悬臂梁结构模型——挑战设计“理论分析”
- 格式:pdf
- 大小:688.40 KB
- 文档页数:15
结构设计知识:悬臂梁结构设计的基本原理与方法悬臂梁是一种常见的结构,其基本原理是支点只有一个,而另一端则悬空。
这种结构常用于桥梁和建筑物的梁式结构。
在设计悬臂梁时,应重视结构强度、稳定性和刚度等问题。
本文将从这些方面入手,探讨悬臂梁结构设计的基本原理和方法。
一、悬臂梁的强度设计强度是悬臂梁设计中最重要的问题之一。
在设计中,需要考虑悬臂梁的截面形状、材料和支点位置等因素。
若悬臂梁截面形状不合理,可能会导致局部应力过大,从而引起结构破坏。
因此,在设计中应尽量选择合适的截面形状,如矩形或圆形等,避免出现尖锐的边角。
另外,材料的选择也非常重要。
不同材料的强度和刚度有差异,通常常用的材料有钢、混凝土和木材等。
在选择材料时,应考虑材料的强度、耐用性和成本等因素。
同时,还需要对材料进行强度检验,确保其符合设计要求。
支点位置是悬臂梁设计的另一个重要因素。
支点的位置和方式会直接影响悬臂梁的强度和稳定性。
因此,在设计中需要仔细考虑支点的位置和设置方式。
通常情况下,支点的位置应该选择在横向中心线位置,避免偏离中心线而导致结构扭曲或损坏。
另外,支点的设置方式也是需要考虑的因素,如采用承板式支座或滑动支座等。
这些支座的选择应该根据悬臂梁的实际情况进行选择。
二、悬臂梁的稳定性设计稳定性是悬臂梁设计的另一重要问题。
在设计中,需要考虑悬臂梁的整体结构稳定性和支点稳定性两个方面。
整体结构稳定性是指悬臂梁在承受荷载时整体结构不发生倾覆或破坏。
在设计中,需要对悬臂梁做出合理的结构设计,例如采用合适的垂直支撑和斜杆支撑等结构措施,以提高悬臂梁的整体稳定性。
支点稳定性是指悬臂梁支点的稳定性,其主要是根据支点的类型和尺寸来确定。
支点的设计应当遵循以下原则:首先,支点必须有足够的刚度和强度,能够承受悬臂梁上的全部荷载;其次,支点应该与悬臂梁之间形成良好的摩擦力,并能够在受到荷载时保持稳定不变。
三、悬臂梁的刚度设计刚度是悬臂梁设计中需要考虑的另一个重要问题。
迈达斯技术某某目录简要1设定操作环境1输入材料和截面数据2定义材料2定义截面2定义厚度2建立悬臂梁模型2输入梁单元2输入板单元3输入实体单元4修改单元坐标系5分割单元6输入边界条件7输入荷载8运行结构分析10查看分析结果11查看反力11查看变形和位移11查看内力12查看应力16简要本例题介绍使用梁单元、板单元、实体单元来建立悬臂梁,并查看各种单元分析结果的方法。
模型如图1所示,截面为长方形(0.4m x 1m),长20m 。
图1. 悬臂梁模型设定操作环境打开新项目(新项目),保存(保存)为‘Cantilever. mcb ’。
文件 / 新项目文件 / 保存 (悬臂梁 )单位体系做如下设置。
工具 / 单位体系长度>m ; 力>tonf材料 : C30 固定端 实体单元梁单元 板单元长 : 20m 1m输入材料和截面数据定义材料模型 / 材料和截面特性 / 材料类型>混凝土 ; 规X>GB-Civil(RC) ; 数据库>30 ↵定义截面使用User Type ,输入实腹长方形截面(0.4m × 1m)。
模型 /材料和截面特性 / 截面 数据库 / 用户名称>SR ; 截面类型>实腹长方形截面 用户 ; H ( 0.4 ) ; B ( 1 )↵定义厚度模型 / 材料和截面特性 / 厚度数值厚度号 (1) ; 面内和面外( 0.4 ) ↵图2. 定义材料 图3. 定义截面 图4. 定义厚度建立悬臂梁模型输入梁单元使用扩展 功能建立梁单元。
对于面内厚度和面外厚度的说明请参考在线帮助手册。
