采场支护设计
- 格式:ppt
- 大小:1.06 MB
- 文档页数:53
矿山巷道支护结构设计与应用在现代的矿山巷道建设中,支护结构的设计和应用是非常重要的,因为矿山巷道在采掘过程中需要承受巨大的力量和压力,如不得当的设计将会带来严重的安全隐患和损失,因此,矿山巷道支护结构设计和应用需要高度重视。
本文将重点介绍矿山巷道支护结构的设计和应用。
一、支护结构的设计原则在矿山巷道支护结构的设计中,需要考虑许多因素,如地质条件、巷道尺寸、支护材料和支护方式等。
因此,支护结构的设计应遵循以下几个原则:1.保证安全性。
矿山巷道是一个高风险的工作场所,支护结构的设计需要考虑到巷道的稳定性和承载能力,能够抵御各种力量和压力的影响。
2.提高效率。
支护结构的设计应考虑施工的方便性和效率性,能够节约时间和成本,提高工作效率。
3.经济节能。
在支护结构的设计中,应该充分考虑材料的使用效率和成本,以及在长期使用中的维护和修理成本,尽可能地节约成本。
二、支护结构的种类在矿山巷道的支护结构中,常见的种类有:1.钢支架:钢支架由钢柱、横向梁和纵向梁等组成,具有高强度、高刚度、耐腐蚀、易于拆卸和安装等优点,广泛应用于各种类型的煤矿巷道。
2.锚杆支护:锚杆支护是将锚杆嵌入到巷道周围的岩层中,通过锚杆和梁板来支撑整个巷道结构,具有结构简单、易于施工、可靠性高等特点,广泛应用于煤矿巷道和隧道等。
3.斜撑支护:斜撑支护是在巷道两侧设置由扶手、斜杆、水平杆和立柱组成的支撑框架,通过框架和巷道侧壁的摩擦力来稳定巷道,具有结构简单、稳定性好等特点,适用于较坚硬的岩层。
4.喷锚支护:喷锚支护是在巷道周围钻孔,然后将喷锚剂喷入孔内固定巷道周围的岩层,具有施工简单、稳定性好等特点,适用于软弱地质条件下的巷道支护。
三、支护结构应用实例在实际的矿山巷道建设中,各种支护结构都得到了广泛的应用。
例如,在某煤矿的巷道支护中,使用了钢支架、锚杆支护和喷锚支护相结合的方式,提高了巷道的稳定性和承载能力。
在另一个煤矿的巷道支护中,使用了斜撑支护和高压注浆支护相结合的方式,成功地解决了软弱地质条件下的巷道支护问题。
煤矿采区巷道支护设计方案研究作者:赵树理来源:《理论与创新》2020年第11期【摘要】随着煤炭开采量的不断增加,煤矿开采深度不断加深,开采时遇到的地质情况也是越来越复杂,对煤矿开采安全尤其是巷道支护的要求更是越来越高。
目前,在煤巷支护工程中用到的最多的支护技术是锚杆支护。
【关键词】回风巷;悬吊理论;支护引言近年来煤矿开采水平向深度发展,出现的软岩工程问题越来越多。
软岩巷道变形量大,支护受力大,一般采用可缩性U型钢支架,但是其不但成本高、劳动强度大,而且有时还容易发生破坏。
自从围岩松动圈支护理论提出,在随后的巷道支护研究中确定主要研究对象为松动圈发展过程中的碎胀变形。
人们逐渐开始用锚喷支护代替U型钢支架来解决软岩支护问题,不仅支护效果好,而且经济技术效益显著。
1.巷道断面的最佳设计在我国随着矿井开采深度的增加,工作面回采机械化程度提高,要求回采巷道断面积加大,因而使矿压显现更加剧烈,回采巷道的支扩问题在煤矿生产中越来越突出。
在很多矿井中,由于巷道断面缩小,严重影响工作面运输、通风,常常形成“ 爬行巷道”,从而威胁井下的安全生产,使得工作面机械生产能力不能充分发挥。
而且回采巷道的多次返修还是造成煤炭企业亏损、采掘接替紧张的主要原因之一。
2.巷道的最佳掘进时间在上区段工作面推进过程中,顶板运动的發展过程分两个阶段,显著运动阶段和相对稳定阶段。
在显著运动阶段,上覆岩层支承力不断发展变化,造成采空区侧煤体支承压力的变化,煤体发生较大变形。
如果在显著运动阶段掘进巷道,则巷道容易产生变形破坏,不利于巷道维护。
当上区段采场老项触矸后,顶板运动处于相对稳定阶段,支承压力已经重新分布,煤体变形基本稳定。
此时掘进巷道,则巷道不易变形破坏,易于维护。
因此,上区段采场老顶触矸后顶板运动的相对稳定阶段为沿空掘巷的最佳时间。
