采场支护设计
- 格式:ppt
- 大小:1.06 MB
- 文档页数:53
矿山巷道支护结构设计与应用在现代的矿山巷道建设中,支护结构的设计和应用是非常重要的,因为矿山巷道在采掘过程中需要承受巨大的力量和压力,如不得当的设计将会带来严重的安全隐患和损失,因此,矿山巷道支护结构设计和应用需要高度重视。
本文将重点介绍矿山巷道支护结构的设计和应用。
一、支护结构的设计原则在矿山巷道支护结构的设计中,需要考虑许多因素,如地质条件、巷道尺寸、支护材料和支护方式等。
因此,支护结构的设计应遵循以下几个原则:1.保证安全性。
矿山巷道是一个高风险的工作场所,支护结构的设计需要考虑到巷道的稳定性和承载能力,能够抵御各种力量和压力的影响。
2.提高效率。
支护结构的设计应考虑施工的方便性和效率性,能够节约时间和成本,提高工作效率。
3.经济节能。
在支护结构的设计中,应该充分考虑材料的使用效率和成本,以及在长期使用中的维护和修理成本,尽可能地节约成本。
二、支护结构的种类在矿山巷道的支护结构中,常见的种类有:1.钢支架:钢支架由钢柱、横向梁和纵向梁等组成,具有高强度、高刚度、耐腐蚀、易于拆卸和安装等优点,广泛应用于各种类型的煤矿巷道。
2.锚杆支护:锚杆支护是将锚杆嵌入到巷道周围的岩层中,通过锚杆和梁板来支撑整个巷道结构,具有结构简单、易于施工、可靠性高等特点,广泛应用于煤矿巷道和隧道等。
3.斜撑支护:斜撑支护是在巷道两侧设置由扶手、斜杆、水平杆和立柱组成的支撑框架,通过框架和巷道侧壁的摩擦力来稳定巷道,具有结构简单、稳定性好等特点,适用于较坚硬的岩层。
4.喷锚支护:喷锚支护是在巷道周围钻孔,然后将喷锚剂喷入孔内固定巷道周围的岩层,具有施工简单、稳定性好等特点,适用于软弱地质条件下的巷道支护。
三、支护结构应用实例在实际的矿山巷道建设中,各种支护结构都得到了广泛的应用。
例如,在某煤矿的巷道支护中,使用了钢支架、锚杆支护和喷锚支护相结合的方式,提高了巷道的稳定性和承载能力。
在另一个煤矿的巷道支护中,使用了斜撑支护和高压注浆支护相结合的方式,成功地解决了软弱地质条件下的巷道支护问题。
煤矿采区巷道支护设计方案研究作者:赵树理来源:《理论与创新》2020年第11期【摘要】随着煤炭开采量的不断增加,煤矿开采深度不断加深,开采时遇到的地质情况也是越来越复杂,对煤矿开采安全尤其是巷道支护的要求更是越来越高。
目前,在煤巷支护工程中用到的最多的支护技术是锚杆支护。
【关键词】回风巷;悬吊理论;支护引言近年来煤矿开采水平向深度发展,出现的软岩工程问题越来越多。
软岩巷道变形量大,支护受力大,一般采用可缩性U型钢支架,但是其不但成本高、劳动强度大,而且有时还容易发生破坏。
自从围岩松动圈支护理论提出,在随后的巷道支护研究中确定主要研究对象为松动圈发展过程中的碎胀变形。
人们逐渐开始用锚喷支护代替U型钢支架来解决软岩支护问题,不仅支护效果好,而且经济技术效益显著。
1.巷道断面的最佳设计在我国随着矿井开采深度的增加,工作面回采机械化程度提高,要求回采巷道断面积加大,因而使矿压显现更加剧烈,回采巷道的支扩问题在煤矿生产中越来越突出。
在很多矿井中,由于巷道断面缩小,严重影响工作面运输、通风,常常形成“ 爬行巷道”,从而威胁井下的安全生产,使得工作面机械生产能力不能充分发挥。