标准视图, 自动对齐(开),单元号 (开)模型 / 节点 / 建立坐标 ( 0, 0, 0 )↵模型 / 单元 / 扩展单元全选扩展类型>节点 线单元单元属性>单元类型>梁材料>1:30 ; 截面>1 : SR ; Beta Angle ( 0 )生成形式>复制和移动 ;复制和移动>等间距dx, dy, dz ( 20, 0, 0 ) ; 复制次数( 1 )↵图5. 输入梁单元输入板单元首先将梁单元复制到板单元的输入位置后,通过扩展功能将梁单元扩展成板单元。
带孔的悬臂梁有限元分析下图所示为带方孔(边长为80mm)的悬臂梁,其上受部分均布载荷(p=10Kn/m)作用,试采用一种平面单元,对图示两种结构进行有限元分析,并就方孔的布置进行分析比较,如将方孔设计为圆孔,结果有何变化?(板厚为1mm,材料为钢)问题分析:1.该问题属于平面应力问题。
分析类型为静力分析。
2.初步判断孔的上边受拉力,下边受压力。
3.其最大位移发生在受力部位。
4.经查询资料,该悬臂梁材料为钢。
其45号钢。
E=210GPa.泊松比V=0.37一进入ANSYS例如在D盘建立一名为lianxi的文件夹,工作文件名为xuanbiliang。
然后运行开始——>程序——>ANSYS11.0.0——> Ansys Product Launcher→file Management →select Working Directory: D:\lianxi,input job name: xuanbiliang→Run 二建立几何模型1.首先设置优先权1))Main Menu:Preferences2)在弹出的对话框中将“Structural”选项选中。
按下OK按钮完成操作并关闭对话框2.建立模型。
1. Main Menu:Preprocessor→Modeling→Create→keypionts→in active cs.2. 创建关键点在打开的对话框里面分别输入要建立模型的关键点,在上面的输入框里面输入关键点的编号,下面的三个输入框内输入其坐标。
为1(0,0,0)2(0,500,0)3(900,250,0)4(450,500,0)5(900,500,0)如下3.创建悬臂梁面积。
Main Menu:Preprocessor→Modeling→Create→Areas→arbitary→Though kps.分别选中图上的1-5点,点击OKSA VE-DB4. 创建方孔的坐标点先创建方孔的坐标。
悬臂梁的受力分析与结构优化悬臂梁是一种常见的结构,由于其特殊的支持方式,受力分析和结构优化对于设计师来说是非常重要和关键的。
本文将详细介绍悬臂梁的受力分析和结构优化。
首先,我们需要了解悬臂梁的基本结构和受力情况。
悬臂梁由一个固定支座和一个悬挑段组成,其中,固定支座是悬挑段的唯一支撑点。
常见的悬臂梁结构包括悬臂梁、悬臂梁连接梁柱和榀架等。
悬臂梁的受力分析可以通过静力学的原理来进行。
在进行悬臂梁的受力分析时,可以采用以下步骤:1.确定受力类型:首先需要确定悬臂梁所受的外力类型,包括集中力、均布力以及倾覆力。
根据具体情况,可以分析受力的大小、方向和作用点位置。
2.绘制受力图:针对所确定的受力情况,绘制受力图可以帮助我们更加直观地了解悬臂梁的受力情况。
受力图包括受力箭头和标注力的大小、方向和作用点位置。
3.计算受力大小:利用受力图,可以通过应力平衡原理计算出悬臂梁各个部分的受力大小。
利用平衡方程,可以计算出悬臂梁在不同位置的剪力、弯矩和轴力。
4.分析受力状况:通过计算出的受力大小,可以分析悬臂梁的受力状况。
在分析过程中,需要注意各个受力点的正负号,以及受力的分布情况。
在进行悬臂梁的结构优化时,可以采用以下方法:1.材料选型:选择适当的材料是悬臂梁结构优化的重要因素之一、优先选择具有较高的强度和刚度的材料,以减小悬臂梁的自重;同时还要考虑材料的成本和可获得性。
