电压空间矢量控制系统
- 格式:ppt
- 大小:3.98 MB
- 文档页数:51
基于空间矢量控制(SVPWM)技术的三相电压型整流器设计作者:佚名来源:本站整理发布时间:2010-9-9 10:54:01 [收藏] [评论]传统的变压整流器和非线性负载的大量使用使电网中电流谐波含量较高,对飞机供电系统和供电质量造成很大影响。
消除电网谐波污染、提高整流器的功率因数是电力电子领域研究的热点。
空间矢量PWM(SVPWM)控制具有直流侧电压利用率高、动态响应快和易于数字化实现的特点。
本文采用空间矢量技术对三相电压型整流器进行研究,使其网侧电压与电流同相位,从而实现高功率因数整流。
1 空间矢量控制技术SVPWM控制技术通过控制不同开关状态的组合,将空间电压矢量V控制为按设定的参数做圆形旋转。
对任意给定的空间电压矢量V均可由这8条空间矢量来合成,如图1所示。
任意扇形区域的电压矢量V均可由组成这个区域的2个相邻的非零矢量和零矢量在时间上的不同组合来得到。
这几个矢量的作用时间可以一次施加,也可以在一个采样周期内分多次施加。
也就是说,SVPWM通过控制各个基本空间电压矢量的作用时间,最终形成等幅不等宽的PWM脉冲波,使电压空间矢量接近按圆轨迹旋转。
主电路功率开关管的开关频率越高,就越逼近圆形旋转磁场。
为了减少开关次数,降低开关损耗,对于三相VSR某一给定的空间电压矢量,采用图2所示的合成方法。
在扇区I中相应开关函数如图3所示。
零矢量均匀地分布在矢量的起、终点上,除零矢量外,由V1、V2、V4合成,且中点截出2个三角形。
一个开关周期中,VSR上桥臂功率开关管共开关4次,由于开关函数波形对称,谐波主要集中在整数倍的开关频率上。
2 直接电流控制策略三相VSR的电流控制策略主要分为直接电流控制和间接电流控制。
直接电流控制采用网侧电流闭环控制,提高了网侧电流的动、静态性能,并增强电流控制系统的鲁棒性。
而在直接控制策略中固定开关频率的PWM电流控制因其算法简单、实现较为方便,得到了较好应用,在三相静止坐标系中,固定开关频率的PWM电流控制电流内环的稳态电流指令是一个正弦波信号,其电流指令的幅值信号来源于直流电压调节器的输出,频率和相位信号来源于电网;PI电流调节器不能实现电流无静差控制,且对有功电流和无功电流的独立控制很难实现。
空间电压矢量控制变频调速零矢量的作用一、前言随着现代工业的不断发展,越来越多的机械设备需要使用电机驱动,而变频调速技术作为一种能够实现电机精确控制的方法,被广泛应用于各个领域。
其中,空间电压矢量控制技术是一种先进的变频调速方法,可以实现对电机的高效稳定控制。
本文将详细介绍空间电压矢量控制技术中的零矢量及其作用。
二、空间电压矢量控制简介空间电压矢量控制是一种基于三相交流功率转换器的变频调速方法。
该方法通过对三相交流功率转换器输出端口施加合理的电压和频率信号,来实现对电机转速和转矩的精确控制。
具体来说,在空间电压矢量控制中,我们可以通过计算出三相交流功率转换器输出端口所需施加的合成电压和相位角来确定合适的输出信号。
这些输出信号可以分解成两个部分:正常工作区域和零矢量区域。
三、零矢量概述在空间电压矢量控制中,当电机需要停转或者需要反向运转时,我们需要将输出信号切换到零矢量区域。
零矢量区域是指三相交流功率转换器输出端口施加的电压为零的区域。
具体来说,在零矢量区域中,我们可以通过将三相交流功率转换器输出端口的两个逆向电压信号施加到电机上来实现停转或者反向运转。
这样可以有效地减小电机在停止或者反向运动时产生的震荡和噪音。
四、零矢量的作用1. 减小电机噪音在空间电压矢量控制中,由于我们可以通过将输出信号切换到零矢量区域来实现电机的停止或者反向运动,因此可以有效地减小电机在停止或者反向运动时产生的震荡和噪音。
这对于一些需要低噪音环境的场合非常重要。
2. 提高系统效率在空间电压矢量控制中,由于我们可以通过切换到零矢量区域来实现对电机的精确控制,因此可以有效地提高系统效率。
特别是在低速大负载情况下,零矢量控制可以有效地提高系统效率。
3. 提高电机控制精度在空间电压矢量控制中,由于我们可以通过切换到零矢量区域来实现对电机的精确控制,因此可以有效地提高电机控制精度。
特别是在需要对电机进行高速、大负载运动时,零矢量控制可以保证电机的稳定性和可靠性。
空间电压矢量控制PWM
空间电压矢量控制PWM(SVPWM)也叫磁通正弦PWM法.它以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,用逆变器不同的开关模式所产生的实际磁通去逼近基准圆磁通,由它们的比较结果决定逆变器的开关,形成PWM波形.此法从电动机的角度出发,把逆变器和电机看作一个整体,以内切多边形逼近圆的方式进行控制,使电机获得幅值恒定的圆形磁场(正弦磁通).
