盾构选型
- 格式:pdf
- 大小:175.60 KB
- 文档页数:5
盾构选型的原则
盾构选型的原则主要包括以下几点:
1. 管道要求:根据盾构隧道的设计要求和工程环境的条件,选择合适的盾构机型。
包括盾构机的直径范围和适应的地质环境,如软土、硬岩、岩溶地带等。
2. 地质条件:根据隧道地质条件的复杂性和预测精度,选择适应的盾构机型。
较复杂和不可预知的地质条件一般需要选择具有灵活性的盾构机型,能够根据地质环境的变化进行调整。
3. 施工效率:根据工程进度和施工期限,选择具有高效率和高生产率的盾构机型。
例如,对于大型隧道工程和紧迫的工期要求,可以选择大口径、大推力和高性能的盾构机。
4. 经济性:盾构机的选型应考虑施工成本和机械投资之间的平衡。
应选择具有较低工程成本和维护成本的盾构机,同时能够满足工程质量和效益要求。
5. 技术可行性:在选择盾构机型时需要考虑施工技术的成熟度和可靠性。
应选择经过验证并在类似工程中取得成功的盾构机型,以降低施工风险。
6. 环境保护:在盾构选型中需要考虑对环境的影响,选择符合环保要求和节能减排的盾构机,降低施工对周围环境的影响。
总的原则是根据具体项目要求,综合考虑工程地质、施工进度、经济性和环保要求等因素,选择最适合的盾构机型进行施工。
盾构选型与配置要求一、引言盾构机是一种用于地下隧道施工的机械设备,通过推进和控制盾体实现地下隧道的开挖和衬砌。
盾构机的选型与配置要求是保证工程施工顺利进行的关键。
本文将从盾构机选型与配置背景、盾构机选型要求、盾构机配置要求、技术要求等方面进行分析。
二、盾构机选型与配置背景随着城市化进程的加快和交通网络的不断扩展,地下隧道建设的需求逐渐增加,盾构机作为地下隧道施工主要设备之一,承担着巨大的施工任务。
在盾构机选型与配置时,需要考虑工程的具体需求,包括隧道的长度、直径、土层情况、地质条件等,以及施工周期、施工速度要求等因素。
三、盾构机选型要求1.适应地质条件:盾构机选型时需要根据地质条件选择合适的机型。
地质条件复杂的地区,如软黏土层、水下隧道等,需要采用具有较强适应性的盾构机。
2.考虑工程参数:盾构机选型要考虑隧道的直径、长度、弯曲半径等工程参数,选用合适的机型。
一般情况下,隧道直径较小的可以选择小型盾构机,隧道直径较大的可以选择大型盾构机。
3.考虑施工速度要求:盾构机选型时需要考虑施工周期和施工速度要求。
如果施工周期较紧迫,需要选择具有较高推进速度和装备配置的盾构机。
四、盾构机配置要求1.推进系统:盾构机的推进系统是保证施工进度的关键,需要配置具有较高推进力和推进速度的系统。
推进系统的配置要充分考虑地质条件、隧道直径等因素。
2.壁厚控制系统:盾构机的壁厚控制系统需要精确控制衬砌的厚度,以保证隧道的结构安全。
配置的壁厚控制系统要具备高精度和稳定性。
3.螺旋输送系统:盾构机的螺旋输送系统负责将挖出的土方料送出隧道,需要配置高效稳定的螺旋输送系统,以保证施工的连续性和效率。
五、技术要求1.控制系统:盾构机的控制系统需要具备高精度、高稳定性,并能保持与其他系统的协调工作。
控制系统的配置要根据盾构机的使用特点和需求进行选择。
2.故障诊断系统:盾构机的故障诊断系统可以及时发现和解决机械故障,提高施工的效率和安全性。
盾构机选型的方法和步骤盾构机是隧道施工中的重要设备,正确的选型对于工程的顺利实施至关重要。
以下为盾构机选型的方法和步骤:1.确定隧道类型首先需要确定隧道工程的类型。
根据隧道的设计要求,可以分为交通隧道、水利隧道、市政隧道等。