2.梁型设计:根据实际需求,选择合适的梁型可以优化悬臂梁的结构。
常见的梁型包括矩形梁、圆形梁、槽式梁等,每种梁型具有不同的性能和应用范围。
3.截面设计:选择合适的悬臂梁截面形状和尺寸可以优化悬臂梁的结构性能。
通过计算悬臂梁的受力情况,可以确定截面的强度和刚度需求,然后选择合适的截面形状和尺寸。
4.强度验证:在进行结构优化后,需要进行强度验证。
通过对悬臂梁进行负荷测试或使用有限元分析方法,可以验证悬臂梁是否满足强度和刚度的要求。
如果不满足要求,需要对结构进行调整和优化。
126FAXIAN JIAOYU 2018/03职业教育 Zhi Ye Jiao Yu ………………………………………悬臂梁,即梁的一端为不产生轴向、垂直位移和转动的固定支座,而另一端为自由端的结构。
一、“悬臂梁结构模型的设计与制作”实践教学的优势1.知识覆盖面广(1)设计阶段:设计的原则与方法、绘图方法及尺寸标注、材料的认知、结构的类型及受力分析、结构稳定性和强度的分析等。
(2)制作阶段:工艺及工具的使用、模型制作方法、技术试验及设计评价、流程设计及优化等。
2.操作性强在通用技术教学中,要想学生真正理解理论知识的含义及实施过程,设计对象的选择很重要,其可操作性更为重要。
二、“悬臂梁结构模型的设计与制作”教学的实施方案1.小前奏热身(3课时)考虑到该实践项目材料的陌生及制作的难度,在正式实施之前设计了另一个同类小活动。
在必修1的教学完成之后,我设计了一个简单小制作来贯穿必修1的理论知识,同时也作为悬臂梁结构模型制作的前奏。
具体实施过程如下:(1)制订设计方案(1课时)(2)各小组进行模型制作(1课时)(3)测试、评价与交流(1课时)2.挑战设计登场(4课时)在进入《技术与设计2》第一章的第三节“简单结构设计”时,安排“悬臂梁结构模型制作”的项目教学,考虑到通用技术课时紧张以及项目的可操作性,具体实施过程如下:(1)布置课后任务:分小组(5~6人)课后观察生活中的悬臂梁结构,思考分析其受力特点,根据材料的特性自主设计悬臂梁结构,并画出大致草图。
(此为课后进行,不计课时。
)(2)方案交流与完善(1课时):课上各小组组长介绍本组方案,相互交流和讨论,促进方案的优化,形成合理且较完整的设计方案,并将其按照1:1的比例绘制在标准计算纸上。
(3)各小组进行模型制作(2课时):有了之前正方体制作的热身,对材料特性也有一定了解,各小组成员已有明确分工,在一定程度上降低了悬臂梁的制作难度。
(4)测试、评价与交流(1课时):测试同样分模型称重和承重测试两个步骤。
悬臂梁结构分析摘要:以某型自升式钻井平台的悬臂梁为例建立相应结构分析模型,给出了分析的载荷及边界条件,并对不同载荷条件下的计算结果进行了分析和评估,可作为此类结构设计的参考。
关键词:悬臂梁,结构分析.Abstract: to a certain type of jack-up drilling platform as an example of the cantilever beam establish corresponding structure analysis model, and gives out the analysis of load and boundary conditions, and under the conditions of different load calculation results are analyzed and evaluated, and can be used for this kind of structure design of the reference.Keywords: cantilever beam and structure analysis.正文:1 引言陆上可利用的资源和能源越来越少,许多国家都把开发利用海洋资源和能源作为国家战略[1]。
