钢铁材料的一般热处理一个表全懂了
- 格式:doc
- 大小:47.50 KB
- 文档页数:4
钢铁热处理的工艺流程钢铁热处理是通过控制金属材料的加热、保温和冷却过程来改变其结构和性能的一种工艺。
它可以提高钢铁的硬度、强度、韧性、耐磨性和耐腐蚀性等性能,从而满足不同材料在不同工作条件下的使用要求。
下面详细介绍钢铁热处理的工艺流程。
首先是预处理阶段。
在这个阶段,需要对待处理的钢铁材料进行清洗,以去除表面的污垢或氧化层。
清洗方法可以是化学方法,如酸洗或碱洗;也可以是机械方法,如喷砂或抛光。
除了清洗,还需要进行切割和机加工等步骤,以获得适当的形状和尺寸。
接下来是加热阶段。
这是钢铁热处理过程中最重要的一个步骤。
通过加热,钢铁材料的晶体结构会发生变化,从而改变其性能。
加热时可以采用多种方式,如高频感应加热、盐浴炉加热、电阻加热等。
根据材料的不同和要求的性能,加热温度也会有所不同。
一般来说,钢铁的加热温度可以在300到1000之间。
然后是保温阶段。
当达到所需的加热温度后,需要将钢铁材料保持在一定的温度范围内一段时间。
保温时间的长短取决于材料的类型和尺寸。
通过保温,材料内部的原子和晶体会发生再分布,从而进一步改变其结构和性能。
最后是冷却阶段。
在保温之后,需要将钢铁材料进行恢复冷却。
冷却的方式有很多种,如自然冷却、油冷却、水冷却等。
不同的冷却方式会对钢铁的结构和性能产生不同的影响。
冷却的速度越快,钢铁的硬度会越高,但韧性可能会降低。
因此,在选择冷却方式时,需要根据具体要求进行合理的选择。
除了以上的基本步骤之外,还可以对钢铁进行进一步的处理,以进一步改变其性能。
例如,淬火是一种常用的处理方法,通过快速冷却来使钢铁获得高硬度和强度;回火是一种常用的处理方法,通过加热和保温来减轻材料的内应力,提高其韧性和可加工性。
总结来说,钢铁热处理的工艺流程包括预处理、加热、保温和冷却等步骤。
通过控制这些步骤,可以改变钢铁材料的结构和性能,从而达到不同的使用要求。
钢铁热处理工艺的选择和优化需要考虑材料的类型、尺寸、所需的性能以及生产成本等因素,以确保最终产品具有理想的性能。
热处理是指金属材料在固态下,通过加热、保温、冷却的手段,改变金属材料内部的组织状态,从而获得所需性能的一种热加工工艺。
常见的热处理的方法请参考下表。
名称热处理过程热处理目的1.退火将钢件加热到一定温度,保温一定时间,然后缓慢冷却到室温①降低钢的硬度,提高塑性,以利于切削加工及冷变形加工②细化晶粒,均匀钢的组织,改善钢的性能及为以后的热处理作准备③消除钢中的内应力。
防止零件加工后变形及开裂退火类别(1)完全退火将钢件加热到临界温度(不同钢材临界温度也不同,一般是710-750℃,个别合金钢的临界温度可达800—900ºC)以上30—50ºC,保温一定时间,然后随炉缓慢冷却(或埋在沙中冷却)细化晶粒,均匀组织,降低硬度,充分消除内应力完全退火适用于含碳量(质量分数)在O.8%以下的锻件或铸钢件(2)球化退火将钢件加热到临界温度以上20~30ºC,经过保温以后,缓慢冷却至500℃以下再出炉空冷降低钢的硬度,改善切削性能,并为以后淬火作好准备,以减少淬火后变形和开裂,球化退火适用于含碳量(质量分数)大于O.8%的碳素钢和合金工具钢(3)去应力退火将钢件加热到500~650ºC,保温一定时间,然后缓慢冷却(一般采用随炉冷却)消除钢件焊接和冷校直时产生的内应力,消除精密零件切削加工时产生的内应力,以防止以后加工和用过程中发生变形去应力退火适用于各种铸件、锻件、焊接件和冷挤压件等2.正火将钢件加热到临界温度以上40~60ºC,保温一定时间,然后在空气中冷却①改善组织结构和切削加工性能②对机械性能要求不高的零件,常用正火作为最终热处理③消除内应力3.淬火将钢件加热到淬火温度,保温一段时间,然后在水、盐水或油(个别材料在空气中)中急速冷却①使钢件获得较高的硬度和耐磨性②使钢件在回火以后得到某种特殊性能,如较高的强度、弹性和韧性等淬火类别(1)单液淬火将钢件加热到淬火温度,经过保温以后,在一种淬火剂中冷却单液淬火只适用于形状比较简单,技术要求不太高的碳素钢及合金钢件。
