盾构法隧道与应用——第二章盾构分类及选型
- 格式:doc
- 大小:1.95 MB
- 文档页数:18
第二章盾构分类及选型隧道建设与盾构掘进机不可分离,所以盾构掘进机对各种地层的适应性非常重要。
1823年~1843年,世界上第一条人工开挖盾构隧道是由法国人Brunnel在伦敦泰晤士河下建成的,由于隧道掘进机与地层条件的不适应,长366m的隧道耗时达20年左右,隧道施工过程中遭遇了多次涌水,并付出了6个隧道工人生命的代价。
1991年6月29日贯通的长达49km(单条)英法海底隧道,耗时仅仅两年半,在如此短时内取得如此的成绩与隧道盾构正确选型密不可分。
英法海峡隧道法国侧隧道工程是在含水的白色白垩地层里施工,然后进入完全不渗透的兰色白垩地层里施工,然后进入完全不渗透的兰色白垩地层,选择了土压平衡盾构;而英国侧则根据地层的变化采用了通用型盾构。
前者掘进速率达1071m/mon,后者更是达到1487m/mon,说明该隧道的盾构选型是合适的。
1989开始动工建设的东京湾海底公路隧道全长15.1km,其中盾构隧道长9.1km,穿越的地层为软弱的冲积、洪积性土层,另外,该盾构隧道的一个最大特点是盾构必须能够承受 0.6MPa的水压,故采用8台直径14.14m的泥水式土压平衡盾构施工,东京湾隧道的成功建设也表明该类盾构的选择是合适的。
第一节盾构的构造一、盾构外形和材料1.盾构的外形作为一种保护人体的空间,隧道的形状因其使用要求不同、而造成盾构外形不同是理所当然的。
隧道掘进,无论盾构的形状如何,总是向轴线方向发展而成,所以,盾构的外形就是指盾构的断面形状。
从采用过的盾构来看,其外形有圆形、双圆、三圆、矩形、马蹄形、半圆形或与隧道断面相似的特殊形状等。
例如:将人行隧道筑成矩形,最大地利用了挖掘空间;将水利隧道筑成马蹄形,使流体的力学性能达到最佳状态;将穿山隧道筑成半圆形,可以使底边直接与公路连接等等。
但是,绝大多数盾构还是采用传统的圆形。
2.制造盾构的材料盾构在地下穿越,要承受水平载荷、垂直载荷和水压力,如果地面有构筑物,要承受这些附加载荷,盾构推进时,还要克服正面阻力,所以,盾构整体要求具有足够的强度和刚度。
盾构隧道工程技术-doc盾构隧道工程技术-doc第一节盾构施工概况一.盾构法基本概念盾构法是在地面下暗挖隧道的一种施工方法。
当代城市建筑、公用设施和各种交通日益繁杂,市区明挖隧道施工,对城市生活的干扰问题日趋严重,特别在市区中心遇到隧道埋深较大,地质复杂的情况,若用明挖法建造隧道则很难实现。
在这种条件下采用盾构法对城市地下铁道、上下水道、电力通讯、市政公用设施等各种隧道建设具有明显优点。
此外,在建造穿越水域、沼泽地和山地的公路和铁路隧道或水工隧道中,盾构法也往往因它在特定条件下的经济合理性及技术方面的优势而得到采用。
盾构法施工的概貌如图1所示。
构成盾构法施工的主要内容是:先在隧道某段的一端建造竖井或基坑,以供盾构安装就位。
盾构从竖井或基坑的墙壁开孔处出发,在地层中沿着设计轴线,向另一竖井或基坑的设计孔洞推进。
盾构推进中所受到的地层阻力,通过盾构千斤顶传至盾构尾部已拼装的预制隧道衬砌结构,再传到竖井或基坑的后靠壁上,盾构是这种施工方法中最主要的独特的施工机具。