而且回采巷道的多次返修还是造成煤炭企业亏损、采掘接替紧张的主要原因之一。
2.巷道的最佳掘进时间在上区段工作面推进过程中,顶板运动的發展过程分两个阶段,显著运动阶段和相对稳定阶段。
在显著运动阶段,上覆岩层支承力不断发展变化,造成采空区侧煤体支承压力的变化,煤体发生较大变形。
如果在显著运动阶段掘进巷道,则巷道容易产生变形破坏,不利于巷道维护。
当上区段采场老项触矸后,顶板运动处于相对稳定阶段,支承压力已经重新分布,煤体变形基本稳定。
此时掘进巷道,则巷道不易变形破坏,易于维护。
因此,上区段采场老顶触矸后顶板运动的相对稳定阶段为沿空掘巷的最佳时间。
3.巷道支护参数的选择支护是巷道施工的一个重要环节,正确而又及时的支护,巷道掘进工作才能正常的进行。
支护的工作量一般占巷道总成本的1/3~ 1/2,劳动强度大。
支护设计计算一、工作面支护设计采用类比法进行设计。
1、根据本矿矿压观测资料,选择本工作面矿压参数,详见矿压参数参考表3-1-1。
⑴、采用经验公式计算支护强度Pt=×h×γ×k=×××7=m3——工作面合理的支护强度,kN/m3;式中:Pth——采高,~ m,平均;γ——直接顶板岩石的密度,t/m3,一般可取 t/m3,取 t/m3;k——工作面支柱应支护的上覆岩层厚度与采高之比,一般为4~8,应根据实际情况选取。
本工作面属于中厚煤层、顶板条件较差,取6。
⑵、选用现场矿压实测工作面初次来压时的最大平均支护强度Pt=m3因此工作支护强度应大于 kN/m3,因此本工作面取300kN/m3。
3、支柱实际支撑力Rt =kg×kz×kb×kh×ka×R =×××××250=式中:Rt——支柱实际支撑能力,kN;kg——工作系数;kz——增阻系数;kb——不均匀系数;kh——采高系数;ka——倾角系数;R——支柱额定工作面阻力,kN。
K ——支柱阻力影响系数,可以从支柱阻力影响系数表3-1-1中查得。
4n= Pt / Rt=300/=棵/ m25、排、柱距根据推进度,工作面基本支柱的排距取,则基本柱距为:L柱=1÷(L排×n)=1÷(×)=式中:L柱——工作面基本柱距,m; L排——工作面基本排距,m。
取基本支柱的柱距 m。
6、支护密度验证n ′= 每棚支柱数/(控顶距×柱距) =3/×) =棵/m 2<棵/m 2支护密度不能满足要求,由于选取的基本柱距已为最小安全宽度,因此采用每两棚支柱成组使用,交替迈步进行支护,将两棚支护柱距调整为每组距离米。
重新验证支护密度:n ′= 每组支柱数/(控顶距×组距) =5/×) =棵/m 2>棵/m 2支护密度满足要求。
掘进巷道支护设计管理制度范文掘进巷道支护是矿山开采过程中一项重要的工作内容,对于保障矿井安全稳定运行、预防和控制地质灾害起着至关重要的作用。
为了提高掘进巷道支护工作的质量和效率,制定一套科学合理的设计管理制度是必要的。
本文将从设计管理制度的制定、内容、执行和监督等方面进行阐述,以期为掘进巷道支护设计管理工作提供参考。
一、设计管理制度的制定(一)制定依据设计管理制度的制定应遵循相关法律法规和规范性文件的要求,特别是《煤矿安全规程》、《瓦斯管理规定》、《工程设计管理办法》等相关文件,以及现场实际情况和生产需要。
(二)制定程序1. 收集相关资料:搜集国内外矿山支护设计管理方面的先进经验和成果,了解现有制度的不足之处和存在的问题。