3.巷道支护参数的选择支护是巷道施工的一个重要环节,正确而又及时的支护,巷道掘进工作才能正常的进行。
支护的工作量一般占巷道总成本的1/3~ 1/2,劳动强度大。
支护设计计算一、工作面支护设计采用类比法进行设计。
1、根据本矿矿压观测资料,选择本工作面矿压参数,详见矿压参数参考表3-1-1。
⑴、采用经验公式计算支护强度Pt=×h×γ×k=×××7=m3——工作面合理的支护强度,kN/m3;式中:Pth——采高,~ m,平均;γ——直接顶板岩石的密度,t/m3,一般可取 t/m3,取 t/m3;k——工作面支柱应支护的上覆岩层厚度与采高之比,一般为4~8,应根据实际情况选取。
本工作面属于中厚煤层、顶板条件较差,取6。
⑵、选用现场矿压实测工作面初次来压时的最大平均支护强度Pt=m3因此工作支护强度应大于 kN/m3,因此本工作面取300kN/m3。
3、支柱实际支撑力Rt =kg×kz×kb×kh×ka×R =×××××250=式中:Rt——支柱实际支撑能力,kN;kg——工作系数;kz——增阻系数;kb——不均匀系数;kh——采高系数;ka——倾角系数;R——支柱额定工作面阻力,kN。
K ——支柱阻力影响系数,可以从支柱阻力影响系数表3-1-1中查得。
4n= Pt / Rt=300/=棵/ m25、排、柱距根据推进度,工作面基本支柱的排距取,则基本柱距为:L柱=1÷(L排×n)=1÷(×)=式中:L柱——工作面基本柱距,m; L排——工作面基本排距,m。
取基本支柱的柱距 m。
6、支护密度验证n ′= 每棚支柱数/(控顶距×柱距) =3/×) =棵/m 2<棵/m 2支护密度不能满足要求,由于选取的基本柱距已为最小安全宽度,因此采用每两棚支柱成组使用,交替迈步进行支护,将两棚支护柱距调整为每组距离米。
重新验证支护密度:n ′= 每组支柱数/(控顶距×组距) =5/×) =棵/m 2>棵/m 2支护密度满足要求。
掘进巷道支护设计管理制度范文掘进巷道支护是矿山开采过程中一项重要的工作内容,对于保障矿井安全稳定运行、预防和控制地质灾害起着至关重要的作用。
为了提高掘进巷道支护工作的质量和效率,制定一套科学合理的设计管理制度是必要的。
本文将从设计管理制度的制定、内容、执行和监督等方面进行阐述,以期为掘进巷道支护设计管理工作提供参考。
一、设计管理制度的制定(一)制定依据设计管理制度的制定应遵循相关法律法规和规范性文件的要求,特别是《煤矿安全规程》、《瓦斯管理规定》、《工程设计管理办法》等相关文件,以及现场实际情况和生产需要。
(二)制定程序1. 收集相关资料:搜集国内外矿山支护设计管理方面的先进经验和成果,了解现有制度的不足之处和存在的问题。
2. 召开会议:组织相关专家、技术人员和管理人员召开会议,就设计管理制度的必要性、核心内容、执行程序等进行充分的讨论和研究。
3. 制定草案:在会议基础上,由相关工作组起草设计管理制度的初稿,包括制度名称、适用范围、工作程序、责任人员、技术要求、安全措施等方面的内容。
4. 试行和修订:将初稿试行一段时间,并不断根据实际应用情况进行修订和完善,以确保制度的科学合理。
二、设计管理制度的内容设计管理制度应包含以下内容:(一)适用范围明确制度适用的对象、工作环境和具体要求,确保适用对象有所依据,避免歧义和不明确的情况发生。
(二)工作程序明确设计管理的主要工作程序和流程,包括设计调研、方案设计、设计审核、施工图设计、施工和验收等详细流程。
确保工作程序的合理性和科学性。
(三)责任人员明确各个环节的责任人员,包括设计调研人员、方案设计人员、审核人员、施工图设计人员、施工人员等,明确各个责任人员的职责和权限。
并要求相关人员具备相应的技术水平和经验。
(四)技术要求明确设计中的关键技术要求,包括巷道支护设计的稳定性、安全性、经济性和环保性等方面。
要求设计人员充分考虑地质条件、煤层情况、瓦斯涌出等因素,制定合理的支护措施。
