钢筋混凝土结构的基本概念及材料的物理力学性能汇总
- 格式:pptx
- 大小:38.17 MB
- 文档页数:83
第一章 钢筋混凝土结构基本概念及材料的物理力学性能1.混凝土立方体抗压强度cu f :(基本强度指标)以边长150mm 立方体试件,按标准方法制作养护28d ,标准试验方法(不涂润滑剂,全截面受压,加载速度0.15~0.25MPa/s )测得的抗压强度作为混凝土立方体抗压强度cu f 。
影响立方体强度主要因素为试件尺寸和试验方法。
尺寸效应关系: cu f (150)=0.95cu f (100)cu f (150)=1.05cu f (200)2.混凝土弹性模量和变形模量。
①原点弹性模量:在混凝土受压应力—应变曲线图的原点作切线,该切线曲率即为原点弹性模量。
表示为:E '=σ/ε=tan α0②变形模量:连接混凝土应力应变—曲线的原点及曲线上某一点K 作割线,K 点混凝土应力为σc (=0.5c f ),该割线(OK )的斜率即为变形模量,也称割线模量或弹塑性模量。
E c '''=tan α1=σc /εc 混凝土受拉弹性模量与受压弹性模量相等。
③切线模量:混凝土应力应变—上某应力σc 处作一切线,该切线斜率即为相应于应力σc 时的切线模量''c E =d σ/d ε3 . 徐变变形:在应力长期不变的作用下,混凝土的应变随时间增长的现象称为徐变。
影响徐变的因素:a. 内在因素,包括混凝土组成、龄期,龄期越早,徐变越大;b. 环境条件,指养护和使用时的温度、湿度,温度越高,湿度越低,徐变越大;c. 应力条件,压应力σ﹤0.5c f ,徐变与应力呈线性关系;当压应力σ介于(0.5~0.8)c f 之间,徐变增长比应力快;当压应力σ﹥0.8c f 时,混凝土的非线性徐变不收敛。
徐变对结构的影响:a.使结构变形增加;b.静定结构会使截面中产生应力重分布;c.超静定结构引起赘余力;d.在预应力混凝土结构中产生预应力损失。
4.收缩变形:在混凝土中凝结和硬化的物理化学过程中体积随时间推移而减少的现象称为收缩。
《结构设计原理》习题集第1章钢筋混凝土结构的基本概念及材料的物理力学性能1-1、配置在混凝土梁截面受拉区钢筋的作用是什么?答:配置在混凝土梁截面受拉区的钢筋作用是代替混凝土受拉。
钢筋混凝土梁承受的荷载较大时,梁的受拉区会出现裂缝。
在出现裂缝的截面处,受拉区混凝土退出工作,钢筋可承担几乎全部的拉力。
钢筋混凝土梁能继续承受荷载作用,直至受拉钢筋的应力达到屈服强度,继而截面受压区的混凝土也被压碎,梁才破坏。
因此,钢筋混凝土梁是充分利用混凝土的抗压强度和钢筋的抗拉强度。
1-2、试解释以下名词:混凝土立方体抗压强度;混凝土轴心抗压强度;混凝土抗拉强度;混凝土劈裂抗拉强度。
答:混凝土立方体抗压强度是按规定的标准试件和标准试验方法得到的混凝土强度基本代表值。
我国国家标准《普通混凝土力学性能试验方法标准》(GB/T 50081-2002)规定以每边边长为150mm 的立方体为标准试件,在20℃±2℃的温度和相对湿度在95%以上的潮湿空气中养护28d,依照标准制作方法和试验方法测得的抗压强度值(以MPa为单位)作为混凝土的立方体抗压强度,用符号f表cu 示。
混凝土轴心抗压强度(棱柱体抗压强度):按照及立方体试件相同条件下制作和试验方法所得的棱柱体试件的抗压强度值,称为混凝土轴心抗压强度,用符号f表示。