它是一个能支承地层压力而又能在地层中推进的圆形或矩形或马蹄形等特殊形状的钢筒结构,在钢筒的前面设置各种类型的支撑和开挖土体的装置,在钢筒中段周圈内面安装顶进所需的千斤顶,钢筒尾部是具有一定空间的壳体,在盾尾内可以拼装一至二环预制的隧道衬砌环。
盾构每推进一环距离,就在盾尾支护下拼装一环衬砌,并及时向紧靠盾尾后面的开挖坑道周边与衬砌环外周之间的空隙中压注足够的浆体,以防止隧道及地面下沉。
在盾构推进过程中不断从开挖面排出适量的土方。
使用盾构法,往往需要根据穿越土层的工程地质水文地质特点辅以其他施工技术措施。
主要有:1.疏干掘进土层中地下水的措施;2.稳定地层、防止隧道及地面沉陷的土壤加固措施;3.隧道衬砌的防水堵漏技术;4.配合施工的监测技术;5.气压施工中的劳动防护措施;6.开挖土方的运输及处理方法等。
图1 盾构施工概貌1-盾构;2-盾构千斤顶;3-盾构正面网格;4-出土转盘;5-出土皮带运输机;6-管片拼装机;7-管片;8-压浆泵;9-压浆孔;10-出土机;11-由管片组成的隧道衬砌结构;12-在盾尾空隙的压浆;13-后盾管片;14-竖井。
盾构技术特点、分类及适用范围国培学员: S1.盾构法盾构法是暗挖隧道的专用机械在地面以下建造隧道的一种施工方法。
盾构掘进机的特点:盾构掘进机(简称盾构)是地面下暗挖施工隧道的专用工程机械, 具有一个可以移动的钢结构外壳(盾壳), 内装有开挖、排土、拼装和推进等机械装置, 可以进行开挖、支护、衬砌等多种作业一体化施工, 广泛应用于地铁、铁路、公路、市政、水电隧道工程建设。
目前, 在欧美等工业发达国家使用盾构机进行施工的城市隧道占90%以上。
2、现代盾构掘进机集液压、机电控制、测控、计算机、材料等各类技术于一体, 属于技术密集型产品, 其生产主要集中在日本、德国、英国、美国、加拿大等少数发达国家, 其中又以德国、美国、日本技术最为先进。
盾构施工法与矿山法相比具有的特点是地层掘进、出土运输、衬砌拼装、接缝防水和盾尾间隙注浆充填等主要作业都在盾构保护下进行, 工艺技术要求高、综合性强(土建、机械)。
盾构施工技术的优缺点:优点:a)具有良好的隐蔽性;b)掘进速度快且施工费用不受埋置深度大而影响;c)适宜在不同颗粒条件下的土层中施工, 尤其在松软含水地层中修建埋深较大的长隧道往往具有技术和经济方面的优越性;d)多车道的隧道可做到分期施工, 分期运营, 可减少一次性投资。
缺点:a)盾构施工是不可后退的;b)盾构是一种价格昂贵、针对性很强的专用施工机械, 对于每一条用盾构法施工的隧道, 必须根据施工隧道的断面大小、埋深条件、地基围岩的基本条件进行设计、制造或改造, 一般不能简单的倒用到其它隧道工程中重复使用;3、c)对隧道曲线半径过小或隧道顶部覆土太浅时, 施工困难较大, 而且不够安全, 特别是饱和含水松软土层, 在隧道上方一定范围内地表沉陷尚难完全防止, 拼装衬砌时对衬砌整体防水技术要求很高。
4、盾构施工技术先在隧道的一端建造竖井或基坑, 以供盾构安装就位。
盾构从竖井或基坑的墙壁预留孔处出发, 在地层中沿着设计轴线, 向另一竖井或基坑的设计预留孔洞推进。