采掘工程支护设计方案一、项目概况我国是一个煤炭资源非常丰富的国家,在进行煤炭采掘过程中,遇到各种各样的地质问题。
采矿工程支护设计是保证矿山安全和经济合理开采的重要环节。
本文将以某煤矿采掘工程支护设计方案为例,对其进行详细分析和设计。
二、地质条件该煤矿位于山西省阳泉市,属于典型的煤矿区域。
底板岩性为页岩和泥岩,倾角较小,断裂较多,主要为近东西向的断裂。
该区域水文地质条件比较复杂,地下水裂缝发育较为严重。
采矿区煤层埋深较浅,煤层岩性较软,易发生顶板垮落、底板破裂等现象。
三、采掘方式该煤矿采用分层开采方式,采用支柱法进行采矿。
分层开采方式是在煤矿顶板不稳定的情况下,采用分段采煤,逐步将煤矿层层开启,保证了煤矿的稳定性。
支柱法则是在煤矿中空着一列柱子来支撑煤墩,以保证煤层不发生塌方现象。
这样的采矿方式对矿山支护要求较高。
四、采掘工程支护设计1. 采空区支护对于采空区,需要进行及时的支护,以保障矿井的安全开采。
在采煤作业现场,要对顶板进行悬吊支架的设计,同时对采空区进行及时地加强支护,防止因为采空导致的地质灾害发生。
2. 巷道支护巷道支护是采矿工程中的一个重要环节。
对于巷道的支护主要采用钢筋混凝土支护、木方、或者钢架等支护方式进行加固,以防止巷道发生塌方现象。
在巷道的设计中,需要考虑地质条件和巷道的使用情况,合理选择巷道支护方式。
3. 井筒支护在井下采矿过程中,需要对井筒进行支护加固,以保证井筒的安全运行。
井筒支护主要通过加固井壁、设置支撑架或者注浆加固等方式进行,以确保井筒的安全运行。
4. 底板支护底板支护是保证采矿安全的重要环节,底板岩层对采矿操作起着非常重要的作用。
针对底板岩层的地质特征,需要选择合适的底板支护方式进行加固,以保证底板的稳定。
五、安全监测在采掘工程支护设计中,安全监测是非常重要的环节。
通过安全监测,可以及时发现地质灾害的预兆并采取相应的措施,保障矿山的安全开采。
安全监测主要包括地表位移监测、地下水位监测、巷道变形监测等,通过这些监测手段可以及时了解矿山的地质情况,并提前做好预防措施。
第一节巷道布置和工作面基本参数一、巷道布置本工作面正、付巷沿煤层走向方向布置,正巷长度为1228m,付巷长度为1168m,切巷长度为240m。
附图一:巷道布置图二、巷道支护形式和断面特征:第二节支架设计选型计算一、液压支架选型原则1、支护强度应与工作面矿压相适应。
支架的初撑力和工作阻力要适应直接顶和基本顶岩层移动产生的压力,将空顶区的顶底板移近量控制到最小程度。
2、支架结构应与煤层赋存条件相适应。
3、支护断面应与通风要求相适应,保证有足够的风量通过,而且风速不得超过《煤矿安全规程》的有关规定。
4、液压支架应与采煤机、刮板输送机等设备相匹配。
支架的宽度应与刮板输送机中部槽长度相一致,推移千斤顶的行程应较采煤机截深大100-200mm,支架沿工作面的移架速度应能跟上采煤机的工作牵引速,移架速度还应满足生产指标的要求,支架的梁端距应为340mm 左右。
二、液压支架选型依据及内容1、选型依据:支架选型前必须将工作面的煤层、顶底板及采区的地质条件全面查清、探明,编出综采采区、综采工作面地质说明书。
2、选型内容:选择支架时,要确定下述内容:支架类型,如支撑掩护式或掩护式;立柱根数;支护阻力,包括初撑力、额定工作阻力;支架结构高度,包括最大和最小高度;顶梁和底座的结构形式、尺寸及其相对位置;对防滑、防倒、防片帮、调架、移架、端面维护等装置的要求;操作方式、阀组性能等。
三、基本支架初步设计1、基本支架主要技术参数的确定⑴支护强度(工作阻力)从理论上分析,合理的支护强度应正好与顶板压力相平衡。
支护强度过大,不仅增加支架重量和设备投资,而且给搬运、安装带来困难;过小则会造成顶板过早下沉、离层、冒落,使顶板破碎,造成顶板维护困难。
因此支护强度的大小应取决于工作面采场矿压的大小。
但由于目前对采场矿压的大小还不能进行准确的定量计算,目前主要以经验法或实测数据,来确定支架的支护强度。