经过近几十年的高速发展,我国的能源问题日益严峻。
我国的海域辽阔,海上资源的开发潜力巨大,是未来我国能源可持续发展的重点[2~4]。
海上作业平台是进行海上资源开发的重要装备,目前我国在海上钻井平台的开发设计方面与技术先进国家尚有较大差距。
移动式海上平台在我国海上油气勘探开发中发挥着重要作用[5],开展海上平台关键技术研究对保障我国能源安全和推动我国装备制造业的发展具有重要意义。
自升式钻井平台属于海上移动式平台,适宜于近浅海作业,是目前被广泛使用的海上钻井装备之一。
本文以某型自升式钻井平台的悬臂梁为例,对其进行结构分析和强度评估,为此类结构的设计提供参考方法。
混凝土中悬臂梁的设计原理悬臂梁是指在一端悬挂的梁,它可以用于支撑建筑物的屋顶、桥梁、广告牌等结构。
混凝土中悬臂梁的设计原理是混凝土结构设计中的重要部分,其设计需要考虑结构的稳定性、强度、耐久性和使用寿命等因素。
本文将详细介绍混凝土中悬臂梁的设计原理。
1. 悬臂梁的基本原理悬臂梁的基本原理是将荷载沿着梁的长度方向均匀分布,然后通过悬挂在一端的支撑点将荷载传递到支撑点的另一端。
悬挂点处的梁会发生弯曲,因此设计悬臂梁需要考虑弯曲应力和弯曲刚度。
除此之外,还需要考虑悬挂点处的悬挂力和悬挂点的支撑能力。
2. 悬臂梁的设计方法悬臂梁的设计需要考虑以下几个方面:2.1 悬挂点的位置悬挂点的位置会直接影响到悬臂梁的受力情况。
一般来说,悬挂点应该位于梁的中心线上,以保证荷载均匀分布。
如果悬挂点偏离中心线,会导致悬挂点处的梁发生弯曲,从而影响悬臂梁的强度和稳定性。
2.2 梁的截面形状和尺寸悬臂梁的截面形状和尺寸会直接影响到梁的强度和刚度。
一般来说,悬臂梁的截面应该为矩形或T形,以保证梁的强度和刚度。
此外,梁的截面尺寸也需要根据荷载大小进行合理设计。
2.3 梁的材料悬臂梁的材料一般为钢筋混凝土,其强度和耐久性都比较好。
在设计悬臂梁时,需要根据实际情况选择合适的混凝土配合比和钢筋直径,以保证梁的强度和耐久性。
2.4 荷载的计算荷载的计算是悬臂梁设计中的重要环节。
荷载包括自重、建筑物或结构物的重量、风荷载、雪荷载、地震荷载等。
荷载的大小和分布方式都需要进行合理计算,以保证悬臂梁的强度和稳定性。
2.5 悬挂点的支撑能力悬挂点的支撑能力也是悬臂梁设计中需要考虑的重要因素。
悬挂点的支撑能力应该大于悬挂点处的悬挂力,以避免悬挂点失效。
3. 悬臂梁的设计流程悬臂梁的设计流程包括以下几个步骤:3.1 计算荷载首先需要计算荷载,包括自重、建筑物或结构物的重量、风荷载、雪荷载、地震荷载等。
荷载的计算需要根据实际情况进行,以保证悬臂梁的强度和稳定性。
悬臂梁的受力分析实验目的:学会使用有限元软件做简单的力学分析,加深对材料力学相关内容的理解,了解如何将理论与实践相结合。
实验原理:运用材料力学有关悬臂梁的的理论知识,求出在自由端部受力时,其挠度的大小,并与有限元软件计算相同模型的结果比较 实验步骤: 1,理论分析如下图所示悬臂梁,其端部的抗弯刚度为33EIl ,在其端部施加力F ,可得到其端部挠度为:33Fl EI ,设其是半径为0.05米,长为1米,弹性模量11210E =⨯圆截面钢梁,则其可求出理论挠度值3443Fl ERωπ=,先分别给F 赋值为100kN ,200kN ,300kN ,400kN ,500kN .计算结果如下表:F 100000 200000 300000 400000 500000 ω(m )0. 