体,交叉操作能够保留父代的有益特征。
5. 变异操作:对交叉后的个体进行基因的随机变异,增加种群的多样性。
6. 替换操作:根据一定的规则,用新生成的后代个体替换原始种群中的一部分个体。
7. 终止条件判断:根据迭代次数或者达到某个预定义的解的条件,判断是否终止迭代。
8. 返回最优解。
二、遗传算法的使用方法为了正确有效地使用遗传算法,我们需要遵循以下几个步骤:1. 理解问题:首先,要准确理解问题的特性和要求,包括确定问题的目标函数、约束条件等。
只有对问题有清晰的认识,才能设计合适的遗传算法。
2. 设计编码方案:将问题的解表示为染色体的编码方案,更好的编码方案可以减少解空间的搜索范围。
常用的编码方式有二进制、浮点数、整数等。
3. 确定适应度函数:根据问题的特点,设计合适的适应度函数用于度量个体的优劣。
适应度函数应能够将问题的目标转化为一个数值,使得数值越大越好或者越小越好。
4. 选择操作:选择操作决定了如何根据适应度值选择父代个体。
常用的选择算法有轮盘赌选择、竞争选择、排名选择等。
轮盘赌选择是普遍应用的一种方法,根据个体的适应度值按比例选择。
5. 交叉操作:交叉操作决定了如何生成新的后代个体。
遗传算法的基本原理和⽅法遗传算法的基本原理和⽅法⼀、编码编码:把⼀个问题的可⾏解从其解空间转换到遗传算法的搜索空间的转换⽅法。
解码(译码):遗传算法解空间向问题空间的转换。
⼆进制编码的缺点是汉明悬崖(Hamming Cliff),就是在某些相邻整数的⼆进制代码之间有很⼤的汉明距离,使得遗传算法的交叉和突变都难以跨越。
格雷码(Gray Code):在相邻整数之间汉明距离都为1。
(较好)有意义的积⽊块编码规则:所定编码应当易于⽣成与所求问题相关的短距和低阶的积⽊块;最⼩字符集编码规则,所定编码应采⽤最⼩字符集以使问题得到⾃然的表⽰或描述。
⼆进制编码⽐⼗进制编码搜索能⼒强,但不能保持群体稳定性。
动态参数编码(Dynamic Paremeter Coding):为了得到很⾼的精度,让遗传算法从很粗糙的精度开始收敛,当遗传算法找到⼀个区域后,就将搜索现在在这个区域,重新编码,重新启动,重复这⼀过程,直到达到要求的精度为⽌。
编码⽅法:1、⼆进制编码⽅法缺点:存在着连续函数离散化时的映射误差。
不能直接反映出所求问题的本⾝结构特征,不便于开发针对问题的专门知识的遗传运算算⼦,很难满⾜积⽊块编码原则2、格雷码编码:连续的两个整数所对应的编码之间仅仅只有⼀个码位是不同的,其余码位都相同。
3、浮点数编码⽅法:个体的每个基因值⽤某⼀范围内的某个浮点数来表⽰,个体的编码长度等于其决策变量的位数。
4、各参数级联编码:对含有多个变量的个体进⾏编码的⽅法。
通常将各个参数分别以某种编码⽅法进⾏编码,然后再将他们的编码按照⼀定顺序连接在⼀起就组成了表⽰全部参数的个体编码。
5、多参数交叉编码:将各个参数中起主要作⽤的码位集中在⼀起,这样它们就不易于被遗传算⼦破坏掉。
评估编码的三个规范:完备性、健全性、⾮冗余性。
⼆、选择遗传算法中的选择操作就是⽤来确定如何从⽗代群体中按某种⽅法选取那些个体遗传到下⼀代群体中的⼀种遗传运算,⽤来确定重组或交叉个体,以及被选个体将产⽣多少个⼦代个体。
遗传算法的详解及应用遗传算法(Genetic Algorithm,GA)是一种模拟自然选择和遗传过程的算法。
在人工智能和优化问题中得到了广泛的应用。
本文将详细介绍遗传算法的基本原理和优化过程,并探讨它在实际应用中的价值和局限性。
一、遗传算法的基本原理遗传算法的基本原理是通过模拟生物进化的过程来寻找一个问题的最优解。
在遗传算法中,优秀的解决方案(也称为个体,Individual)在进化中拥有更高的生存几率,而劣质的解决方案则很快被淘汰。
在遗传算法的过程中,每个个体由若干个基因组成,每个基因代表某种特定的问题参数或者状态。
通过遗传算法,我们可以找到问题最优的解或者其中一个较优解。
遗传算法的基本流程如下:1. 初始化群体(Population):首先,我们需要随机生成一组初始解作为群体的个体。
这些个体被称为染色体(chromosome),每一个染色体都由一些基因(gene)组成。
所以我们可以认为群体是由很多染色体组成的。
2. 选择操作(Selection):选择运算是指从群体中选出一些个体,用来繁殖后代。
其目的是让优秀的个体留下更多的后代,提高下一代的平均适应度。
在选择操作中,我们通常采用轮盘赌选择(Roulette Wheel Selection)法、锦标赛(Tournament)法、排名选择(Ranking Selection)法等方法。
3. 交叉操作(Crossover):交叉运算是指随机地从两个个体中选出一些基因交换,生成新的染色体。
例如,我们可以将染色体A和B中的第三个基因以后的基因交换,从而产生两个新的染色体。
4. 变异操作(Mutation):变异运算是指随机改变染色体中的个别基因,以增加多样性。
例如,我们随机将染色体A的第三个基因改变,从而产生一个新的染色体A'。