①采用经验公式计算支架的支护强度:510,q KH Mpa γ-=⨯=8×3.3m ×2.5×103×10-5kg/m 3=66×10-2Mpa=0.66Mpa式中:q —支护强度;K —作用于支架上的顶板岩石系数,一般取5-8。
煤矿矿井巷道支护工程的优化设计煤矿是我国的重要能源来源,然而,煤炭开采过程中所面临的矿井巷道支护工程问题常常被忽视。
矿井巷道的安全与稳定对矿工的生命安全和矿井的正常运行至关重要。
因此,煤矿矿井巷道支护工程的优化设计成为了煤矿安全生产的重要课题之一。
1. 巷道支护工程的重要性矿井巷道支护工程是指在矿井巷道开挖过程中,利用各种支护材料和支护结构对巷道进行支护和加固,以保证巷道的安全稳定。
巷道支护工程直接关系到矿工的生命安全以及煤矿的正常运行。
合理的巷道支护工程设计能够有效降低矿井事故的发生,提高煤矿的产能和经济效益。
2. 煤矿矿井巷道支护工程的挑战煤矿矿井巷道支护工程的设计面临诸多挑战。
首先,煤矿地质条件复杂多变,巷道支护工程需要根据地质环境的不同特点进行设计。
其次,矿井巷道往往处于高应力、高温、高湿等恶劣工况下,巷道支护结构需要具备良好的抗压、抗温、抗湿性能。
此外,煤矿矿井巷道的开挖线路和巷道断面形状也对支护工程的设计提出了要求。
3. 煤矿矿井巷道支护工程的优化设计原则为了有效应对煤矿矿井巷道支护工程的挑战,需要遵循以下几项优化设计原则。
首先,巷道支护工程的设计应充分考虑地质条件,根据地层类别、厚度、断层等因素,选择适当的支护材料和结构形式。
其次,巷道支护结构应具有良好的承载能力和韧性,能够抵御地压和冲击力。
此外,巷道支护结构的施工应方便快捷,能够降低施工难度和工期,提高工作效率。
最后,巷道支护工程设计应考虑到巷道的可持续发展,开挖后巷道支护材料能够得到充分利用和再利用。
4. 煤矿矿井巷道支护工程的优化设计方法为了实现煤矿矿井巷道支护工程的优化设计,可以采用以下几种方法。
首先,通过地质勘察和地质力学试验,全面了解地质情况,确定巷道支护设计参数。
其次,利用数学模型和有限元分析方法,对巷道支护结构进行力学计算和稳定性分析,优化巷道支护结构的参数。
同时,还可以通过模拟实验和现场测试,对巷道支护结构的性能进行评估和验证。
简易采场支护器的设计与应用摘要:井巷支护采用原木材料会造成诸多浪费,通过研制简易采场支护器来替代原木进行井巷支护。
新支护器具有易制作、易操作、成本低、效果好、易回收的特点,经过多年应用检验,安全效益、经济效益、环保效益明显。
关键词:井巷支护支护器操作simple mining sites supporting design and application zhang zheng-ping(china gold inner mongolia mining co.,ltdmanzhouli,neimenggu ,china)abstract:roadway supporting the use of wood materials will cause a lot of waste,the mining field through the development of simple devices to replace the timber bracing for roadway supports.new supporting devices are easy to make,easy to operate,low cost,effective,easy recoverycharacteristics,after years of application testing,security and economic benefits,environmental benefits are obvious.key words: roadway support;supporting device;operating 1前言辽宁五龙金矿是一座中等规模的矿山,年处理矿石大约三十万吨,年产黄金800多公斤。