常用材料及零件热处理
3.表面热处理方法特点和应用
表面热处理是通过改变零件表层组织,以获得硬度很高的马氏体,而保留心部韧性和朔性(即表面火),或同时表层的化学成分,以获得耐蚀、耐酸、耐碱性,及表层硬度更高的处理方法。
6.钢的淬透性
不同的钢种,接受淬火的能力不同,淬透层深度愈大,表明该钢种的淬透性愈好。
淬透性大的钢,其力学性能沿截面分布均匀;而淬透性小的钢心部力学性能低。
但全部淬透的工件,通常表面残留拉应力,对工件承受疲劳不利,工件热处理中也易变形开裂。
未淬透工件表面可残留压应力,反而有一定好处。
淬透层深度是指由淬火表面马氏体---50%马氏体+50%珠光体层的深度。
碳钢的淬透性低。
在设计大尺寸零件时,用碳钢正火比用碳钢调质更经济,而效果相似。
直径较大并具有几个台阶的台阶轴,需经调质处理时,考虑到淬透性影响,应先粗车成形,然后调质。
如果以棒料先调质,再车外圆,由于直径大,表面淬透层浅,阶梯轴尺寸较小的部分调质后的组织在粗车时可能被车去,起不到调质作用。
7.几种典型零件热处理示例
机床齿轮等零件常用材料及热处理。
钢铁热处理的四种基本工艺什么是退火钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。
退火是将金属或合金加热到适当的温度,保持一定的时间,然后缓慢冷却的热处理工艺。
退火的目的:退火所能达到的目的主在是:消除锻件及焊接结构的应力,消除冷加工后的加工应力,避免零件在加热和使用过程中产生变形及开裂;消除铸件和锻件的不均匀组织和粗大晶粒,消除合金钢硬而脆的特性,改善其切削加工的性能,胀管时的管头,胀接前也要进行退火。
(1) 降低硬度,改善切削加工性;(2)消除残余应力,稳定尺寸,减少变形与裂纹倾向;(3)细化晶粒,调整组织,消除组织缺陷。
在生产中,退火工艺应用很广泛。
根据工件要求退火的目的不同,退火的工艺规范有多种,常用的有完全退火、球化退火、和去应力退火等。
正火与退火的区别,处理温度正火的冷却速度比退火快,得到的组织较细,工件的强度和硬度比退火高。
对于高碳钢的工件,正火后硬度偏高,切削加工性能变差,故宜采用退火工艺。
从经济方面考虑,正火比退火的生产周期短,设备利用率高,生产效率高,节约能源、降低成本以及操作简便,所以在满足工作性能及加工要求的条件下,应尽量以正火代替退火。
退火和正火可在电阻炉或煤、油、煤气炉中进行,最常用的是电阻炉。
电阻炉是利用电流通过电阻丝产生的热量来加热工件,同时用热电偶等电热仪表控制温度,操作简单、温度准确。
在加热过程中,由于工件与外界介质在高温下发生化学反应,当加热温度和加热速度控制不当或装炉不合适时,会造成工件氧化、脱碳、过热、过烧及变形等缺陷。
因此要严格控制加热温度和加热速度等。
图2-2为退火和正火的加热温度范围。
什么样叫金属冷加工硬化现象?在工程中,有时需用对钢件进行冷加工,如锻打、压延、弯曲、冲压等。
当冷加工产生塑性变形时,不但其外形发生了变化,其内部的晶粒形状也会发生变化,晶粒沿受力方向被拉长。
冷加工塑性变形较大时,还会产生较大内应力。
这种现象称为冷加工硬化。
利用冷加工硬化对钢材使用强度的提高是有限的,而冷加工硬化引起的塑性降低及残存的内应力则是有害的。
钢铁材料热处理及组织性能班级:机设13-A1姓名:朱铭书学号:120133404056摘要:钢材是当前社会运用最广泛的材料之一,具有非常悠久的历史,它推动了社会的大力发展,促进了社会的进步。