5. 适应度评估(Fitness Evaluation):适应度评估是指给每一个个体一个适应度分数,该分数是问题的目标函数或者优化函数。
三分钟学会遗传算法遗传算法此节介绍最著名的遗传算法(GA)。
遗传算法属于进化算法,基本思想是取自“物竞天泽、适者生存”的进化法则。
简单来说,遗传算法就是将问题编码成为染色体,然后经过不断选择、交叉、变异等操作来更新染色体的编码并进行迭代,每次迭代保留上一代好的染色体,丢弃差的染色体,最终达到满足目标的最终染色体。
整个流程由下图构成(手写,见谅 -_-!!)流程图步骤由以下几步构成:编码(coding)——首先初始化及编码。
在此步,根据问题或者目标函数(objective function)构成解数据(solutions),在遗传算法中,该解数据就被称为染色体(chromosome)。
值得一提的是,遗传算法为多解(population based)算法,所以会有多条染色体。
初始化中会随机生成N条染色体,, 这里表示染色体包含了n条。
其中,这里表示第i条染色体由d维数值构成。
GA会以这个N个数据作为初始点开始进行进化。
评估适应度(evaluate fitness)——这一步用染色体来进行目标函数运算,染色体的好坏将被指明。
选择(selection)——从当前染色体中挑选出优良的个体,以一定概率使他们成为父代进行交叉或者变异操作,他们的优秀基因后代得到保留。
物竞天择这里得以体现。
交叉(crossover)——父代的两个两个染色体,通过互换染色体构成新的染色体。
例如下图,父亲母亲各提供两个基因给我。
这样我既保留了父母的基于,同时又有自己的特性。
交叉变异(mutation)——以一定概率使基因发生突变。
该算子一般以较低概率发生。
如下图所示:变异下面我们将一步一步为各位呈现如何用matlab编写一个简单的GA算法。
本问题为实数最小化minimization问题。
我们需要在解空间内找到最小值或近似最小值,此处我们使用sphere函数作为目标函数(读者可以自行修改为其他的目标函数)。
sphere function•初始化:在这一步中,我们将在给定问题空间内生成随机解,代码如下:% %% 初始化% % 输入:chromes_size,dim维数,lb下界,ub 上界% % 输出:chromes新种群function chromes=init_chromes(chromes_size,dim,lb,ub) % 上下界中随机生成染色体 chromes = rand(chromes_size,dim)*(ub-lb)+lb;end•选择:选择是从当前代中挑选优秀的染色体保留以繁殖下一代。
算法】超详细的遗传算法(GeneticAlgorithm)解析01 什么是遗传算法?1.1 遗传算法的科学定义遗传算法(Genetic Algorithm, GA)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。
其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,不需要确定的规则就能自动获取和指导优化的搜索空间,自适应地调整搜索方向。
遗传算法以一种群体中的所有个体为对象,并利用随机化技术指导对一个被编码的参数空间进行高效搜索。
其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定五个要素组成了遗传算法的核心内容。
1.2 遗传算法的执行过程(参照百度百科)遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。
每个个体实际上是染色体(chromosome)带有特征的实体。
染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。
因此,在一开始需要实现从表现型到基因型的映射即编码工作。
由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码。
初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。
遗传算法的计算过程遗传算法(Genetic Algorithm,GA)是一种通过模拟生物遗传与进化过程来解决优化问题的计算方法。
它模拟了生物进化的基本原理,通过不断地在候选解空间中的个体之间进行基因组交叉、变异和选择来搜索最优解。
遗传算法的计算过程包括初始化种群、评估适应度、选择操作、交叉操作和变异操作等几个关键步骤。
第一步是初始化种群。
在这一步中,随机生成一定数量的个体作为初始种群。
个体是问题的一个可能解,由基因串表示,而基因串则由若干基因组成。
每个基因包含问题的一个特征或参数,如解的某个组成部分。
初始种群的生成需要遵循问题定义的约束条件。
第二步是评估适应度。