在矿山井下开采过程中,井巷和采场支护经常采用木质材料支撑井巷空间,使岩层处于稳定状态。
当竖井穿过表土层、破碎不稳定岩层时,还必须在掘进过程中进行临时支护。
矾山磷矿采矿顶板支护施工方案在矾山磷矿采矿过程中,顶板支护是一项至关重要的施工工作。
合理的顶板支护方案不仅可以保障采矿现场的安全,还能保障生产的顺利进行。
本文将探讨矾山磷矿采矿过程中的顶板支护施工方案。
1. 顶板支护的重要性在矾山磷矿的开采过程中,顶板是指矿层上方的覆盖岩层,支持着地表和开采工作面的岩层结构。
采矿现场的顶板一旦发生失稳或坍塌,可能会造成严重的安全事故,影响采矿工作的进行,甚至导致人员伤亡。
因此,科学合理的顶板支护方案显得尤为重要。
2. 顶板支护施工方案概述2.1 材料选择在矾山磷矿采矿现场,常用的顶板支护材料主要包括锚杆、锚网、喷锚混凝土等。
根据不同的顶板岩性和支护要求,选择合适的材料是保障施工效果的前提。
2.2 支护方式在矾山磷矿采矿现场,常用的顶板支护方式包括锚杆支护、锚网支护和喷锚混凝土支护等。
针对不同的开采工作面和岩体条件,选择合适的支护方式非常关键。
2.3 施工流程顶板支护施工的流程包括勘察设计、材料采购、设备调试、施工实施等多个环节。
在施工过程中,需严格遵守相关的操作规程,确保支护工作的质量和效果。
3. 顶板支护注意事项在矾山磷矿采矿现场进行顶板支护工作时,需特别注意以下几个方面:•确保支护材料的质量和规格符合施工要求;•定期检查支护设施的稳定性和完整性;•加强对施工人员的安全教育和培训;•严格执行施工现场的安全管理制度。
4. 结语矾山磷矿采矿顶板支护施工是矿山安全生产的重要环节,关系到人员的生命安全和采矿现场的稳定运行。
通过科学合理的设计方案和严格规范的施工流程,能够有效提高顶板支护工作的效率和质量,保障矿山生产的顺利进行。
煤矿矿井支护技术综述煤矿矿井支护技术是保障煤矿生产安全的重要环节。
煤矿矿井作为矿井工作面开采所依靠的主体结构,其支护技术的应用直接关系到矿井的安全性和稳定性。
本文将对煤矿矿井支护技术进行综述,包括支护材料、支护形式和支护设计。
支护材料煤矿矿井支护材料主要包括木材、钢材和混凝土材料。
其中,木材是传统的支护材料,具有较好的吸能性能和适应性,但易受到水分和腐蚀的影响,容易损坏。
钢材在煤矿矿井支护中应用广泛,其强度高、耐腐蚀性好,是一种可靠的支护材料。
混凝土材料在现代煤矿矿井支护中得到广泛应用,其具有较强的耐压和耐腐蚀性能,能够适应各种煤矿矿井的复杂条件。
支护形式煤矿矿井支护形式包括条锚支护、网壳支护和梁支护。
条锚支护是指通过在矿井周围用钢筋或钢材打造成网格形状,然后用混凝土灌浆固定的方式来进行支护。
网壳支护是指将钢网或者塑料网通过卡子和锚栓的方式固定在矿井周围,起到支护作用。
梁支护是指在矿井的顶部、底部或侧面安放钢梁来对矿井进行支撑。
这些支护形式根据矿井的不同情况选择不同的方式进行组合应用,以保证支护的稳定性和可靠性。
支护设计煤矿矿井支护设计主要考虑矿井的地质条件、开采方法和采场布置等因素。
首先需要对矿井的地层进行详细的勘查和分析,确定矿井的地质结构和岩层的稳定性。
然后根据采煤的方法选择合适的支护形式和支护材料,并进行支护设计。
在支护设计中,需要考虑矿井开采过程中的变形、压力分布等因素,确保支护的稳定和安全。
支护设计还需进行支护材料的选型和计算,以确定支护材料的数量和规格。
在煤矿矿井支护技术的应用中,还需要注意支护的施工质量和监控。
支护施工需要确保支护材料的正确安装和固定,保证支护的完整性和可靠性。
支护监控是对矿井支护状况进行实时监测和评估,及时发现和解决问题,确保矿井的安全运营。
综述煤矿矿井支护技术是煤矿生产安全的重要保障措施。
在支护材料、支护形式和支护设计等方面都有不断的创新和发展。
在煤矿矿井的开采过程中,合理选择支护技术和进行支护设计,以确保矿井的稳定性和安全性。
