李瀚荪编《电路分析基础》(第4版)第十章
- 格式:ppt
- 大小:4.66 MB
- 文档页数:64
线性电路和网络函数叠加定理叠加方法与功率计算§线性电路和网络函数独立电源:电路的输入,对电路起着激励的作用。
元件的电压、电流:激励引起的响应。
一、线性电路:一、线性电路:由线性元件及独立电源组成的电路。
su R R R R R R R i 13322132++=单输入的线性电路在单激励的线性电路中,激励增大(或减小)多少倍,响应也增大(或减小)相同倍数。
比例性或齐次性单激励sKu =叠加性两个以上激励若x1(t) Þy1(t), x2(t) Þy2(t)Þ叠加原理则x1(t) + x2(t) Þy1(t) + y2(t)对任何线性电阻电路,网络函数H 都是实数。
)(二、网络函数:对单一激励的线性、时不变电路,指定的响应对激励之比定义为网络函数,记为H 。
H=响应激励任一支路的电压或电流电压源电压或电流源电流若响应与激励在同一端口:激励策动点电导G i 策动点电阻R i 转移电导G T 转移电阻R T 转移电流比H i 转移电压比H u电流电压电压电流电流电压电流电压电压电流电流电压策动点函数转移函数策动点函数转移函数不在同一端口:+–U L R 1R 3R U s例:求电阻R L 的电压U L 。
例:求各支路电流和电压。
例:电桥电路如图,若输出电压为u o ,求转移电压比H u =u o u s 。
例:求转移电压比H u =u o u s 。
=1V,计算u和i;例5:在图中所示电路中,(1)若us(2)若u s=10V,计算u和i;(3)若图中每个1Ω电阻换为10V,计算u和i。
为10Ω电阻,usi2i1i§叠加原理在任何由线性电阻、线性受控源及独立源组成的电路中,每一元件的电流或电压可以看成是每一个独立源单独作用时,在该元件上产生的电流或电压的代数和。
当某一独立源单独作用时,其他独立源为零值,即独立电压源短路,独立电流源开路。
一、叠加原理:双节点1:i 1+i s =i 2回路:R 1i 1+R 2i 2=u si s =0,u s 单独作用时R 2中产生的电流叠加原理:叠加原理:在线性电路中,任一电流变量或电压变量,作为电路的响应y (t ),与电路各个激励x m (t )的关系可表示为式中x m (t )表示电路中的电压源电压或电流源电流,设独立电源的总数为M 个,H m 为相应的网络函数。
第1章1.1 复习笔记一、电路及集总电路模型1.基础元件图形实际电路是由电阻器、电容器、线圈、电源等部件和晶体管等器件相互连接组成的,各种部、器件可以用图形符号表示,如表1-1所示。
表1-1 部分电气图用图形符号2.集总电路(1)定义集总电路是指由集总参数元件组成的电路。
(2)应用条件当电路的尺寸远小于最高频率所对应的波长时,可以当做集总电路来处理。
二、电路变量电流、电压及功率1.电流(1)定义电流是指每单位时间内通过导体横截面的电荷量。
(2)表达式电流的表达式为(3)分类①恒定电流恒定电流是指大小和方向都不随时间变化的电流,简称直流。
②交变电流交变电流是指大小和方向都随时间作周期性变化的电流,简称交流。
2.电压(1)定义电路中a、b两点间的电压是指单位正电荷由a点转移到b点时所获得或失去的能量。
(2)表达式电压的表达式为(3)分类①恒定电压恒定电压是指大小和极性都不随时间而变动的电压,也叫直流电压。
②时变电压时变电压是指大小和极性都随时间变化的电压,也叫交流电压。
(4)关联参考方向:关联参考方向是指电流参考方向与电压参考方向一致,如图1-1所示。
图1-1 关联的参考方向3.功率(1)定义功率是指能量流动的速率。
(2)表达式功率的表达式为p(t)=u(t)i(t)(3)功率的正负功率的正负表示能力的吸收与产生,电压电流取关联参考方向时:①当功率为正,电路吸收能量,p值即为吸收能量的速率;②当功率为负,电路提供能量,p值为产生能量的速率。
三、基尔霍夫定律1.基尔霍夫电流定律(1)定律内容基尔霍夫电流定律可表述为:对于任一集总电路中的任一节点,在任一时刻,流出(或流进)该节点的所有支路电流的代数和为零。
(2)表达式基尔霍夫电流定律的数学表示式为(3)理论基础基尔霍夫电流定律的理论基础是电荷守恒法。
2.基尔霍夫电压定律(1)定律内容基尔霍夫电压定律可表述为:对于任一集总电路中的任一回路,在任一时刻,沿着该回路的所有支路电压降的代数和为零。
第12章 拉普拉斯变换在电路分析中的应用
§12-1 拉普拉斯变换及其几个基本性质
12-1 RC 串联电路t =0时与10 V 电压源接通,已知R =2MΩ、C =1μF,试用拉氏变换法求电流i (t )和电容电压M 。
(t ), t≥0。
已知u C (0-)=0。
解:电路如图
12-1(a )所示,画出电路的
s 域模型如图
12-1(b
)所示,可得(s )的反变换为
比较系数得
解得
所以
U (s )的反变换为
图12-1
12-2 RL 并联电路如图
12-2所示,已知
试用拉氏变换法求u (t ),
t≥0。
图
12-2
图12-3
解:画出电路的s 域模型如图12-3所示。
列出方程
反变换得。
12-3 t≥0
时电路如图12-4所示,已知,试求
图
12-4
图12-5
解:方法一:画出电路的s域模型如图12-5所示。
列出方程
所以
解得反变换得
方法二:用戴维南定理。
在图12-5中,断开电容支路,得接上电容支路,得以下与方法一相同。
12-4 电路如图12-6所示,
t =0时开关打开,求。
图12-6
图12-7
解:画出电路的s 域模型如图12-7所示。
可列出方程
反变换得
§12-2 反拉普拉斯变换
——赫维赛德展开定理
12-5 求若F (s )为:
解:
所以
F (s )为假分式,不能直接使用赫维赛德定理。
用长除法,得对真分式部分有
所以。