作为结构材料.钢的组织和性能在很高的层面决定了产品的质量,因此,在选取钢铁材料时主重其组织与性能。
然而,回望钢铁发展的历史,钢组织与性能与材料成分和热处理工艺有着千丝万缕的关系,通过改善材料成分和热处理工艺可以有效提升钢组织与性能。
本文将对钢铁材料热处理及组织性能做浅显分析。
正文:一、钢的退火与正火1、钢的退火是将工件加热到工艺要求的温度,经过适当的保温以后,在缓慢冷却下来的热处理工艺过程。
加热温度在Ac3点以上的称为完全退火;加热温度在Ac1和Accm之间的称为不完全退火或球化退火;加热温度在A1点以下称为低温退火;还有扩散退火等退火工艺。
退火的加热速度一般不受限制,但对于高合金钢和大截面工件,升温不可过快,否则,由于导热性差,引起很大的热应力,使工件产生变形甚至开裂。
一般将升温速度控制在100~180℃/h比较适宜。
加热时间是根据工件的有效厚度,并考虑装炉量、装炉方式和加热方法确定的,可以查阅热处理手册加以确定。
退火的冷却方式是根据退火工艺的具体要求进行。
(1)完全退火只适用于亚共析钢,加热温度为Ac3+(20~30℃),合金钢可以略微高于此温度,保温足够时间后,随后缓冷(炉内冷却或按要求的冷却速度冷却)到550~500℃以下,再空冷。
在加热和冷却的过程中,钢的内部组织全部进行了重结晶,即发生了加热时的奥氏体化和冷却时的奥氏体分解转变。
所以完全退火又称重结晶退火。
在重结晶过程中经历了两次形核长大,因此细化了晶粒。
完全退火使钢获得了接近平衡状态的细晶粒组织,同时消除了焊接、铸钢、热锻轧钢中的粗大组织和魏氏组织,以及因终锻、终轧的温度过低造成的带状组织。
完全退火还提高韧性,消除因冷速较快造成的内应力,降低含碳较高的亚共析钢硬度,以利于切削加工,并为后续淬火工艺作好组织准备。
钢的热处理金属材料进行热处理是改善和提高零件性能的重要方法,因此在零件的制造过程中,热处理是不可缺少的。
一、常用的金属材料——钢与铸铁金属材料包括纯金属及其合金(即在一种金属中加入其它元素所形成的金属材料)。
工业上又把金属材料分为两大类:一类为黑色金属,它包括铁、锰、铬及其合金,其中以铁基合金(即钢和铸铁)应用最广;另一类为有色金属,是指除黑色金属以外的所有金属及其合金。
在工业上使用的金属材料中,以钢和铸铁使用最多。
钢和铸铁(总称为钢铁材料)是以铁为主,加入碳等其它合金元素所组成的,故称为铁碳合金材料。
一般把含碳量小于2%的铁碳合金称为钢;大于2%的铁碳合金称为铸铁。
一、钢的分类、编号及性能特点:根据成分不同钢可分为碳素钢(简称碳钢)和合金钢两类。
(1)碳素钢碳素钢中以铁和碳为主要元素,但常含有Mn、Si、S、P等杂质元素,其中S、P对钢的性能危害很大。
因此根据硫、磷含量多少,把钢分为:普通质量钢(S≤00.0%,P≤0.005%)、优质钢(S≤0.03%,P≤0.035%)、高级优质钢(S≤0.02%,P≤0.003%)等。
碳钢的性能主要绝定于含碳量的高低,随着含碳量的增多,碳钢的强度、硬度提高,塑性和韧性降低。
根据含碳量的多少,碳钢分为低碳钢(C≤0.25%)、中碳钢(C=0.3~0.6%)和高碳钢(C>0.6%)。
所以低碳钢的强度、硬度低、塑性韧性好,常用于受力较小的冲压件(如皮带轮罩壳、垫圈、自行车的挡泥板等)、焊接件等;高碳钢的强度高,塑性低,常用于制造受力较大的弹簧等零件;中碳钢既有一定强度,也有一定塑性,常用于制备受力较大、较复杂的轴类零件等。
工业上根据用途不同,将碳素钢分为碳素结构钢和碳素工具钢。
(a)碳素结构钢该类钢主要用于各种结构件。
根据钢的质量不同(即S、P含量)分为碳素结构钢和优质碳素结构钢。
碳素结构钢是属于普通质量钢,其牌号表示方法为Q+三位数字。