国家标准《普通混凝土力学性能试c验方法标准》(GB/T 50081-2002)规定,混凝土的轴心抗压强度试验以150mm ×150mm ×300mm 。
混凝土抗拉强度可采用在两端预埋钢筋的混凝土棱柱体,试验时用试验机的夹具加紧试件的两端外伸的钢筋施加拉力,破坏时试件在没有钢筋的中部截面被拉断,其平均拉应力即为混凝土的轴心抗拉强度。
目前国内外常采用立方体或圆柱体的劈裂试验来测定混凝土的轴心抗拉强度。
混凝土劈裂抗拉强度:我国交通部颁布标准《公路工程水泥混凝土试验规程》规定,采用150mm 立方块作为标准试件进行混凝土劈裂抗拉强度测定,按照规定是试验方法操作,则混凝土的劈裂抗拉强度按下式:。
第一篇钢筋混凝土结构第1章钢筋混凝土结构的基本概念及材料的物理力学性能1.1 钢筋混凝土结构的基本概念钢筋混凝土结构是由配置受力的普通钢筋或钢筋骨架的混凝土制成的结构。
混凝土(砼)是一种人造石料,其抗压能力很高,而抗拉能力很弱。
采用素混凝土制成的构件(指无筋或不配置受力钢筋的混凝土构件),例如素混凝土梁,当它承受竖向荷载作用时[图1-1a)],在梁的垂直截面(正截面)上受到弯矩作用,截面中和轴以上受压,以下受拉。
当荷载达到某一数值F c时,梁截面的受拉边缘混凝土的拉应变达到极限拉应变,即出现竖向弯曲裂缝,这时,裂缝处截面的受拉区混凝土退出工作,该截面处受压高度减小,即使荷载不增加,竖向弯曲裂缝也会急速向上发展,导致梁骤然断裂[图1-1b)]。
这种破坏是很突然的。
也就是说,当荷载达到F c的瞬间,梁立即发生破坏。
F c为素混凝土梁受拉区出现裂缝的荷载,一般称为素混凝土梁的抗裂荷载,也是素混凝土梁的破坏荷载。
由此可见,素混凝土梁的承载能力是由混凝土的抗拉强度控制的,而受压混凝土的抗压强度远未被充分利用。
在制造混凝土梁时,倘若在梁的受拉区配置适量的纵向受力钢筋,就构成钢筋混凝土梁。
试验表明,和素混凝土梁有相同截面尺寸的钢筋混凝土梁承受竖向荷载作用时,荷载略大于F c时的受拉区混凝土仍会出现裂缝。
在出现裂缝的截面处,受拉区混凝土虽退出工作,但配置在受拉区的钢筋将可承担几乎全部的拉力。
这时,钢筋混凝土梁不会像素混凝土梁那样立即裂断,而能继续承受荷载作用[图1-1c)],直至受拉钢筋的应力达到屈服强度,继而截面受压区的混凝土也被压碎,梁才破坏。
因此,混凝土的抗压强度和钢筋的抗拉强度都能得到充分的利用,钢筋混凝土梁的承载能力可较素混凝土梁提高很多。
图1-1 素混凝土梁和钢筋混凝土梁a)受竖向力作用的混凝土梁b)素混凝土梁的断裂c)钢筋混凝土梁的开裂混凝土的抗压强度高,常用于受压构件。
若在构件中配置钢筋来构成钢筋混凝土受压构件,试验表明,和素混凝土受压构件截面尺寸及长细比相同的钢筋混凝土受压构件,不仅承载能力大为提高,而且受力性能得到改善(图1-2)。
结构设计原理部分第一章钢筋混凝土结构的基本概念及材料的物理力学性能第一节钢筋混凝土结构的基本概念一、工作机理1、钢筋与混凝土粘结力强,能很好地共同变形。
2、温度线膨胀系数较接近。
3、混凝土保护层可防止钢筋锈蚀。
二、特点1、优点:①耐久性好,刚度大,受荷变形小。
②可浇筑成任意任意形状,可预制也可现浇。
③主要材料为砂石,易就地取材,降低造价。
2、缺点:①截面尺寸较钢结构大,自重大,对大跨度不利。
②抗裂性差,带裂缝工件。
③施工受气候影响较大,耗木材较多。
④修补和拆除较困难。
三、用途可用于桥梁、隧道、房屋、铁路、水工结构、海洋结构等。