不同类型的隧道对盾构机的需求和性能要求不同。
2.确定隧道尺寸根据隧道的设计要求,需要确定隧道的尺寸。
这包括隧道的直径、长度以及曲率半径等。
盾构机的尺寸必须与隧道尺寸相匹配,以满足施工要求。
3.确定地质条件地质条件是选择盾构机的重要因素之一。
需要对工程场地的地质条件进行详细勘察和分析,包括土质类型、地下水位、岩石强度等。
根据地质条件,选择适合的盾构机和刀具。
4.确定推进速度推进速度是盾构机的重要参数之一。
需要根据隧道施工的要求和盾构机的性能,确定合适的推进速度。
推进速度过快可能导致盾构机控制难度增加,过慢则可能影响施工效率。
5.确定出土方式盾构机在挖掘过程中需要将土石运出隧道。
根据工程需要和场地条件,可以选择不同的出土方式,如机械出土、水力出土等。
选择合适的出土方式有助于提高施工效率和质量。
6.确定控制系统控制系统是盾构机的核心部分之一。
需要根据盾构机的性能和施工要求,选择合适的控制系统。
控制系统应具有稳定性、可靠性和灵活性等特点,能够实现对盾构机的精确控制。
7.确定辅助系统辅助系统是盾构机的重要组成部分,包括注浆系统、通风系统、照明系统等。
需要根据隧道施工的要求和场地条件,选择合适的辅助系统,以提高施工效率和质量。
8.确定刀具和盾构材料最后需要确定盾构机的刀具和材料。
刀具的类型和数量应根据地质条件和隧道尺寸来确定。
同时,盾构机的材料也应根据工程需要和场地条件进行选择,如钢铁、合金等。
综上所述,盾构机的选型需要综合考虑隧道类型、尺寸、地质条件、推进速度、出土方式、控制系统、辅助系统和刀具及盾构材料等多个方面因素。
只有在全面了解并分析这些因素后,才能选择出最适合工程需求的盾构机,从而确保隧道施工的顺利进行和质量要求的达成。
盾构施工技术概述及盾构机选型盾构施工技术是一种无顶开挖技术,在地下隧道施工中得到广泛应用。
它以盾构机为核心设备,通过推进机械和描摹设备以及支护设备,实现隧道的同步推进和支护作业。
盾构施工技术能够高效快捷地完成地下隧道的开挖工作,具有施工效率高、质量稳定、环境影响小等优点。
盾构机选型是盾构施工中关键的决策工作之一、盾构机的选型要考虑隧道工程的地质条件、隧道的断面形状、施工环境和技术要求等因素。
常见的盾构机选型包括土压平衡机、硬岩盾构机、泥水平衡盾构机和混合盾构机等。
土压平衡机适用于粉土、软土和含水层地质条件下的隧道工程。
该机种通过在掘进过程中平衡土压,避免地面沉降和地表破裂,保护周边环境的安全。
土压平衡机能够经受较高的水压,并能处理较大的土体水含量。
硬岩盾构机适用于硬岩地层的隧道工程。
硬岩盾构机通过机械力破碎岩石,利用刀盘和剥离装置将岩石碎片排出盾构机外,完成隧道的掘进工作。
硬岩盾构机具有破碎能力强、掘进速度快和适应性强等优点。
泥水平衡盾构机适用于高含水地层和软稀土地层的隧道工程。
泥水平衡盾构机通过在掘进过程中保持隧道内部的水压平衡,避免隧道坍塌和地层涌水情况发生。
泥水平衡盾构机能够控制地下水位,保护周边建筑和地下设施的安全。
混合盾构机是结合了土压平衡机和硬岩盾构机的优点,适用于复杂的地质条件下的隧道工程。
混合盾构机能够适应各种地质条件,并能根据不同地层的情况进行灵活调整和切换作业模式。
综上所述,盾构施工技术在地下隧道工程中具有重要地位和广泛应用。
盾构机的选型要根据隧道工程的具体情况进行合理选择,以确保施工的高效性和安全性。