地铁盾构的选型及现场管理和使用一、概述1、概念盾构是一种用于隧道暗挖施工,具有金属外壳,壳内装有主机和辅助设备,既能支承地层的压力,又能在地层中整体掘进,进行土体开挖,碴土排运和管片安装等作业,使隧道一次成形的机械。
盾构是相对复杂的集机、电、液、传感、信息技术于一体的隧道施工专用工程机械,主要用于地铁、铁路、公路、市政、水电等工程。
盾构的工作原理就是一个钢结构组件依靠外壳支承,沿隧道轴线一边对土壤进行切削一边向前推进,在盾壳的保护下完成掘进、排碴、衬砌工作,最终贯通隧道。
盾构施工主要由稳定开挖面、掘进及排土、管片衬砌和壁后注浆三大要素组成。
盾构是根据工程地质、水文地质、地貌、地面建筑物及地下管线和构筑物等具体特征来“量身定做”的一种非标设备。
盾构不同于常规设备,其核心技术不仅仅是设备本身的机电工业设计,还在于设备通过不同的设计如何满足工程地质施工的需求。
因此,盾构的选型正确与否决定着盾构施工的成败。
2、盾构的类型盾构的类型是指与特定的施工环境、基础地质、工程地质和水文地质特征相匹配的盾构种类。
一般掘进机的类型分为软土盾构、硬岩掘进机(TBM)、复合盾构三种。
软土盾构的特点是仅安装切削软土用的切刀和括刀,无需开岩的滚刀。
TBM主要用于山岭隧道。
复合盾构是指既适用于软土,又适应于硬岩的一类盾构,主要用于复杂地层的施工。
地铁盾构就是一种复合盾构。
主要特点是刀盘既安装用于软土切削的切刀和括刀,又安装破碎岩石的滚刀,或安装破碎砂卵石和漂石的撕裂刀。
复合盾构分为土压平衡盾构和泥水加压平衡盾构。
3、盾构的组成地铁施工可供选择的复合盾构机机型只有两种,即土压平衡盾构机或泥水平衡盾构机。
一台盾构按外观结构形式分为刀盘部分、前盾、中盾、尾盾、后配套部分和辅助设备(管片和砂浆运输设备、泥水站等)。
土压平衡盾构由以下十一部分组成:⑴、刀盘(分为面板式、辐条式、复合式三种),⑵刀盘驱动(分为电机和液压两种),⑶刀盘支承(主轴承),⑷膨润土添加系统和泡沫系统,⑸螺旋输送机,⑹皮带输送机,⑺同步注浆系统,⑻盾尾密封系统,⑼管片安装机,⑽数据采集系统,⑾导向系统。
盾构法隧道施工的进展与应用一、盾构法隧道施工简述盾构法隧道施工(Shield Tunnelling),是在地表以下地层中承受盾构机进展暗挖隧道的一种施工方法,可以实现边掘进、边出土,边拼装衬砌构造的工厂化施工。
相对于传统的明挖法和矿山暗挖法隧道施工,盾构法隧道技术具有环境较好,掘进速度较快、隧洞成型质量较好、工作环境较好、不受地表环境条件限制、不受天气限制及人性化等优点,从而使盾构法在地下铁道、大路隧道、水工及市政隧道等方面得到广泛应用。
二、盾构法施工的起源与进展盾构机是盾构法隧道施工的核心,盾构机最初于1818 年,法国的布鲁诺尔(M.I.Brune1)从蛀虫钻孔得到启发,最早提出了用盾构法建设隧道的设想,并在英国取得了专利。
布鲁诺尔设想的盾构机机械内部构造由不同的单元格组成,每一个单元格可容纳一个工人独立工作并对工人起到保护作用。
承受的方法是将全部的单元格牢靠地装在盾壳上。
当时设计了两种方法,一种是当一段隧道挖完后,整个盾壳由液压千斤顶借助后靠向前推动;另一种方法是每一个单元格能单独地向前推动。
第一种方法后来被承受,并得到了推广应用,演化为成熟的盾构法。
