第8章 浓度极化
- 格式:ppt
- 大小:6.90 MB
- 文档页数:80
第八章电化学一.基本要求1.理解电化学中的一些基本概念,如原电池和电解池的异同点,电极的阴、阳、正、负的定义,离子导体的特点和Faraday 定律等。
2.掌握电导率、摩尔电导率的定义、计算、与浓度的关系及其主要应用等。
了解强电解质稀溶液中,离子平均活度因子、离子平均活度和平均质量摩尔浓度的定义,掌握离子强度的概念和离子平均活度因子的理论计算。
3.了解可逆电极的类型和正确书写电池的书面表达式,会熟练地写出电极反应、电池反应,会计算电极电势和电池的电动势。
4.掌握电动势测定的一些重要应用,如:计算热力学函数的变化值,计算电池反应的标准平衡常数,求难溶盐的活度积和水解离平衡常数,求电解质的离子平均活度因子和测定溶液的pH等。
5.了解电解过程中的极化作用和电极上发生反应的先后次序,具备一些金属腐蚀和防腐的基本知识,了解化学电源的基本类型和发展趋势。
二.把握学习要点的建议在学习电化学时,既要用到热力学原理,又要用到动力学原理,这里偏重热力学原理在电化学中的应用,而动力学原理的应用讲得较少,仅在电极的极化和超电势方面用到一点。
电解质溶液与非电解质溶液不同,电解质溶液中有离子存在,而正、负离子总是同时存在,使溶液保持电中性,所以要引入离子的平均活度、平均活度因子和平均质量摩尔浓度等概念。
影响离子平均活度因子的因素有浓度和离子电荷等因素,而且离子电荷的影响更大,所以要引进离子强度的概念和Debye-Hückel极限定律。
电解质离子在传递性质中最基本的是离子的电迁移率,它决定了离子的迁移数和离子的摩尔电导率等。
在理解电解质离子的迁移速率、电迁移率、迁移数、电导率、摩尔电导率等概念的基础上,需要了解电导测定的应用,要充分掌握电化学实用性的一面。
电化学在先行课中有的部分已学过,但要在电池的书面表示法、电极反应和电池反应的写法、电极电势的符号和电动势的计算方面进行规范,要全面采用国标所规定的符号,以便统一。
会熟练地书写电极反应和电池反应是学好电化学的基础,以后在用Nernst方程计算电极电势和电池的电动势时才不会出错,才有可能利用正确的电动势的数值来计算其他物理量的变化值,如:计算热力学函数的变化值,电池反应的标准平衡常数,难溶盐的活度积,水的解离平衡常数和电解质的离子平均活度因子等。
图8.1 金属的阴阳极极化曲线第8章 金属阳极过程8.1 金属阳极溶解8.1.1 概述化学电源、电解冶炼、电镀工业等都广泛地使用可溶性金属阳极,它往往要求金属阳极能够正常的溶解。
金属以离子形式进入溶液的阳极过程是由许多步骤组成的(阴极过程逆过程)。
从位置因素考虑金属的边角处先溶解。
包括金属晶格的破坏、电子转移、金属离子水化(或络合)等,并由对流、电迁移、扩散等方式使它们离开电极表面,用图表示如下:一般金属离子的水解过程速度很快,不会成为控步,金属晶格的破坏、电子转移步骤往往是控步。
以电化学步骤为例:()根据“微观可逆”原理,由于多价金属离子还原过程中往往是第一个电子还原步骤最慢,因此在阳极溶液过程中是失去最后一个电子的步骤最慢,即为控制步骤。
(为表观传递系数)显然, 即阳极的表观传递系数较阴极大。
对应的极化曲线如右图。
8.1.2金属阳极溶解的影响因素1、 金属本性的影响。
金属阳极溶解的条件为: 可能性,速度视大小而定。
(典型:氢氧反应生成水,热力学上没问题,但必须提供一定能量后反应才会发生)即只要电极位高于金属的平衡电位与过电位之和即可发生电极的溶解。
:热力学参数,表示反应的可能性。
越小,反应越容易进行。