具体方法又分为磁通开环式和磁通闭环式.磁通开环法用两个非零矢量和一个零矢量合成一个等效的电压矢量,若采样时间足够小,可合成任意电压矢量.此法输出电压比正弦波调制时提高15%,谐波电流有效值之和接近最小.磁通闭环式引
入磁通反馈,控制磁通的大小和变化的速度.在比较估算磁通和给定磁通后,根据误差决定产生下一个电压矢量,形成PWM波形.这种方法克服了磁通开环法的不足,解决了电机低速时,定子电阻影响大的问题,减小了电机的脉动和噪音.但由于未引入转矩的调节,系统性能没有得到根本性的改善.。
什么是⽮量控制系统(VCS)并简述其1. 什么是⽮量控制系统(VCS)?并简述其⼯作原理。
答:将异步电动机经过坐标变换可以等效成直流电动机,那么,模仿直流电动机的控制⽅法,求得直流电动机的控制量,经过坐标反变换,就能够控制异步电动机。
由于进⾏坐标变换的是电流(代表磁动势)的空间⽮量,所以这样通过坐标变换的控制系统就叫做⽮量控制系统VCS(Vector Control System) 。
2. 直接转矩控制系统(DTC)的基本思想:根据定⼦磁链幅值偏差Ψs 的正负号和电磁转矩偏差Te的正负号,再依据当前定⼦磁链⽮量Ψs所在的位置,直接选取合适的电压空间⽮量,减⼩定⼦磁链幅值的偏差和电磁转矩的偏差,实现电磁转矩与定⼦磁链的控制。
3. 何为软启动?答:软启动器可以限制启动电流并保持恒值,直到转速升⾼后⾃动衰减下来,启动时间也短于降压启动⽅法主电路采⽤晶闸管交流调压器,⽤连续地改变其输出电压来保证恒流起动,达到稳定运⾏后,可⽤接触器将晶闸管旁路,以免晶闸管不必要长期⼯作。
启动电流可在(0.5~4)IsN之间调整。
4. 电压空间⽮量PWM(SVPWM):(定义)把逆变器和交流电动机视为⼀体,以圆形旋转磁场为⽬标来控制逆变器的⼯作,叫“磁链跟踪控制”,磁链跟踪控制是通过交替使⽤不同的电压空间⽮量来实现的,故⼜称为“电压空间⽮量PWM(SVPWM)”(实现⽅法:)在SVPWM的实现过程中,通常以开关损耗较⼩和谐波分量较⼩为原则,安排基本⽮量和零⽮量的作⽤顺序。
有两种常⽤的SVPWM实现⽅法,分别是(1)零⽮量集中和(2)零⽮量分散。
5.6. 转速、电流反馈控制直流调速的:(1)起动过程分析:第1阶段:电流上升阶段。
这⼀阶段中,ASR很快进⼊并保持饱和状态,⽽ACR⼀般不饱和。
第2阶段:恒流升速阶段。
ASR保持饱和状态,⽽ACR不饱和,转速迅速饱和。
第3阶段:转速调节阶段。
ACR、ASR均不饱和,ASR 起主导作⽤,转速反馈接近期望输出(2)双闭环直流调速系统的起动过程有以下三个特点?答:1) 饱和⾮线性控制:ASR饱和,转速环开环,恒值电流调节的单闭环系统ASR不饱和,转速环闭环,⽆静差调速系统.2)准时间最优控制,恒流升速可使起动过程尽可能最快。
文章编号:1009-0193(1999)04-0086-05电压空间矢量(磁链追踪)PWM控制研究与仿真翁颖钧,吴守箴(上海铁道大学电气工程系,上海200331)摘要:为了提高电机的功率因数,降低开关损耗,基于气隙磁通控制原理,以电压矢量组合来逼近圆形磁链轨迹,而电压矢量的选择对应不同开关模式,因此构成电压矢量控制PWM逆变器。
利用C语言仿真,该法输出电压较一般SPWM 逆变器提高15%,每次状态切换只涉及一个元件,开关损耗降低,且模型简单,适用于各种PWM调速装置。
关键词:电机;空间矢量;PWM控制中图分类号:TM301.2 文献标识码:A1 基本原理由电机学可知,在由三相对称正弦电压供电时,电机的定子磁链的幅值是恒定的,并以恒速ω1旋转。
磁链矢量顶端运动轨迹形成圆形的空间旋转磁场(简称磁链圆),我们可以用定子磁链的矢量式来表述:式中,λm 为的幅值,ω1为旋转角速度。
当转速不是很低时,定子电阻压降较小,可以忽略不计,则定子电压与磁链的近似关系可表示成:上式表明,电压矢量V1的大小等于λ1的变化率,而其方向则与λ1的运动方向一致。
由式(1),(2) 可得:由(3)式可见,当磁链幅值λm 在运动过程中一定时,的大小与ω1(或供电电压频率f1)成正比,其方向为磁链圆轨迹的切线方向。
当磁链矢量在空间旋转一周时,电压空间矢量也连续地按磁链圆的切线方向运动经过2π弧度,其轨迹与磁链圆是重合的。
这时,我们就把气隙旋转磁场的轨迹与电压空间矢量联系起来。
从三相逆变器—异步电机原理图(见图1)可知,为了使电动机对称工作,必须三相同时供电,从逆变器的拓扑结构以及式(2)来看,每个输出电势Vao ,Vbo,Vco都具有二个值,例如±Vd/2,如此线性组合即可得到矢量23=8种电压类型。
图(2)表示了电压空间矢量的放射状分布。
每个矢量标注了0(000)~7(111),0表示同一桥臂的二个晶闸管的下面一个导通,1表示上侧的导通,k表示对应二进制数的十进制数。