此后,布鲁诺尔逐步完善了盾构构造的机械系统,设计成用全断面螺旋式开挖的封闭式盾壳,衬彻紧随其后的方式。
1825 年,他第一次在伦敦泰晤土河下开头用框架机构的矩形盾构修建隧道。
经过18 年施工,完成了全长458m 的第一条盾构法隧道。
1830 年,英国的罗德制造“气压法”关心解决隧道涌水。
1865 年,英国的布朗首次承受圆形盾构和铸铁管片,1866 年,莫尔顿申请“盾构”专利。
在莫尔顿专利中第一次使用了“盾构”〔shield〕这一术语。
1869 年用圆形盾构在泰吾士河下修建外径2.2m 的隧道。
1874 年,工程师格瑞海德觉察在强渗水性的地层中很难用压缩空气支撑隧道工作面,因此开发了用液体支撑隧道工作面的盾构,通过液体流,以泥浆的形式出土。
第一个机械化盾构专利是1876 年英国人约翰·荻克英森·布伦敦和姬奥基·布伦敦申请的。
盾构的分类和适用范围
机械式盾构是目前应用最广泛的一种盾构,其主要特点是采用机械化设备完成开挖、支护和出土等工作,具有高效、安全、稳定等优点。
机械式盾构可以分为硬岩盾构和软土盾构两种,适用于不同的地质条件。
硬岩盾构主要用于岩石层、砂岩层等较硬的地层,采用切削头子进行开挖,支护方式多采用钢壳、压力注浆等方式。
软土盾构主要用于软土、淤泥等较软的地层,采用挤压式、平衡式等开挖方式,支护方式多采用预制管片、钢筋混凝土衬砌等方式。
2.土压平衡式盾构
土压平衡式盾构是一种适用于软土、淤泥等地层的机械式盾构,其主要特点是在开挖面前方设置压实板,通过调节前后、左右、上下三个方向的压力,使开挖面前方的土体形成一个平衡状态,从而达到减小地表沉降、减小地下水涌入、减小地下水位降低等效果。
该种盾构适用于软土、淤泥等地层,但对地层的稳定性要求较高,需要进行严格的地质勘察和设计。
3.泥水平衡式盾构
泥水平衡式盾构是一种适用于淤泥、软土、黏土等地层的机械式盾构,其主要特点是在开挖面前方设置泥浆注入系统,通过注入泥浆来平衡土体的水压,从而达到减小地表沉降、减小地下水涌入、减小地下水位降低等效果。
该种盾构适用于淤泥、软土、黏土等地层,但对地层的稳定性要求较高,需要进行严格的地质勘察和设计。
总之,不同类型的盾构适用于不同的地质条件和工程要求,选择合适的盾构类型对于保障工程质量和安全至关重要。
第二章盾构分类及选型隧道建设与盾构掘进机不可分离,所以盾构掘进机对各种地层的适应性非常重要。
1823年~1843年,世界上第一条人工开挖盾构隧道是由法国人Brunnel在伦敦泰晤士河下建成的,由于隧道掘进机与地层条件的不适应,长366m的隧道耗时达20年左右,隧道施工过程中遭遇了多次涌水,并付出了6个隧道工人生命的代价。
1991年6月29日贯通的长达49km(单条)英法海底隧道,耗时仅仅两年半,在如此短时内取得如此的成绩与隧道盾构正确选型密不可分。
英法海峡隧道法国侧隧道工程是在含水的白色白垩地层里施工,然后进入完全不渗透的兰色白垩地层里施工,然后进入完全不渗透的兰色白垩地层,选择了土压平衡盾构;而英国侧则根据地层的变化采用了通用型盾构。
前者掘进速率达1071m/mon,后者更是达到1487m/mon,说明该隧道的盾构选型是合适的。