Q为“屈”字的汉语拼音子首,后面三位数为表示该钢的屈服点(MPa)数值,如常用的Q235,表示屈服点为235MPa的普通质量钢。
热处理基础知识热处理基础知识热处理的原理热处理就是通过将⼯件放于⼀定的⽓氛中进⾏适当的加热、保温及冷却,以改变⼯件的性能的过程。
热处理术语整体热处理:把⾦属或⼯件进⾏穿透加热的热处理⼯艺。
本车间使⽤的热处理⼯艺均为整体热处理,包括:渗碳、淬(回)⽕、调质、正⽕、渗碳直接淬⽕等。
局部热处理:仅对⼯件的某个部件或⼏个部位进⾏热处理的⼯艺,常⽤的有⾼频淬⽕、激光表⾯处理等。
化学热处理:把⾦属材料或⼯件放在适当的活性介质中加热、保持,使⼀种或⼏种化学元素渗⼊其表层,以改变其化学成分、组织和性能的热处理⼯艺,渗碳是其中的⼀种。
可控⽓氛热处理:为达到⽆氧化、⽆脱碳、按要求增碳的⽬的,在成分可以控制的炉⽓中进⾏加热和冷却的热处理⼯艺。
本车间⽤的UBE渗碳⾃动⽣产线就是可控⽓氛热处理的⼀种。
真空热处理:在⼀定的真空度的加热炉中,可实现⼯件⽆氧化的热处理⼯艺。
热处理术语滴注式⽓氛:把含碳有机液体(⼀般⽤甲醇)定量滴⼊加热到⼀定温度(700℃以上)、密封良好的炉内,在炉内裂解形成的⽓氛。
甲醇裂解⽓可以⽤作渗碳载⽓、添加丙酮、异丙醇、煤油等可提⾼碳势,作为渗碳⽓氛。
淬⽕冷却介质:⼯件冷却淬⽕时使⽤的介质。
常⽤的有⽔,盐、碱、有机聚合物⽔溶液。
油、熔盐、流态床、空⽓、氢⽓、氮⽓和惰性⽓体等。
淬透性:以在规定条件下淬⽕所能达到的硬度分布表征的材料特性。
淬硬性:以钢在理想条件下所能达到的最⾼硬度表征的材料特性。
端淬试验:将标准端淬试样(φ25x100mm)奥⽒体化后,在专⽤的试验机上对其下端平⾯喷⽔冷却,然后沿试样圆柱表⾯轴向磨平带上测出硬度和⽔冷端距离的关系曲线。
此曲线被称为端淬曲线。
该试验⽅法被称做端淬试验,通过端淬试验可以⼤致确定⾦属材料的淬透性。
热处理术语奥⽒体化:将钢铁加热到Ac3或Ac1以上,使原始组织全部或部分转变为奥⽒体的⼯艺等温转变:钢和铸铁奥⽒体化后,冷却到Ar1或Ar3以下温度保持时的过冷奥⽒体发⽣的转变。
钢材的热处理有以下几个方法※均质退火处理简称均质化处理(Homogenization),系利用在高温进行长时间加热,使内部的化学成分充分扩散,因此又称为『扩散退火』。
加热温度会因钢材种类有所差异,大钢锭通常在1200℃至1300℃之间进行均质化处理,高碳钢在1100℃至1200℃之间,而一般锻造或轧延之钢材则在1000℃至1200℃间进行此项热处理。
※完全退火处理完全退火处理系将亚共析钢加热至Ac3温度以上30~50℃、过共析钢加热至Ac1温度以上50℃左右的温度范围,在该温度保持足够时间,使成为沃斯田体单相组织(亚共析钢)或沃斯田体加上雪明碳体混合组织后,在进行炉冷使钢材软化,以得到钢材最佳之延展性及微细晶粒组织。
※球化退火处理球化退火主要的目的,是希望藉由热处理使钢铁材料内部的层状或网状碳化物凝聚成为球状,使改善钢材之切削性能及加工塑性,特别是高碳的工具钢更是需要此种退火处理。
常见的球化退火处理包括:(1)在钢材A1温度的上方、下方反复加热、冷却数次,使A1变态所析出的雪明碳铁,继续附着成长在上述球化的碳化物上;(2)加热至钢材A3或Acm温度上方,始碳化物完全固溶于沃斯田体后急冷,再依上述方法进行球化处理。
使碳化物球化,尚可增加钢材的淬火后韧性、防止淬裂,亦可改善钢材的淬火回火后机械性质、提高钢材的使用寿命。
※软化退火处理软化退火热处理的热处理程序是将工件加热到600℃至650℃范围内(A1温度下方),维持一段时间之后空冷,其主要目的在于使以加工硬化的工件再度软化、回复原先之韧性,以便能再进一步加工。
此种热处理方法常在冷加工过程反复实施,故又称之为制程退火。