2. 召开会议:组织相关专家、技术人员和管理人员召开会议,就设计管理制度的必要性、核心内容、执行程序等进行充分的讨论和研究。
3. 制定草案:在会议基础上,由相关工作组起草设计管理制度的初稿,包括制度名称、适用范围、工作程序、责任人员、技术要求、安全措施等方面的内容。
4. 试行和修订:将初稿试行一段时间,并不断根据实际应用情况进行修订和完善,以确保制度的科学合理。
二、设计管理制度的内容设计管理制度应包含以下内容:(一)适用范围明确制度适用的对象、工作环境和具体要求,确保适用对象有所依据,避免歧义和不明确的情况发生。
(二)工作程序明确设计管理的主要工作程序和流程,包括设计调研、方案设计、设计审核、施工图设计、施工和验收等详细流程。
确保工作程序的合理性和科学性。
(三)责任人员明确各个环节的责任人员,包括设计调研人员、方案设计人员、审核人员、施工图设计人员、施工人员等,明确各个责任人员的职责和权限。
并要求相关人员具备相应的技术水平和经验。
(四)技术要求明确设计中的关键技术要求,包括巷道支护设计的稳定性、安全性、经济性和环保性等方面。
要求设计人员充分考虑地质条件、煤层情况、瓦斯涌出等因素,制定合理的支护措施。
采掘工程支护设计方案一、项目概况我国是一个煤炭资源非常丰富的国家,在进行煤炭采掘过程中,遇到各种各样的地质问题。
采矿工程支护设计是保证矿山安全和经济合理开采的重要环节。
本文将以某煤矿采掘工程支护设计方案为例,对其进行详细分析和设计。
二、地质条件该煤矿位于山西省阳泉市,属于典型的煤矿区域。
底板岩性为页岩和泥岩,倾角较小,断裂较多,主要为近东西向的断裂。
该区域水文地质条件比较复杂,地下水裂缝发育较为严重。
采矿区煤层埋深较浅,煤层岩性较软,易发生顶板垮落、底板破裂等现象。
三、采掘方式该煤矿采用分层开采方式,采用支柱法进行采矿。
分层开采方式是在煤矿顶板不稳定的情况下,采用分段采煤,逐步将煤矿层层开启,保证了煤矿的稳定性。
支柱法则是在煤矿中空着一列柱子来支撑煤墩,以保证煤层不发生塌方现象。
这样的采矿方式对矿山支护要求较高。
四、采掘工程支护设计1. 采空区支护对于采空区,需要进行及时的支护,以保障矿井的安全开采。
在采煤作业现场,要对顶板进行悬吊支架的设计,同时对采空区进行及时地加强支护,防止因为采空导致的地质灾害发生。
2. 巷道支护巷道支护是采矿工程中的一个重要环节。
对于巷道的支护主要采用钢筋混凝土支护、木方、或者钢架等支护方式进行加固,以防止巷道发生塌方现象。
在巷道的设计中,需要考虑地质条件和巷道的使用情况,合理选择巷道支护方式。
3. 井筒支护在井下采矿过程中,需要对井筒进行支护加固,以保证井筒的安全运行。
井筒支护主要通过加固井壁、设置支撑架或者注浆加固等方式进行,以确保井筒的安全运行。
4. 底板支护底板支护是保证采矿安全的重要环节,底板岩层对采矿操作起着非常重要的作用。
针对底板岩层的地质特征,需要选择合适的底板支护方式进行加固,以保证底板的稳定。
五、安全监测在采掘工程支护设计中,安全监测是非常重要的环节。
通过安全监测,可以及时发现地质灾害的预兆并采取相应的措施,保障矿山的安全开采。
安全监测主要包括地表位移监测、地下水位监测、巷道变形监测等,通过这些监测手段可以及时了解矿山的地质情况,并提前做好预防措施。