适应度函数用来衡量一个个体的优劣程度。
适应度函数应根据问题的目标来设计,一般来说,适应度越高表示个体越优秀。
通过对初始种群中的每个个体应用适应度函数,可以得到每个个体的适应度值。
第三步是选择操作。
选择操作通过以一定概率选择适应度较高的个体,来生成下一代的种群。
选择操作的核心思想是根据个体的适应度值来确定其在遗传过程中被选中的概率。
常见的选择操作方式有:轮盘赌选择、锦标赛选择等。
第四步是交叉操作。
交叉操作模拟生物界个体之间的基因组交叉。
通过将两个个体的基因串进行某种方式的交叉,产生新的子代个体。
交叉操作的目的是通过基因的重组,产生新的解的组合,以期望得到比父代更优的个体。
第五步是变异操作。
变异操作模拟生物界个体基因的突变。
它以一定的概率对个体的某些基因进行随机的变化。
变异操作有助于避免算法陷入局部最优解,增加算法的全局搜索能力。
上述过程中,选择操作、交叉操作和变异操作通常都会进行多次迭代,使得种群逐渐收敛于最优解。
为了确保算法的效率和准确性,迭代次数需要通过实验或者经验进行调整。
遗传算法的终止条件通常有两种:一种是达到了规定的迭代次数;另一种是达到了某个满足问题相关要求的终止条件。
当终止条件满足时,算法终止,并返回最优解。
总结起来,遗传算法的计算过程包括初始化种群、评估适应度、选择操作、交叉操作和变异操作等多个关键步骤。
遗传算法原理 pdf
遗传算法(Genetic Algorithm, GA)是一种受到达尔文进化论
启发而产生的一类计算模型,用于解决优化问题。
其基本原理是通过模拟生物进化过程中的自然选择、交叉和变异等基本操作,来搜索问题的最优解。
遗传算法的主要步骤包括:
1. 初始化种群:从问题的解空间中随机生成一组个体,称为种群。
2. 选择操作:根据个体的适应度(即问题目标函数值的评价),按照一定的策略选择一些个体作为父代。
3. 交叉操作:通过交叉两个父代个体的某个特定位置,生成若干个子代。
4. 变异操作:对某些子代个体的某个位置进行随机变异。
5. 评估操作:评估新生成的个体的适应度。
6. 更新种群:根据一定策略,如选择优先的原则,更新种群。
7. 迭代:重复执行第2至第6步,直到满足停止准则(如达到最大迭代次数或找到满足必要条件的最优解)。
通过选择、交叉和变异等操作,遗传算法模拟了自然界的进化过程,可以在解空间中进行搜索,并找到潜在的最优解。
由于遗传算法不依赖于问题的具体数学描述,因此可以广泛应用于多种优化问题的求解。
除了原始的遗传算法,还有一些变种的遗传算法,如改进策略的遗传算法、粒子群优化算法等,在实际应用中根据具体问题和需求选择适合的算法。
总之,遗传算法是一种模拟生物进化过程的计算模型,通过选择、交叉和变异等操作来进行搜索和优化问题解的求解。
该算法不仅具有广泛的适用性和灵活性,还可以在大规模和复杂优化问题中表现出较好的效果。
遗传算法总结简介遗传算法(Genetic Algorithm,简称GA)是一种基于生物进化过程中的遗传机制和自然选择原理的优化方法。
它模拟了自然界的进化过程,通过对问题空间中的个体进行选择、交叉和变异等操作,逐步搜索并优化解的过程。
遗传算法被广泛应用于解决各种优化、搜索和机器学习问题。
基本原理遗传算法的基本原理是通过模拟自然选择和遗传机制,寻找问题空间中的最优解。
其主要步骤包括初始化种群、选择操作、交叉操作、变异操作和确定终止条件等。
1.初始化种群:遗传算法的第一步是生成一个初始种群,其中每个个体代表一个可能的解。
个体的编码可以使用二进制、整数或实数等形式,具体根据问题的特点而定。
2.选择操作:选择操作通过根据适应度函数对种群中的个体进行评估和排序,选择较优的个体作为下一代种群的父代。
通常采用轮盘赌选择、竞争选择等方法来进行选择。
3.交叉操作:交叉操作模拟了生物遗传中的交配过程。
从父代个体中选择一对个体,通过交叉染色体的某个位置,生成下一代个体。
交叉操作可以通过单点交叉、多点交叉或均匀交叉等方式进行。
4.变异操作:变异操作引入了种群中的一定程度的随机性,通过改变个体的染色体或基因,以增加种群的多样性。
变异操作可以是位变异、部分反转、插入删除等方式进行。
5.确定终止条件:遗传算法会循环执行选择、交叉和变异操作,直到满足一定的终止条件。
常见的终止条件有达到最大迭代次数、找到最优解或达到计算时间限制等。
优点和局限性优点•遗传算法可以在大规模问题空间中进行全局搜索,不受问题的线性性和连续性限制。
它适用于解决多目标和多约束问题。
•遗传算法具有自适应性和学习能力,通过不断的进化和优胜劣汰过程,可以逐步收敛到最优解。
•遗传算法易于实现和理解,可以直观地表示问题和解决方案。
局限性•遗传算法需要选择合适的编码方式和适应度函数,以及调整交叉和变异的概率等参数。
这些参数的选择对算法的性能和结果有较大影响,需要经验和调整。
遗传算法的基本原理和优化方法遗传算法是一种模拟生物进化过程的优化方法,它模仿生物基因的变异、交叉和与环境的适应等特征,在多维空间中搜索最优解。