大部分金属在冷加工后,材料强度、硬度会随着加工量渐增而变大,也因此导致材料延性降低、材质变脆,若需要再进一步加工时,须先经软化退火热处理才能继续加工。
※弛力退火处理弛力退火热处理主要的目的,在于清除因锻造、铸造、机械加工或焊接所产生的残留应力,这种残存应力常导致工件强度降低、经久变形,并对材料韧性、延展性有不良影响,因此弛力退火热处理对于尺寸经度要求严格的工件、有安全顾虑的机械构件事非常重要的。
.正火:将钢材或钢件加热到临界点AC3或ACM以上的适当温度保持一定时间后在空气中冷却,得到珠光体类组织的热处理工艺。
退火:将亚共析钢工件加热至AC3以上20—40度,保温一段时间后,随炉缓慢冷却(或埋在砂中或石灰中冷却)至500度以下在空气中冷却的热处理工艺固溶热处理:将合金加热至高温单相区恒温保持,使过剩相充分溶解到固溶体中,然后快速冷却,以得到过饱和固溶体的热处理工艺时效:合金经固溶热处理或冷塑性形变后,在室温放置或稍高于室温保持时,其性能随时间而变化的现象。
固溶处理:使合金中各种相充分溶解,强化固溶体并提高韧性及抗蚀性能,消除应力与软化,以便继续加工成型时效处理:在强化相析出的温度加热并保温,使强化相沉淀析出,得以硬化,提高强度淬火:将钢奥氏体化后以适当的冷却速度冷却,使工件在横截面内全部或一定的范围内发生马氏体等不稳定组织结构转变的热处理工艺回火:将经过淬火的工件加热到临界点AC1以下的适当温度保持一定时间,随后用符合要求的方法冷却,以获得所需要的组织和性能的热处理工艺铁素体:碳在α-Fe(体心立方结构的铁)中的间隙固溶体。
奥氏体:碳在γ-Fe(面心立方结构的铁)中的间隙固溶体。
渗碳体:碳和铁形成的稳定化合物(Fe 3c )。
珠光体:铁素体和渗碳体组成的机械混合物(F+Fe3c 含碳0.8%)莱氏体:渗碳体和奥氏体组成的机械混合物(含碳 4.3%)调质处理:将钢件淬火,随之进行高温回火,这种复合工艺称调质处理。
表面热处理:改变钢件表面组织或化学成分,以其改面表面性能的热处理工艺。
表面淬火:是将钢件的表面通过快速加热到临界温度以上,但热量还未来得及传到心部之前迅速冷却,这样就可以把表面层被淬在马氏体组织,而心部没有发生相变,这就实现了表面淬硬而心部不变的目的。
适用于中碳钢。
化学热处理:是指将化学元素的原子,借助高温时原子扩散的能力,把它渗入到工件的表面层去,来改变工件表面层的化学成分和结构,从而达到使钢的表面层具有特定要求的组织和性能的一种热处理工艺渗碳:向钢的表面渗入碳原子,提高表面含碳量,提高材料表面硬度、抗疲劳性和耐磨性。
淬火Hardening or Quenchingcui huǒ(行业内,淬读"zàn"音,即读“zàn huǒ”)钢的淬火是将钢加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上某一温度,保温一段时间,使之全部或部分奥氏体[1]化,然后以大于临界冷却速度的冷速快冷到Ms以下(或Ms附近等温)进行马氏体(或贝氏体)转变的热处理工艺。
通常也将铝合金、铜合金、钛合金、钢化玻璃等材料的固溶处理或带有快速冷却过程的热处理工艺称为淬火。
淬火的目的是使过冷奥氏体进行马氏体或贝氏体转变,得到马氏体或贝氏体组织,然后配合以不同温度的回火,以大幅提高钢的强度、硬度、耐磨性、疲劳强度以及韧性等,从而满足各种机械零件和工具的不同使用要求。
也可以通过淬火满足某些特种钢材的的铁磁性、耐蚀性等特殊的物理、化学性能。
淬火能使钢强化的根本原因是相变,即奥氏体组织通过相变而成为马氏体组织(或贝氏体组织)。
钢淬火工艺最早的应用见于河北易县燕下都遗址出土的战国时代的钢制兵器。
淬火工艺最早的史料记载见于《汉书.王褒传》中的“清水焠其峰”。