盾构选型及参数计算⽅法盾构选型及参数计算⽅法1.1、序⾔盾构是⼀种专门⽤于隧道⼯程的⼤型⾼科技综合施⼯设备,它具有⼀个可以移动的钢结构外壳(盾壳),盾构内装有开挖、排⼟、拼装和推进等机械装置,进⾏⼟层开挖、碴⼟排运、衬砌拼装和盾构推进等系列操作,使隧道结构施⼯⼀次完成。
它具有开挖快、优质、安全、经济、有利于环境保护和降低劳动强度的优点,从松散软⼟、淤泥到硬岩都可应⽤,在相同条件下,其掘进速度为常规钻爆法的4~10倍。
较长地下⼯程的⼯期对经济效益和⽣态环境等⽅⾯有着重⼤影响,⽽且隧道⼯程掘进⼯作⾯⼜常常受到很多限制,⾯对进度、安全、环保、效益等这些问题,使⽤盾构机⽆疑是最好的选择。
些外,对修建穿越江、湖、海底和沼泽地域隧道,采⽤盾构法施⼯,也具有⼗分明显的技术和经济优势。
采⽤盾构法施⼯,盾构的选型及配置是隧道施⼯中关键环节之⼀,盾构选型应根据⼯程地质⽔⽂情况、⼯期、经济性、环境保护、安全等综合考虑。
盾构的选型及配置是⼀种综合性技术,涉及地质、⼯程、机械、电⽓及控制等⽅⾯。
1.2盾构机选型主要原则1.2.1盾构的选型依据盾构选型主要应考虑以下⼏个因素:1)⼯程地质、⽔⽂条件及施⼯场地⼤⼩。
2)业主招标⽂件中的要求。
3)管⽚设计尺⼨与分块⾓度。
4)盾构的先进性、适应性与经济性。
5)盾构机⼚家的信誉与业绩。
6)盾构机能否按期到达现场。
1.2.2 盾构的型式1)敞开式型盾构敞开式型盾构是指盾构内施⼯⼈员可以直接和开挖⾯⼟层接触,对开挖⾯⼯况进⾏观察,直接排除开挖⾯发⽣的故障。
这种盾构适⽤于能⾃⽴和较稳定的⼟层施⼯,对不稳定的⼟层⼀般要辅以⽓压或降⽔,使⼟层保持稳定,以防⽌开挖⾯坍塌。
有⼈⼯开挖盾构、半机械开挖盾构、机械开挖盾构。
2)部分敞开式型盾构部分敞开式型盾构是在盾构切⼝环在正⾯安装挤压胸板或⽹格切削装置,⽀护开挖⾯⼟层,即形成挤压盾构或⽹格盾构,施⼯⼈员可以直接观察开挖⾯⼟层⼯况,开挖⼟体通过⽹格孔或挤压胸板闸门进⼊盾构。
盾构选型
盾构选型包括盾构机选型与衬砌选型两个方面。
1.盾构的种类与选型
盾构机是一种用钢板作成圆筒形结构的活动支撑,是通过软弱、含水地层,特别在海底、河底、城市内修建隧道的一种施工机械。
在盾构的支护下,可安全地进行掘进和衬砌。
盾构施工法是使用盾构机在地下掘进,边防止开挖面土砂崩塌边在机内安全地进行开挖作业和衬砌作业从而构筑成隧道的施工方法。
因此,盾构施工法是由稳定开挖面、盾构机挖掘和衬砌三大要素组成。
一般地,按开挖面与作业室之间隔墙构造可分为敞式、半开敞式及密封式三种。
密封式又可分为泥水加压式盾构和土压平衡式盾构。
泥水加压式盾构,是在切削刀盘后方设隔墙将盾构封闭起来,压力泥水送入此隔墙与掌子面之间的所谓泥水室,用泥水压力形成承压面,以抵抗地层水压,防止开挖面的塌方。
用切削刀盘进行开挖,切削下来的砂土经搅拌机搅拌成泥浆,由泥浆泵经排泥管道抽出,输送到地面泥水处理场。
一面切削,一面用千斤顶向前推进盾体,至一个衬砌管片宽度时,用盾尾拼装机进行管片安装。
泥水加压盾构有盾尾的漏水以及难以确认开挖面状态及刀具磨耗等确点,还需要较大的泥水处理场地。
泥水加压盾构对于不稳定的软弱地层或地下水位高,含水砂层,粘土以及冲积层以及洪积层等流动性高的土质,使用效果较好。
泥水加压平衡盾构具有土层适应性强、对周围土体影响小、施工机械化程度高等优点。
根据日本的实践,在砂层中进行大断面、长距离推进
的盾构机,大多采用泥水加压式盾构机。
实践证明,掘进断面越大,用泥水加压式盾构机的效果越好。
泥水加压式盾构机除在控制开挖面稳定以减少地面沉降方面较为有利外,还在减少刀头磨损、适应长距离推进方面显示出优越性。