矿山井下支护设计方案优化研究在矿山开采过程中,井下支护是确保作业安全和提高开采效率的关键环节。
一个合理、有效的井下支护设计方案不仅能够保障矿工的生命安全,还能为矿山的稳定生产提供有力支持。
然而,由于矿山地质条件的复杂性和多变性,现有的支护设计方案往往存在一些不足,需要不断进行优化和改进。
一、矿山井下支护的重要性矿山井下环境复杂,存在着各种地质灾害的威胁,如顶板冒落、片帮、底鼓等。
井下支护的主要作用就是为了维护巷道和采场的稳定性,防止这些灾害的发生。
有效的支护可以减少岩石的变形和位移,降低围岩的应力集中,从而保障矿工在井下的工作安全。
同时,良好的支护还能够延长巷道和采场的使用寿命,提高矿山的开采效率,降低生产成本。
二、现有井下支护设计方案存在的问题1、对地质条件的考虑不够充分许多矿山在进行支护设计时,没有对地质条件进行详细的勘察和分析。
地质条件是影响支护效果的重要因素,如果对其了解不足,就容易导致支护方案与实际情况不符,无法达到预期的支护效果。
2、支护材料选择不合理部分矿山在选择支护材料时,只考虑了成本因素,而忽视了材料的性能和质量。
一些低质量的支护材料在使用过程中容易出现损坏和失效,从而影响支护的稳定性。
3、支护参数设计不够精确支护参数的设计直接关系到支护的效果。
然而,一些矿山在设计支护参数时,往往采用经验公式或者类比法,缺乏科学的计算和分析,导致支护参数不准确,影响了支护的可靠性。
4、缺乏动态监测和调整机制矿山井下的地质条件是不断变化的,支护效果也会受到影响。
但一些矿山在支护施工完成后,缺乏对支护效果的动态监测和调整机制,不能及时发现支护存在的问题并进行处理,从而增加了安全隐患。
三、井下支护设计方案优化的原则1、安全性原则优化后的支护设计方案必须首先满足安全性要求,能够有效地防止顶板冒落、片帮等地质灾害的发生,保障矿工的生命安全。
2、经济性原则在保证支护安全的前提下,要尽量降低支护成本,提高矿山的经济效益。
一、工程概况本地下矿山支护工程位于我国某地,工程总长度约为5公里,深度在50米至150米之间,主要进行采矿作业。
矿山地质条件复杂,岩石硬度大,裂隙发育,地下水丰富。
为确保矿山安全稳定,特制定以下支护工程施工方案。
二、支护设计原则1. 确保矿山安全稳定,防止坍塌、滑坡等事故发生。
2. 降低施工成本,提高施工效率。
3. 适应矿山地质条件,采用合理的支护形式和施工工艺。
三、支护方案1. 支护形式(1)锚杆支护:适用于岩体较完整、裂隙发育不严重的区域。
采用全锚杆支护,锚杆长度为4-6米,间距为1.5-2米。
(2)锚索支护:适用于岩体破碎、裂隙发育严重的区域。
采用全锚索支护,锚索长度为6-10米,间距为2-3米。
(3)喷混凝土支护:适用于岩石表面不平整、岩体较软的区域。
喷混凝土厚度为10-15厘米,强度等级为C20。
(4)钢支撑支护:适用于开挖断面较大、岩体稳定性较差的区域。
采用组合钢支撑,间距为1.5-2米。
2. 施工工艺(1)锚杆支护施工:首先进行钻孔,孔径为Φ25-Φ28毫米,孔深与锚杆长度一致。
然后插入锚杆,进行锚杆张拉,张拉力为锚杆设计张拉力的70%-80%。
最后进行锚杆锚固,采用水泥砂浆锚固。
(2)锚索支护施工:首先进行钻孔,孔径为Φ32-Φ38毫米,孔深与锚索长度一致。
然后插入锚索,进行锚索张拉,张拉力为锚索设计张拉力的70%-80%。
最后进行锚索锚固,采用水泥砂浆锚固。
(3)喷混凝土支护施工:首先对岩体表面进行清理,然后进行喷混凝土作业,厚度为10-15厘米,强度等级为C20。
(4)钢支撑支护施工:首先进行钢支撑的安装,然后进行连接,确保钢支撑的稳定性。
四、施工组织与管理1. 施工队伍:组织一支具有丰富经验的矿山支护施工队伍,进行专业培训,提高施工技能。
2. 施工进度:制定合理的施工进度计划,确保施工按期完成。
3. 施工安全:严格执行安全生产规章制度,加强施工现场安全管理,防止安全事故发生。