1989开始动工建设的东京湾海底公路隧道全长15.1km,其中盾构隧道长9.1km,穿越的地层为软弱的冲积、洪积性土层,另外,该盾构隧道的一个最大特点是盾构必须能够承受 0.6MPa的水压,故采用8台直径14.14m的泥水式土压平衡盾构施工,东京湾隧道的成功建设也表明该类盾构的选择是合适的。
第一节盾构的构造一、盾构外形和材料1.盾构的外形作为一种保护人体的空间,隧道的形状因其使用要求不同、而造成盾构外形不同是理所当然的。
隧道掘进,无论盾构的形状如何,总是向轴线方向发展而成,所以,盾构的外形就是指盾构的断面形状。
从采用过的盾构来看,其外形有圆形、双圆、三圆、矩形、马蹄形、半圆形或与隧道断面相似的特殊形状等。
例如:将人行隧道筑成矩形,最大地利用了挖掘空间;将水利隧道筑成马蹄形,使流体的力学性能达到最佳状态;将穿山隧道筑成半圆形,可以使底边直接与公路连接等等。
但是,绝大多数盾构还是采用传统的圆形。
2.制造盾构的材料盾构在地下穿越,要承受水平载荷、垂直载荷和水压力,如果地面有构筑物,要承受这些附加载荷,盾构推进时,还要克服正面阻力,所以,盾构整体要求具有足够的强度和刚度。
盾构主要用钢板成型制成。
钢板间连接可采用焊接和铆接两种方法,大型盾构考虑到水平运输和垂直吊装的困难,可制成分体式,到现场进行就位拼装,部件的连接一般采用定位销定位,高强度螺栓联接,最后焊接成型的方法。
盾构壳体可有单层厚板或多层薄板制作而成。
二、盾构的基本构造盾构种类繁多,从盾构在施工中的功能而言,其基本构造主要分为盾构壳体、推进系统、拼装系统三大部分。
图2-1-1 盾构基本构造示意图1.盾构壳体所有盾构的形式,其本体从工作面开始均可分为切口环、支承环和盾尾三部分,借以外壳钢板联成整体。
(1)切口环切口环部分是开挖和挡土部分,它位于盾构的最前端,施工时最先切入地层并掩护开挖作业,部分盾构切口环前端设有刃口以减少切入掘进时对地层的扰动。
切口环保持着工作面的稳定,并作为把开挖下来的土砂向后方运输的通道,因此,采用机械化开挖、土压式、泥水加压式盾构时,应根据开挖下来土砂的状态,确定切口环的形状、尺寸。
切口环的长度主要取决于盾构正面支承、开挖的方法,就手掘式盾构而言,考虑到正面施工人员挖土机具工作要有回旋的余地等。
大部分手掘式盾构切口环的顶部比底部长,犹如帽檐,有的还设有千斤顶控制的活动前沿,以增加掩护长度;对于机械化盾构切口环内按不同的需要安装各种不同的机械设备,这些设备是用于正面土体的支护及开挖,而各类机械是由盾构种类而定的。
主要内容如下:① 泥水盾构,安置有切削刀盘、搅拌器和吸泥口;② 土压平衡盾构,安置有切削刀盘、搅拌器和螺旋输送机;③ 网格式盾构,安置有网格、提土转盘和运土机械的进口;④棚式盾构,安置有多层活络平台、储土箕斗;⑤水力机械盾构,安置有水枪、吸口和搅拌器。
在局部气压、泥水加压、土压平衡等盾构中,因切口内压力高于隧道内常压,所以在切口环处还需布设密封隔板及人行舱的进出闸门。
(2)支承环支承环是盾构的主体结构,是承受作用于盾构上全部载荷的骨架。
它紧接于切口环,位于盾构中部,通常是一个刚性很好的圆形结构。
地层压力、所有千斤顶的反作用力,以及切口入土正面阻力、衬砌拼装时的施工载荷均由支承环来承受。
在支承环外沿布置有盾构千斤顶,中间布置拼装机及部分液压设备、动力设备、操纵控制台。