033950. 0679060. 1018590. 13581230. 16976542有限元软件(ansys )计算: (1)有限元模型如下图:模型说明,本模型采用beam188单元,共用11个节点分为10个单元,在最有段施加力为F计算得到端部的挠度如下表所示,F 100000 200000 300000 400000 500000S(端部位移)-0.34079E-01-0.680158E-01-1.020237E-01-1.360136E-01-1.700395E-01得到梁端部在收到力为100kN时Y方向的位移云图:将理论计算结果与ansys分析结果比较如下表:力F(N)100000 200000 300000 400000 500000 理论值0. 03395 0. 067906 0. 101859 0. 1358123 0. 1697654 实验值-0.34079E-01-0.680158E-01-1.020237E-01-1.360136E-01-1.700395E-01相对误差0.37% 0.16% 0.16% 0.15% 0.16%通过比较可得,理论值与软件模拟结果非常接近,在力学的学习中只要能熟练的掌握理论知识,在软件模拟过程中便可做到心中有数,在本实验中理论值是通过材料力学中得一些假设得到的一个解析解,而实验也是用了相同的假设,并将梁离散为十个单元,得到数值解,因此和理论值的误差是不可避免的,通过增加离散单元的个数可以有效的减少误差,但是增大了计算量,因此在实践中,只要选取合适的离散单元数,能够满足实践要求即可,这就需要有更加扎实有限元知识作为指导。
6. 悬臂梁分析概述两个不同截面构成的悬臂梁以实体单元和梁单元来建模后,比较因竖向荷载和横向荷载产生的弯矩和弯曲应力。
图 6.1 分析模型实体单元梁单元 单位:m材料混凝土抗压强度 : 270 kgf/cm2截面形状 : 实腹长方形截面大小 : B×H 3500×2500 mm1000×2500 mm荷载1. 竖向荷载 : 1.0 tonf2. 水平荷载 : 1.0 tonf设定基本环境打开新文件以‘悬臂梁.mgb’为名存档。
单位体系定义为‘m’和‘tonf’。
文件 / 新文件文件 / 保存( 悬臂梁 )工具 / 单位体系长度 > m ; 力 > tonf图 6.2 设定单位体系定义材料以及截面选择悬臂梁的材料为混凝土(设计基准压缩刚度270 kgf/cm2),定义梁单元的截面。
模型 / 特性 / 材料类型 > 混凝土规范> GB-Civil(RC) ; 数据库 > 30↵模型 / 特性 / 截面数据库 / 用户截面号( 1 ) ; 名称( R-1 )截面形状 > 实腹长方形截面 ; 用户H ( 2.5 ) ; B ( 3.5 )截面号( 2 ) ; 名称( R-2 )截面形状>实腹长方形截面 ; 用户H ( 2.5 ) ; B ( 1 ) ↵图 6.3 定义材料图 6.4 定义截面建立单元模型 1是首先建立悬臂梁的底面板单元,然后用扩展板单元建立实体单元生成的。
用板建模助手功能先建立板单元。
顶面,捕捉点 (关), 捕捉轴线 (关)捕捉点格 (开), 捕捉单元 (开), 自动对齐(开)模型 / 结构建模助手 / 板输入类型 1> ; B ( 10 ) ; H ( 3.5 )材料( 1 ) ; 厚度( 1 )编辑类型 2> ; 分割数量 (开)m ( 20 ) ; n ( 7 ) ; 显示辅助尺寸(开)插入插入点( 0, 0, 0)旋转>Alpha ( -90 ), Beta ( 0 ), Gamma ( 0 )显示号 (开)图 6.5 板建模助手对话框建完底面的板单元后,根据悬臂梁的形状删除不必要的板单元部分。