一定时,大,则 小,小,则大。
注:这里高、中、低与氢过电位金属无关。
(上述过电位是指在一定电流密度下的相对大小,而氢过电位是指时的过电位)2、 溶液组成的影响即浓度C 、络离子、表面活性剂、阴离子(卤素等)的影响。
这里主要介绍阴离子的影响。
1 阴离子对阳极反应的影响比对阴极反应的影响大溶液中阴离子浓度记为,一般为卤素或等。
此时(单电子为例)=1、2、3之中的某一正数。
不仅影响电位,还可以以一定的反应级数参加反应。
这说明与金属表面上的金属形成了表面络和物。
2 并不是所有的阴离子都能加速阳极过程。
如果生成的表面络合物可溶,则使金属上的键变弱,容易使金属离子进入溶液,从而加速电极过程;而有些阴离子则无此能力,在表面上吸附后阻化了反应的进行。
第八章电解质溶液上一章下一章返回1.柯尔拉乌希经验公式适用条件和范围是什么?柯尔拉乌希离子独立运动定律的重要性何在?答:柯尔拉乌希经验公式:,适用于强电解质水溶液,浓度低于0.01mol·dm-3的稀溶液。
根据离子独立移动定律,可以从相关的强电解质的Λ∞来计算弱电解质的Λ∞。
或由离子电导数值计算出电解质的无限稀释时摩尔电导。
2.电导率与摩尔电导概念有何不同? 它们各与哪些因素有关?答:电导率κ是:两极面积各为1m2,并相距1m时,其间溶液所呈的电导;而摩尔电导是在相距1m的两电极间含有1mol溶质的溶液所呈的电导,摩尔电导用Λm表示Λm=κ/c,电导率κ与电解质本性有关,与温度有关,与电解质浓度有关;摩尔电导与电解质本性有关,与温度有关,与电解质浓度有关。
3.为什么用交流电桥测定溶液的电导? 为什么用1000H z(即c/s,周每秒)频率测定溶液的电导? 为什么在未知电阻的线路上并联一电容? 测准溶液电导的关键是什么?答:用交流电流测溶液的电导,可以避免电解作用而改变电极本性,并且可以消除电极的极化作用。
用1000Hz的交流频率可防止电极上的极化作用,并可用耳机检零。
并联电容是为了消除电导池的电容的影响。
测准电导的关键是在各接触点均接触的条件下,电桥平衡,正确检零。
4.当一定直流电通过一含有金属离子的溶液时,在阴极上析出金属的量正比于:(1) 金属的表面积; (2) 电解质溶液的浓度;(3) 通入的电量; (4) 电解质溶液中离子迁移的速度。
答:(3).5.在界面移动法测定离子迁移数的实验中,其结果是否正确,最关键是决定于:(1) 界面移动的清晰程度; (2) 外加电压的大小;(3) 阴、阳离子迁移速度是否相同; (3) 阴、阳离子的价数是否相同。
答:(1)6.电解质在水溶液中时,作为溶剂的水电离为 H+、OH-离子,为什么一般不考虑它们的迁移数?影响离子迁移数的主要因素是什么?答:因为水中H+与OH-的浓度甚低,K sp=10-14,其迁移数极小,不考虑不会影响测量结果。
1.何谓化学腐蚀、电化学腐蚀?2.详细推导V、VL和ia的关系,并标出推导过程中各符号的单位?※<习题二>3.名词解释:平衡电极电位、交换电流密度、非平衡电极电位、混合电位、共轭体系。
4.什么是腐蚀原电池,它与干电池工作原理有何区别与联系,它是如何工作的?5.计算Cu电极在0.1mol/LCuSO4和5 mol/LCuSO4溶液之间构成的浓差电池电动势(忽略其液接电位)。
6.请绘制Fe-H 2O体系的电位-pH图。
※<习题三>7.什么是零电荷电位,它与自腐蚀电位是否有区别?8.电化学极化控制下决定腐蚀速率的主要因素是什么?9.试画出由电化学控制的阳极极化曲线,请写出当阳极过电位大于120mV后的动力学方程。