本文将详细介绍遗传算法的基本原理和优化方法,以及应用场景和优缺点。
一、基本原理遗传算法的基本原理是通过模拟自然选择,将每个解看作个体,将问题转化为优化个体的适应度,不断迭代,直到找到最优解。
遗传算法的实现包括解码、变异、交叉和选择四个步骤。
解码:将候选解转化为适应度函数可以处理的形式,通常是二进制编码。
变异:对个体染色体进行变异,引入随机性,增加探索性,避免陷入局部最优解。
交叉:对个体染色体进行交叉,产生新的个体,并保留原有染色体中优秀的特征。
选择:根据染色体适应度大小进行筛选,保留优秀个体,淘汰劣秀个体。
二、优化方法遗传算法的优化方法主要包括参数调整、多目标优化和约束优化三个方面。
参数调整:在遗传算法中,有很多参数需要调整,例如种群大小、变异率、交叉率等。
如何选择合适的参数可以大幅提升算法的性能。
多目标优化:多目标优化是指尝试优化多个目标函数,通常会出现一些矛盾的目标。
遗传算法可以用多个适应度函数来表示多个目标,同时生成具有多目标的优化解集。
约束优化:约束优化是指在解决问题中加入一些限制条件,通常存在矛盾。
例如,在选课问题中,学生有时间限制和课程容量限制等约束。
遗传算法可以将这些约束条件引入适应度函数,从而产生可行解。
三、应用场景遗传算法可以应用于很多场景,例如工程设计、拟合分析、图像处理等。
工程设计:在产品设计领域,遗传算法经常用于优化产品参数,比如设计飞机的翼型和大小、优化燃油效率等。
拟合分析:在拟合数据的问题中,遗传算法可以用来寻找最优曲线和最小二乘拟合。
图像处理:对于图像处理中的问题,遗传算法可以用于优化图像处理算法,例如图像分割、滤波和特征提取等。
四、优缺点遗传算法的优点在于它可以自适应地搜索解空间,在寻找全局最优解和局部最优解有较好表现。
同时,遗传算法突出了把优秀的特征从一代迁移到下一代,有很强的稳定性。
遗传算法解释及代码(一看就懂)遗传算法( GA , Genetic Algorithm ) ,也称进化算法。
遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。
因此在介绍遗传算法前有必要简单的介绍生物进化知识。
一.进化论知识作为遗传算法生物背景的介绍,下面内容了解即可:种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。
个体:组成种群的单个生物。
基因 ( Gene ) :一个遗传因子。
染色体 ( Chromosome ):包含一组的基因。
生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。
适应度低的个体参与繁殖的机会比较少,后代就会越来越少。
遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。
简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。
那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。
二.遗传算法思想借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。
这样进化N代后就很有可能会进化出适应度函数值很高的个体。
举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。
这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。
编码:需要将问题的解编码成字符串的形式才能使用遗传算法。
% 下面举例说明遗传算法%% 求下列函数的最大值%% f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] %% 将x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)/(2^10-1)≈0.01 。
%% 将变量域[0,10] 离散化为二值域[0,1023], x=0+10*b/1023, 其中b 是[0,1023] 中的一个二值数。
%% %%--------------------------------------------------------------------------------------------------------------% %--------------------------------------------------------------------------------------------------------------%% 编程%-----------------------------------------------% 2.1初始化(编码)% initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。