当切口环压力高于常压时、在支承环内要布置人行加、减压舱。
支承环的长度应不小于固定盾构千斤顶所需的长度,对于有刀盘的盾构还要考虑安装切削刀盘的轴承装置、驱动装置和排土装置的空间。
(3)盾尾盾尾一般由盾构外壳钢板延伸构成,主要用于掩护隧道管片衬砌的安装工作。
盾尾末端设有密封装置,以防止水、土及压注材料从盾尾与衬砌之间进入盾构内。
盾尾密封装置损坏、失效时,在施工中途必须进行修理更换,所以盾尾长度要满足上述各项工作的进行。
盾尾厚度从整体结构上考虑应尽量薄,这样可以减小地层与衬砌间形成的建筑空隙就小,从而压浆工作量也少,对地层扰动范围也小有利于施工,但盾尾也需承担土压力,在遇到纠偏及隧道曲线施工时,还有一些难以估计的载荷出现。
所以盾尾是一个受力复杂的圆筒形薄壳体,其厚度应综合上述因素来确定。
盾尾密封装置要能适应盾尾与衬砌间的空隙,由于在施工中纠偏的频率很高,因此,就要求密封材料要富有弹性,结构形式要耐磨,防撕裂,其最终目的是要能够止水。
止水的形式有许多,目前较为理想且常用的是采用多道、可更换的盾尾密封装置,如图2-2-2,盾尾的道数根据隧道埋深、水位高低来定,一般取2~3道。
图2-1-2 盾尾密封示意图1-盾壳; 2-弹簧钢板; 3-钢丝束; 4-密封油脂;5-压板;6-螺栓由于钢丝束内充满了油脂,钢丝又为优质弹簧钢丝,使其成为一个既有塑性又有弹性的整体,油脂保护钢丝免于生锈损坏。
油脂加注采用专用的盾尾油脂泵,这种盾尾密封装置使用后效果较佳,一次推进可达500m左右,这主要看土质情况如何,相对而言,在砂性土中掘进,盾尾损坏较快,而在粘性土中掘进则寿命较长。
盾尾的长度必须根据管片宽度和形状及盾尾的道数来确定,对于机械化开挖式、土压式、泥水加压式盾构,还要根据盾尾密封的结构来确定,最少必须保证衬砌组装工作的进行,但必须考虑在衬砌组装后因管片破损而需更换管片;修理盾构千斤顶和在曲线段进行施工等因素,故必需给予一些余裕量。
2.推进机构盾构掘进的前进动力是靠液压系统带动若干个千斤顶工作所组成的推进机构,它是盾构重要的基本构造之一。
(1) 盾构千斤顶的选择和配置盾构千斤顶的选择和配置应根据盾构的灵活性、管片的构造、拼装衬砌的作业条件等来决定。
选定盾构千斤顶必须注意以下事项:① 采用高液压系统,使千斤顶机构紧凑。
目前使用的液压系统压力值为30~40MPa;②千斤顶要尽可能地轻,且经久耐用,易于维修保养和掉换;③千斤顶要均匀地配置在靠近盾构外壳处,使管片受力均匀;④ 千斤顶应与盾构轴线平行。
(2)千斤顶数量千斤顶的数量根据盾构直径、千斤顶推力、管片的结构、隧道轴线的情况综合考虑。
一般情况下,中小型盾构每只千斤顶的推力为600~1500KN,在大型盾构中每只千斤顶的推力多为2000~4000KN。
(3)千斤顶的行程盾构千斤顶的行程应考虑到盾尾管片的拼装及曲线施工等因素,通常取管片宽度加上100mm~200mm的余裕量。
另外,成环管片总有一块封顶块存在,若采用纵向全插入封顶成环时,在相应的封顶块位置应布置数只双节千斤顶,其行程大致是其它千斤顶的一倍,以满足拼装成环所需。
(4)千斤顶的速度盾构千斤顶的速度必须根据地质条件和盾构形式来定,一般取50mm/min左右,且可无级调速。