10.试画出浓度极化控制的阴极极化曲线,并标出极限电流密度,指出极限电流密度的意义。
11.腐蚀电池分类的依据是什么?有哪些类型的腐蚀电池,产生的原因是什么?12.试用混合电位理论讨论Fe3+对铁在酸中腐蚀行为的影响。
13.试画出阴极和电阻混合控制的Evans图。
※<习题四>14.析氢腐蚀有哪些特征?影响析氢过电位的因素有哪些?15.什么是吸氧腐蚀?影响因素有哪些?※<习题五>16.金属的自钝化和电化学钝化有何异同?介质中的氧化剂必须满足什么条件才能实现金属的自钝化?17.何谓钝化和过钝化?※<习题六>18.简要阐述电偶腐蚀的影响因素及其作用规律。
19.小孔腐蚀是如何孕育和发展的?20.比较小孔腐蚀与缝隙腐蚀的异同?21.试区分晶间腐蚀与选择性腐蚀,举例说明。
22.试阐述应力腐蚀的力学特征、环境特征和材料特征。
※<习题七>23.试举例画出金属高温氧化的三种动力学规律图24.水膜厚度与金属腐蚀速率有何关系?25.管线钢在干土壤与湿土壤交界处腐蚀,哪一端为阳极?为什么?26.盐有哪些类型?它们对金属的腐蚀作用规律如何?※<习题八>27.何谓防腐蚀设计,设计过程中应遵循什么原则?※<习题九>28.钻井设备腐蚀环境的特点是什么,会发生哪些腐蚀?29.集输管线在土壤中可能发生哪些宏观腐蚀类型?为什么?30.硫酸有何特点?对金属腐蚀作用规律怎样?第一章金属腐蚀概论1.1金属腐蚀定义是什么?金属腐蚀学包含哪些主要内容?是如何分类的?1.2金属腐蚀与防护和国名经济发展有什么关系?请举例说明。
第8章电化学分析法导论(Chapter Introduction to Electrochemical Analysis) (2学时)教学目的和要求:1.了解电化学分析法的概念及分类。
2.了解电化学分析中常用的电极和分类。
3.熟悉自发电池和电解池。
4.掌握电极电位的计算方法。
5.了解扩散电位(液接电位和盐桥的作用)。
6.了解电解现象。
7.掌握分解电压、析出电位、过电压过电位的概念。
8.学会析出电位和分解电压的计算。
教学要点和所涵盖的知识点:电化学分析法的概念及分类;常用的电极和分类,自发电池和电解池;电极电位的计算方法,扩散电位(液接电位和盐桥的作用);电解现象(分解电压、析出电位、过电压、过电位)。
重点和难点:电解现象(分解电压、析出电位、过电压、过电位)。
一定义和内容(一)定义电化学分析法也称为电分析化学,尽管存在不同意见,一些著名学者还是提出了大多数人可接受的定义。
50年代,I.M. Kolthoff 提出:Electroanalytical Chemistry as the application of electrochemistry to analytical chemistry。
80 年代,由于分析化学的快速发展,电分析化学的内容的扩充和更新,这一定义不能准确适应,J.A.Plambeck 修正了这一定义:Electroanalytical chemistry is that branch of chemical analysis that employs electrochemical methods to obtain information related to the amounts,properties, and environments of chemical species.在我国早期引用Kolthoff 的定义。
80年代后,提出的中文定义为:“依据电化学和分析化学的原理及实验测量技术来获取物质的质和量及状态信息的一门科学。
绪论1、生物分离工程的定义:从发酵液或酶反应液或动植物细胞培养液中分离、纯化生物产品的过程。