%遗传算法子程序%Name: initpop.m%初始化function pop=initpop(popsize,chromlength)pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为{0,1} 行数为popsize,列数为chromlength的矩阵,% roud对矩阵的每个单元进行圆整。
这样产生的初始种群。
% 2.2 计算目标函数值% 2.2.1 将二进制数转化为十进制数(1)%遗传算法子程序%Name: decodebinary.m%产生[2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制function pop2=decodebinary(pop)[px,py]=size(pop); %求pop行和列数for i=1:pypop1(:,i)=2.^(py-i).*pop(:,i);endpop2=sum(pop1,2); %求pop1的每行之和% 2.2.2 将二进制编码转化为十进制数(2)% decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置% (对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。
本例为1),% 参数1ength表示所截取的长度(本例为10)。
%遗传算法子程序%Name: decodechrom.m%将二进制编码转换成十进制function pop2=decodechrom(pop,spoint,length)pop1=pop(:,spoint:spoint+length-1);pop2=decodebinary(pop1);% 2.2.3 计算目标函数值% calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。
%遗传算法子程序%Name: calobjvalue.m%实现目标函数的计算function [objvalue]=calobjvalue(pop)temp1=decodechrom(pop,1,10); %将pop每行转化成十进制数x=temp1*10/1023; %将二值域中的数转化为变量域的数objvalue=10*sin(5*x)+7*cos(4*x); %计算目标函数值% 2.3 计算个体的适应值%遗传算法子程序%Name:calfitvalue.m%计算个体的适应值function fitvalue=calfitvalue(objvalue)global Cmin;Cmin=0;[px,py]=size(objvalue);for i=1:pxif objvalue(i)+Cmin>0temp=Cmin+objvalue(i);elsetemp=0.0;endfitvalue(i)=temp;endfitvalue=fitvalue';% 2.4 选择复制% 选择或复制操作是决定哪些个体可以进入下一代。
程序中采用赌轮盘选择法选择,这种方法较易实现。
% 根据方程pi=fi/∑fi=fi/fsum ,选择步骤:% 1)在第t 代,由(1)式计算fsum 和pi% 2)产生{0,1} 的随机数rand( .),求s=rand( .)*fsum% 3)求∑fi≥s 中最小的k ,则第k 个个体被选中% 4)进行N 次2)、3)操作,得到N 个个体,成为第t=t+1 代种群%遗传算法子程序%Name: selection.m%选择复制function [newpop]=selection(pop,fitvalue)totalfit=sum(fitvalue); %求适应值之和fitvalue=fitvalue/totalfit; %单个个体被选择的概率fitvalue=cumsum(fitvalue); %如fitvalue=[1 2 3 4],则cumsum(fitvalue)=[1 3 6 10][px,py]=size(pop);ms=sort(rand(px,1)); %从小到大排列fitin=1;newin=1;while newin<=pxif(ms(newin))<fitvalue(fitin)newpop(newin)=pop(fitin);newin=newin+1;elsefitin=fitin+1;endend% 2.5 交叉% 交叉(crossover),群体中的每个个体之间都以一定的概率pc 交叉,即两个个体从各自字符串的某一位置% (一般是随机确定)开始互相交换,这类似生物进化过程中的基因分裂与重组。
例如,假设2个父代个体x1,x2为:% x1=0100110% x2=1010001% 从每个个体的第3位开始交叉,交又后得到2个新的子代个体y1,y2分别为:% y1=0100001% y2=1010110% 这样2个子代个体就分别具有了2个父代个体的某些特征。