第二节混凝土一、混凝土的强度1、混凝土的立方体抗压强度f cu,k以边长为150mm的立方体试件,在标准条件下(温度20±3℃,相对湿度为90%以上),养护28天,按标准试验方法测得的具有95%强度保证率的抗压强度值。
(MPa)。
混凝土立方体抗压强度与试验方法和试验尺寸有关。
如涂润滑剂,强度降低;试验试件尺寸越小,强度越高。
混凝土立方体抗压强度标准值又称强度等级。
公路桥梁等级:C15、C20、C25、C30、C35、C40、C45、C50、C55、C60、C65、C70、C75、C80。
对钢筋混凝土结构,混凝土≥C20,预应力混凝土结构,混凝土≥C40。
2、混凝土轴心抗压强度(棱柱体抗压强度)f c d、f c k以边长为150mm×150mm×450mm的标准试件,按标准试验方法测得的抗压强度值。
3、轴心抗拉强度f t d、f t k轴心抗拉强度约为立方体抗压强度的1/8~1/18。
测定方法:①直接测定法:两端预埋钢筋的长方体试件,施加拉力,试件破坏时的平均拉应力。
②间接测定法(如劈裂试验)立方体或圆柱体试件放在压力机上,通过垫条施加线荷载P,破坏时,在裂面上产生与该面垂直且均匀分布的拉应力。
4、混凝土轴心抗压抗拉强度标准值与设计值(见表1—1)二、混凝土的变形混凝土的变形分受力变形和体积变形(一)混凝土的受力变形1、混凝土在一次短期荷载作用下的变形(应力—应变曲线见右图)①σc≤0.2%σm a x:应力—应变曲线近似成线性关系。
《结构设计原理》复习资料第一篇钢筋混凝土结构第一章钢筋混凝土结构的基本概念及材料的物理力学性能一、学习目的本章介绍了钢筋混凝土的基本概念,分别从强度、变形等方面阐述了组成钢筋混凝土材料的混凝土和钢筋的特性,并对钢筋与混凝土共同作用机理作了简要说明。
学习本章的目的是使读者认识并熟悉钢筋混凝土材料,了解它们的工作性能,能在工作中正确的使用它们。
本课程的主要内容取材于我国现行的《公路桥涵设计通用规范》(JTJ D60-2004)、《公路圬工桥涵设计规范》(JTG D61-2005)、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)、《公路桥涵钢结构和木结构设计规范》(JTJ 025-86)。
习惯上将上述设计规范统称为《公路桥规》。
二、学习重点在本章的学习中应注意以下几个方面的问题:(1)混凝土的强度指标有哪些,以及获得它们的方法;(2)混凝土的应力应变关系曲线,弹性模量的取值方法;(3)混凝土收缩、徐变的概念及特性;(4)两类钢材的变形及强度特征;(5)锚固长度的意义;(6)钢筋混凝土结构对混凝土与钢筋的基本要求。
三、复习题(一)填空题1、在钢筋混凝土构件中钢筋的作用是替混凝土受拉或协助混凝土受压。
2、混凝土的强度指标有混凝土的立方体强度、混凝土轴心抗压强度和混凝土抗拉强度。
3、混凝土的变形可分为两类:受力变形和体积变形。
4、钢筋混凝土结构使用的钢筋,不仅要强度高,而且要具有良好的塑性、可焊性,同时还要求与混凝土有较好的粘结性能。
5、影响钢筋与混凝土之间粘结强度的因素很多,其中主要为混凝土强度、浇筑位置、保护层厚度及钢筋净间距。
6、钢筋和混凝土这两种力学性能不同的材料能够有效地结合在一起共同工作,其主要原因是:钢筋和混凝土之间具有良好的粘结力、钢筋和混凝土的温度线膨胀系数接近和混凝土对钢筋起保护作用。
7、混凝土的变形可分为混凝土的受力变形和混凝土的体积变形。
其中混凝土的徐变属于混凝土的受力变形,混凝土的收缩和膨胀属于混凝土的体积变形。