“淬火”在专业文献上,人们写的是“淬火”,而读起来又称“蘸火”。
“蘸火”已成为专业口头交流的习用词,但文献中又看不到它的存在。
也就是说,淬火是标准词,人们不读它,“蘸火”是常用词,人们却不写它,这是我国文字中不多见的现象。
淬火是“蘸火”的正词,淬火的古词为蔯火,本义是灭火,引申义是“将高温的物体急速冷却的工艺”。
“蘸火”是冷僻词,属于现代词,是文字改革后出现的产物,“蘸”字本义与淬火无关。
“蘸火”本词为“湛火”,“湛”字读音同“蘸”,而其字形又与水、火有关,符合“水与火合为蔯”之意,字义与“淬火”相通。
“湛火”为本词,“蘸火”则为假借词。
淬火将金属工件加热到某一适当温度并保持一段时间,随即浸入淬冷介质中快速冷却的金属热处理工艺。
常用的淬冷介质有盐水、水、矿物油、空气等。
第五章钢的热处理热处理——固态下,通过加热、保温、冷却、改变组织得到所需性能的工艺方法。
•特点:在固态下,只改变工件的组织,不改变形状和尺寸•目的:改善材料的使用、工艺性能•基本过程:加热→保温→冷却•分类:1、普通热处理——退火、正火、淬火、回火2、表面热处理——表面淬火、化学热处理第一节钢在加热时的组织转变实际加热和冷却时的相变点:平衡时—— A1 A3 Acm加热时—— Ac1 Ac3 Accm冷却时—— Ar1 Ar3 Arcm一、奥氏体的形成加热工序的目的:得到奥氏体F + Fe3C → A结构体心复杂面心含碳量 0.0218 6.69 0.77共析钢奥氏体形成过程:1、形核(在 F / Fe3C相界面上形核)2、晶核长大(F→ A晶格重构,Fe3C溶解,C→ A中扩散)3、残余Fe3C溶解4、奥氏体均匀化保温工序的目的:得到成分均匀的奥氏体,消除内应力,促进扩散对亚共析钢: P + F → A + F → A对过共析钢: P + Fe3CⅡ→ A + Fe3CⅡ→ A二、奥氏体晶粒长大及其影响因素1、奥氏体晶粒度•晶粒度——晶粒大小的尺度。
•本质粗晶粒钢——长大倾向较大(Al脱氧)•本质粗晶粒钢——长大倾向较小(Mn,Si脱氧)2、影响奥氏体晶粒长大的因素(1)加热温度↑,保温时间↑→ A晶粒长大快(2)加热速度↑→ A晶粒细(3)加入合金元素→ A晶粒细(4)原始组织细→ A晶粒细第二节钢在冷却时的组织转变冷却方式:等温冷却和连续冷却。
45钢加热后,随冷却速度的增加,强度、硬度增加,但塑性、韧性降低。
冷却是热处理的关键,故必须研究奥氏体冷却过程的变化规律。
一、过冷奥氏体等温转变1、共析钢过冷奥氏体等温转变曲线(C曲线或TTT线)的建立•过冷奥氏体:在A1以下,未发生转变的不稳定奥氏体。
•孕育期——表示过冷A 的稳定程度•四个区域——奥氏体稳定区、过冷奥氏体区、转变产物区、转变区•三种转变类型:高温转变(A1~550℃):A → P中温转变(550~230℃):A → B低温转变(230℃以下):A → M2、过冷奥氏体等温转变产物的组织和性能(1)珠光体转变•珠光体组成:F 和 Fe3C 的机械混合物•形成特点:在固态下形核、长大是扩散型相变•形态:A1~650℃:珠光体 P 20HRc 片状650~600℃:索氏体 S(细P)…600~550℃:托氏体 T(极细P又称屈氏体)40HRc 球状—— Fe3C 呈球状•珠光体性能珠光体片越细→ HB↑,σb↑且δ↑,αk↑C%相同时,球状 P 比片状 P 相界面少→HB↓,σb↓,δ↑,αk↑(2)贝氏体转变•贝氏体组成:过饱和F 和碳化物的机械混合物•形成特点:在固态下形核、长大是半扩散型相变•形态:550~350℃:上贝氏体(B上)羽毛状组织塑性差40-45HRc 350℃~ Ms:下贝氏体(B下)针片状组织综合性能好45-50HRc过冷奥氏体在Ms点以下,A→M属连续冷却转变。