2、生物分离工程特点:1发酵液或培养液是产物浓度很低的水溶液;2培养液是多组分的混合物;3生化产品的稳定性差;4对最终产品的质量要求高。
3、生物分离工程可分为几大部分,分别包括哪些单元操作?答:1、发酵液的预处理与固液分离,过滤(filtration) 、离心(centrifugation) 2、初步纯化,沉淀(precipitation) 、萃取(extraction) 、吸附(adsorption )、膜分离(membrane separation) 3、高度纯化,色谱(chromatography )、电泳(electrophoresis) 4、成品加工,结晶(crystallization) 、干燥(drying)。
4、在设计下游分离过程前,必须考虑哪些问题方能确保我们所设计的工艺过程最为经济、可靠?答:1、产品价值2、产品质量3、产物在生产过程中出现的位置4、杂质在生产过程中出现的位置。
5、产品和主要杂质独特的物化性质6、不同分离方法的技术经济比较。
5、阐述生物分离工程的发展动向。
答、1、基础理论研究2、提高分离过程的选择性3、开发分离介质4、提高分离纯化技术5、清洁生产6、规模化、工程化研究6、分离效率的评价:目标产物的浓缩程度、分离纯化程度、回收率第二章细胞分离与破碎Cell isolation and disruption1 如何预处理发酵液?答:1.高价无机离子的去除方法去除钙离子:通常使用草酸。
去除镁离子:加入三聚磷酸钠,与镁离子形成络合物。
用磷酸盐处理,也能大大降低钙离子和镁离子的浓度。
去除铁离子:加入黄血盐,使其形成普鲁士蓝沉淀而除去。
2、杂蛋白质的除去:沉淀、吸附法、变性法、凝聚Coagulation和絮凝flocculation 3.有色物质的去除及其他:使用吸附剂去除有色物质(离子交换剂、离子交换纤维、活性炭等) 、用工业酶制剂可净化发酵产物,除去干扰性浑浊物、使用惰性助滤剂、加入反应剂2 凝聚和絮凝的区别答:凝聚:向胶体悬浮液中加入电解质,由于双电层电位降低,使胶体体系不稳定,胶体粒子间因相互碰撞而产生凝集(1mm左右)的现象。
第8章高分子材料的电学性能高分子材料是一类由大量重复单元(称为聚合物)构成的化合物,具有广泛的应用领域。
在这些材料中,电学性能是其中一个重要的特性。
本文将讨论高分子材料的电学性能,包括导电性、介电性和电子运输性质,并介绍一些相关的应用领域。
导电性是一个材料传导电流的能力。
在高分子材料中,导电性通常与电荷传输和电荷载流子浓度有关。
对于一些高分子材料,如导电聚合物,导电路径可以通过特殊的化学修饰或添加导电添加剂来实现。
这些材料在导电方面表现出色,因此在电池、太阳能电池、传感器和导电涂层等领域有着广泛的应用。
介电性是材料在外加电场下储存电能的能力。
高分子材料的介电性通常与材料的极化行为相关。
通过改变高分子材料的结构和组成,可以调节材料的介电性能,从而用于电容器、绝缘材料和电子陶瓷等应用。
高分子材料在这些领域的应用主要是基于其低成本、良好的加工性能和机械强度。
电子运输性质是电子在高分子材料中传输的能力。
高分子材料的电子运输性质主要与材料的载流子迁移率和载流子浓度有关。
通过调节材料的化学结构和组成,可以实现高分子材料的电子运输性能的调控。
这些材料在有机电子学和光电子学等领域有着广泛的应用,如有机太阳能电池、有机场效应晶体管和有机发光二极管等。
除了以上的基本电学性能,高分子材料还可以通过添加导电添加剂、纳米填料和各种化学修饰来实现特殊的电学性能。