为了提高工作效率,千斤顶的回缩速度要求越快越好。
(5)千斤顶块盾构千斤顶活塞的前端必须安装顶块,顶块必须采用球面接头,以便将推力均匀、分布在管片的环面。
其次,根据管片材质的不同,还必须在顶块与管片的接触面上安装橡胶或柔性材料的垫板,对管片环面起到保护作用。
3.管片拼装机管片拼装机俗称举重臂,是盾构的主要设备之一,常以液压为动力。
为了能将管片按照所需要的位置,安全、迅速地进行拼装,拼装机在钳捏住管片后,还必须具备沿径向伸缩、前后平移和360o(左右叠加)旋转等功能。
拼装机的形式有环形、中空轴形、齿轮齿条形等,一般常用的是环型拼装机(如图2-1-3)。
这种拼装机安装在支承环后部,或者盾构千斤顶撑板附近的盾尾部,它如同一个可自由伸缩的支架,安装在具有支承滚轮的、能够转动的中空圆环上的机械手。
该形式中间空间大,便于安装出土设备。
图2-1-3 拼装机(环型) 图2-1-4 拼装后成环隧道目前,欧洲国家制作盾构时,常采用真空吸盘装置,具有管片夹持简便、拼装平稳及碎裂现象少等优点。
在超大型盾构制作中,较多应用此类拼装机。
4.真圆保持器盾构向前推进时管片就从盾尾部脱出,管片受到自重和土压的作用会产生变形,当该变形量很大时,即成环和拼装环拼装时就会产生高低不平,给安装纵向螺栓带来困难,为了避免管片产生高低不平的现象,就有必要让管片保持真圆,该装置就是真圆保持器。
真圆保持器支柱上装有上、下可伸缩的千斤顶,上下装有圆弧形的支架,它在动力车架挑出的梁上是可以滑动的。
当一环管片拼装成环后,就让真圆保持器移到该管片环内,支柱的千斤顶使支架圆弧面密贴管片后,盾构就可进行下一环的推进。
盾构推进后由于它的作用,圆环不易产生变形而保持着真圆状态。
三、盾构的基本参数选定1.盾构直径盾构直径必须根据管片外径、盾尾空隙和盾尾钢板厚度进行确定,而盾尾空隙应根据管片的形状尺寸、隧道的平面形状、纠偏、盾尾密封结构的安装等进行确定。
盾构直径是指盾壳的外径,而与刀盘、同步注浆用配管等突出部分无关.所谓盾尾空隙,是指盾壳钢板内表面与管片的外表面的空隙。
根据隧道限界和结构尺寸要求,在确定衬砌外径之后,可按施工要求或经验确定盾构直径。
下面根据图2-2-3,介绍二种计算方法。
(1) D=d+2(x+δ)(式1)式中: D - 盾构直径(mm)d - 隧道外径(mm)x -盾尾空隙(mm)δ - 盾尾钢板厚度(mm)。
图2-1-5盾构直径计算图为了满足盾构曲线段施工或推进施工时纠偏所需要间隙,盾尾空隙可由下式计算:X=ML/d (式2)式中: M - 盾尾和管片的搭接长度(mm)L -盾尾内衬砌环顶端能够转动的最大水平距离 (mm)根据实际经验,盾尾空隙一般取20~40mm。
(2) D=d内+2(δ+ x + T + T’+e ) (式3)式中: d内 - 隧道内径(mm)T -隧道衬砌厚度(mm)T’-隧道内衬厚度(mm)e - 最小余裕量(mm)D、δ、x 意义同前上面二式中均有一个盾尾钢板厚度δ,此值应通过函数关系式求得,可是计算工作较为复杂,所以通常采用经验公式或类比法相近选取。
δ=0.02+0.01(D -4) (式4)式中D为盾构外径,单位为m。