利用交又我们有可能由父代个体在子代组合成具有更高适合度的个体。
% 事实上交又是遗传算法区别于其它传统优化方法的主要特点之一。
%遗传算法子程序%Name: crossover.m%交叉function [newpop]=crossover(pop,pc)[px,py]=size(pop);newpop=ones(size(pop));for i=1:2:px-1if(rand<pc)cpoint=round(rand*py);newpop(i,:)=[pop(i,1:cpoint),pop(i+1,cpoint+1:py)];newpop(i+1,:)=[pop(i+1,1:cpoint),pop(i,cpoint+1:py)];elsenewpop(i,:)=pop(i);newpop(i+1,:)=pop(i+1);endend% 2.6 变异% 变异(mutation),基因的突变普遍存在于生物的进化过程中。
变异是指父代中的每个个体的每一位都以概率pm 翻转,即由“1”变为“0”,% 或由“0”变为“1”。
遗传算法的变异特性可以使求解过程随机地搜索到解可能存在的整个空间,因此可以在一定程度上求得全局最优解。
%遗传算法子程序%Name: mutation.m%变异function [newpop]=mutation(pop,pm)[px,py]=size(pop);newpop=ones(size(pop));for i=1:pxif(rand<pm)mpoint=round(rand*py);if mpoint<=0mpoint=1;endnewpop(i)=pop(i);if any(newpop(i,mpoint))==0newpop(i,mpoint)=1;elsenewpop(i,mpoint)=0;endelsenewpop(i)=pop(i);endend% 2.7 求出群体中最大得适应值及其个体%遗传算法子程序%Name: best.m%求出群体中适应值最大的值function [bestindividual,bestfit]=best(pop,fitvalue)[px,py]=size(pop);bestindividual=pop(1,:);bestfit=fitvalue(1);for i=2:pxif fitvalue(i)>bestfitbestindividual=pop(i,:);bestfit=fitvalue(i);endend% 2.8 主程序%遗传算法主程序%Name:genmain05.mclearclfpopsize=20; %群体大小chromlength=10; %字符串长度(个体长度)pc=0.6; %交叉概率pm=0.001; %变异概率pop=initpop(popsize,chromlength); %随机产生初始群体for i=1:20 为迭代次数[objvalue]=calobjvalue(pop); %计算目标函数fitvalue=calfitvalue(objvalue); %计算群体中每个个体的适应度[newpop]=selection(pop,fitvalue); %复制[newpop]=crossover(pop,pc); %交叉[newpop]=mutation(pop,pc); %变异[bestindividual,bestfit]=best(pop,fitvalue); %求出群体中适应值最大的个体及其适应值y(i)=max(bestfit);n(i)=i;pop5=bestindividual;x(i)=decodechrom(pop5,1,chromlength)*10/1023;pop=newpop;endfplot('10*sin(5*x)+7*cos(4*x)',[0 10])hold onplot(x,y,'r*')hold off[z index]=max(y); %计算最大值及其位置x5=x(index)%计算最大值对应的x值y=z【问题】求f(x)=x 10*sin(5x) 7*cos(4x)的最大值,其中0<=x<=9【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08【程序清单】%编写目标函数function[sol,eval]=fitness(sol,options)x=sol(1);eval=x 10*sin(5*x) 7*cos(4*x);%把上述函数存储为fitness.m文件并放在工作目录下initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %次遗传迭代运算借过为:x =7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)注:遗传算法一般用来取得近似最优解,而不是最优解。