例如,通过掺杂导电添加剂,可以调节材料的导电性能,提高电导率。
通过添加纳米填料,可以改善材料的介电性能和力学强度。
通过化学修饰,可以改变材料的表面性质,如表面电导率和阻抗。
综上所述,高分子材料的电学性能是其重要的特性之一、在导电性、介电性和电子运输性质等方面的研究为高分子材料在电子学和光电子学等领域的应用提供了理论基础和技术支持。
未来,随着对高分子材料电学性能研究的深入,这些材料在先进电子器件和能源转换等领域的应用有望得到更好地开发和应用。
电化学原理试题(1)第六章电化学极化1. 简述三种极化的概念,哪⼀种极化严格来讲不能称为极化。
电化学极化:当电极过程为电化学步骤控制时,由于电极反应本⾝的“迟缓性”⽽引起的极化。
浓度极化:当电极过程由液相传质步骤控制时,电极所产⽣的极化。
电阻极化:由电极的欧姆电阻引起的电位差。
电阻极化严格来讲不能称为极化2. 简述电化学极化最基本的三个动⼒学参数的物理意义。
1) 对称系数:电位偏离形式电位时,还原反应过渡态活化能改变值占F 的分数。
物理意义:反应改变电极电位对还原反应活化能的影响程度;(1—)反应改变电极电位对氧化反应活化能的影响程度。
对称系数是能垒的对称性的变量,是由两条吉布斯⾃由能曲线的斜率决定的,⽽且曲线的形状和斜率是取决于物质的化学键特性。
在CTP动⼒学中,可以⽤来推测过渡态的构型,研究电极反应的放电机理。
2)电极反应标准速率常数K:当电极电位等于形式电位时,正逆反应速率常数相等,称为标准速率常数。
物理意义:在形式电位下,反应物与产物浓度都为1时,K在数值上等于电极反应的绝对反应速度。
a.度量氧化还原电对的动⼒学难易程度;b体现电极反应的反应能⼒与反应活性;c.反应电极反应的可逆性。
3)交换电流密度J。
:在平衡电位下,氧化反应和还原反应的绝对电流密度相等,称为交换电流密度。
物理意义:a.度量氧化还原电对的动⼒学难易程度;b体现电极反应的反应能⼒与反应活性;c.反应电极反应的可逆性;d.表⽰平衡电位下正逆反应的交换速度。
3.为什么电极电位的改变会影响电极反应的速度和⽅向?4.写出Butler-Volmer公式在不同过电位范围下的近似公式。
5.简述J0对电极性质的影响。
6. J0描述平衡状态下的特征,为何它却能说明电化学动⼒学中的⼀些问题?7. 如何⽤稳态法测量三个动⼒学参数。
8. 在谈到⼀个CTP的不可逆性时,我们有时说它是过电位较⼤,⽽有时⼜说它是电流密度较⼩,这两种说法有何区别和联系?9.电解H2SO4⽔溶液,Ni阴极的过电位为0.35 V。
扩散;物质由热运动引起的原子(分子)迁移(传输)现象。
1.扩散是溶质在母相中的一种迁移现象(从高浓度区向低浓度区迁移)。
2.扩散的结果是溶质在母相中分布均匀化。
3.柯肯达尔效应原子克服能垒所必须的能量称为激活能原子间的结合力越大,排列的越紧密,则能垒越高,激活能越大,原子依靠能量起伏实现跃迁换位越困难扩散不是原子的定向跃迁过程,扩散原子的这种随机跃迁过程,被称为原子的随机行走扩散不仅由原子的热运动所控制,而且还要受具体的晶体结构所制约原子扩散机制2种1.空位扩散机制:在自扩散和涉及置换原子的扩散过程中,原子可以离开其点阵位置,跳入邻近的空位,这样就会在原来的点阵位置产生一个新的空位。
当扩散继续,就产生原子与空位两个相反的迁移流向,称为空气扩散。
自扩散和置换扩散程度取决于空位的数目。
温度越高,空位浓度越大,金属中的原子扩散越容易2.间隙扩散机制当间隙原子存在于晶体结构中,可从一个间隙位置移动到另一个间隙位置。
当间隙原子尺寸越小,扩散越快。
由于间隙位置比空位位置多,间隙扩散比空位扩散更容易发生。