土压平衡盾构是在切削刀架及螺旋输送机内部充填的土砂所产生的压力与开挖面的土压保持平衡。
施工中一边掘进,一边控制推进千斤顶推力、推进速度、刀盘和螺旋输送机回转扭矩、速度以及闸门千斤顶的开口度,使之不断与开挖面的土压保持平衡。
有软稠度的粘质粉土和粉砂是最适合使用土压平衡式盾构机的土层。
根据土层的稠度,有时不需要水或只需要加很少量的水。
通过搅拌装置在开挖室内的搅拌,即使十分粘着的土层也能变成塑性的泥浆。
盾构机的种类很多,施工时盾构机的选择是否合适,直接影响到工程的经济性、安全性以及可靠性等。
影响盾构机选择的因素主要有土质条件(土的强度、软硬程度、土的颗粒级配、石英的含量、是否含有砂砾和大卵石等)、地下水的含量、隧道长度和线形、后续设备与盾构机的配套能力、工作环境以及有无辅助工法等。
盾构机的合理选择要保证开挖面的稳定性,要具有良好的掘进性能,要结合衬砌的类型防止渗漏和坍塌,而且还要与配套系统具有紧凑的配合关系。
另外,以盾构机选型为核心的整个系统的经济性也是不可忽视的。
图1表示了以盾构选型为核心的各因素的影响关系及其相互作用。
图1.盾构选型各因素的影响及其相互作用关系图
2.盾构施工法的衬砌形式与选型
盾构施工法的衬砌形式很多,除了传统的铸铁管片、钢筋混凝土管片、钢管片外,还有挤压混凝土衬砌(ECL)、现浇混凝土衬砌、喷射混凝土衬砌、喷射钢纤维混凝土衬砌、楔形衬砌块等。
钢筋混凝土管片有一定的强度,加工制作比较容易,耐腐蚀,造价低,因而使用比较广泛,但比较笨重,运输安装过程中边缘易碰损。
在日本,球墨铸铁管片的应用仅次于钢筋混凝土管片。
它的强度高、延性好,质量轻、搬运方便,安装速度快、精度高防水性能好,一般不需作二次衬砌,可减少隧道的开挖量,但管片造价高,目前只用于地下水多、土质恶劣的部位。
挤压混凝土衬砌(ECL)是利用盾构机进行开挖,在盾构尾部浇注混
凝土,使其形成衬砌。
这种施工方法是在施工过程中使用加压的现浇混凝土进行填充,使之与地层紧密结合,省去了填充注浆,减少了地表沉降。
加压可使混凝土密实,提高了混凝土的强度和自防水性能。
该法使用范围广,衬砌质量高,且能降低施工费用,缩短工期。
在这方面应研究流动性好、强度高的钢纤维混凝土。
在此基础上开发PC-ECL 工法,即使用预制混凝土内框的掘削、作衬砌同时施工的工法。
该工法的优点是合成衬砌强度高、止水性好,洞内无组装钢筋工序、工期短。
现浇混凝土衬砌是在环形模板(壳)与围岩之间填注混凝土,待混凝土达到所需强度后,推进油缸可以以结硬混凝土为支座向前推进盾构。
但此法要求围岩的稳定性比较好。
喷射混凝土衬砌是在盾构推进后及时喷射混凝土支护。
在城市地铁潜埋暗挖施工法中为了保护开挖面的稳定和减少地表沉降,要求隧道开挖后“强支护、紧封闭”。
可以将此思想与盾构施工相结合,开发短型盾构机,使之长度与直径之比(L/D)应≤1.0,这样从盾构机的运输、安装、到位以及推进过程的调整与转向都比较灵活。
盾构施工法的衬砌形式很多,选择时应考虑盾构机的类型、隧道的断面的形状、地层条件、土层的自稳能力、土体与衬砌的相互作用、隧道埋深等。
还与隧道的用途有关,比如引水隧洞,内部存在水压力,要考虑衬砌对内外向的弯矩均有足够的刚度。
另外,无论采用哪种形式的混凝土衬砌,都不应该忽视混凝土的强度和质量。
目前高性能混凝土在建筑和桥梁上已经得到应用,今后应组织力量开展在隧道与地下工程中应用高性能混凝土的研究、提高
混凝土的耐久性。
图2(结合图1)表示了一些因素对衬砌选择的影响关系。
图2.盾构隧道衬砌选择。