间隙扩散的激活能比空位扩散的激活能低间隙原子由一个间隙位置跳到另一个(临近)间隙位置,实现原子的迁移,通常是晶体中八面体间隙空位扩散以空位为媒介,通过点阵原子和空位不断的交换位置,实现点阵原子的迁移。
空位扩散时存在两种无规跳动:扩散原子和空位。
实现空位扩散同时必须满足两个条件:(1)扩散原子旁恰好有空位存在;(2)扩散原子具有越过能垒的自由能固态金属扩散的条件固态扩散是晶体点阵中进行的原子跃迁过程1.扩散要驱动力;扩散的驱动力不是浓度梯度,而是化学位梯度2.扩散原子要固溶:扩散原子在基体金属中必须有一定的固溶度,能够溶基体晶格,形成固溶体,这样才能进行固态扩散3.温度要足够高;固态扩散是依靠热激活而进行的过程,金属晶体中的原子始终以其针点为中心进行着热振动,温度越高,原子热激活而进行迁移的几率就越大4.时间足够长;例如在热加工刚刚完成时,迅速将金属材料冷却到室温,抑制扩散过程,避免发生静态再结晶,可把动态回复或动态再结晶的组织保留下来,以达到提高金属材料性能的目的自扩散:就是不伴有浓度变化的扩散,他与浓度梯度无关。
溶质具有异常相平衡行为和传递性能、且它对溶质溶解能力随压力和温度改变而在相当宽的范围内变动这一特性而达到溶质分离的技术。
超临界流体有关性质:(1)超临界流体的 P-V-T 性质:在稍高于临界温度的区域内,压强稍有变化,就会引起流体密度很大变化。
(2)超临界流体的传递性质:超临界流体密度接近液体,黏度接近气体,具有与液体相近的溶解能力,同时其传质速率远大于液体溶剂并能很快达到萃取平衡。
(3)超临界流体的溶解能力:超临界流体的溶解能力c与密度有关,一般密度越大、溶解能力越大。
综上所述,超临界流体密度接近液体,黏度接近气体,具有与液体相近的溶解能力,同时其传质速率远大于液体溶剂,其密度对压力和温度的变化非常敏感,从而其溶解能力也随压力和温度的变化发生敏感的变化。
5、超临界流体萃取的基本原理、常见的3种流程及超临界流体萃取的特点。
原理:一纯物质的临界温度TC是指该物质处于无论多高压力下均不能被液化时的最高温度,该温度对应的压力称临界压力PC ,状态在临界温度与临界压力以上的流体称超临界流体。
超临界流体萃取以高压、高密度的超临界流体为萃取剂,从液体或固体中提取高沸点或热敏性的有用成分,以达到分离或纯化的目的。
(超临界流体萃取过程包括萃取和分离两个阶段。
在萃取阶段,超临界流体从原料液中萃取出所需组分;在分离阶段,通过改变某个参数或其他方法,使被萃取的组分从超临界流体中分离出来,萃取剂则循环使用。
)常见的3种流程:(1)等温变压流程:利用不同压力下超临界流体萃取能力(溶解度)的差异,通过改变压力使溶质与超临界流体分离。
(2)等压变温流程:利用不同温度下超临界流体萃取能力(溶解度)的差异,通过改变温度使溶质与超临界流体分离。
(3)等温等压吸附流程:在分离器内放置仅吸附溶质而不吸超临界流体的吸附剂,通过吸附过程来达到溶质与超临界流体分离的目的。
特点:超临界萃取在溶解能力、传质性能以及溶剂回收方面有突出的优点,主要表现在:(1)超临界流体的密度与溶解能力接近于液体,而又保持了气体的传递特性,故传质速率高,可更快达到萃取平衡;(2)操作条件接近临界点,压力、温度的微小变化都可改变超临界流体的密度与溶解能力,故溶质与溶剂的分离容易,费用低;(3)超临界萃取具有萃取和精馏的双重特性,可分离难分离物质;(4)超临界流体一般具有化学性质稳定、无毒无腐蚀性、萃取操作温度不高等特点,故特别适用于医药、食品等工业;(5)超临界萃取一般在高压下进行,设备投资较大。