COMSOL_结构力学
- 格式:pptx
- 大小:4.96 MB
- 文档页数:39
结构力学模块简介结构力学模块简介© 1998–2015 COMSOL受/patents中列出的美国专利和美国专利 7,519,518、7,596,474、7,623,991、8,457,932、8,954,302、9,098,106 及 9,146,652的保护。
本文档和本文所述的程序根据 COMSOL 软件许可协议 (/comsol-license-agreement) 提供,且仅能按照许可协议的条款进行使用和复制。
COMSOL、COMSOL Multiphysics、Capture the Concept、COMSOL Desktop、LiveLink和COMSOL Server 为 COMSOL AB 公司的注册商标或商标。
所有其他商标均为其各自所有者的财产,COMSOL AB 公司及其子公司和产品不与上述商标所有者相关联,亦不为其正式认可、赞助或支持。
相关商标所有者的列表请参见/trademarks。
版本: COMSOL 5.2联系信息请访问/contact 获取COMSOL各地办公室及销售代表的可搜索列表。
您可在此页面查询联系信息,联系当地销售代表,或跳转至其他COMSOL网页,索取软件信息及价格列表,提交技术支持请求,以及订阅每月推送电子期刊等。
如需联系技术支持,可访问/support/case页面,在线填写申请表。
其他链接:•技术支持中心:/support•产品下载:/support/download•产品更新:/support/updates•COMSOL 社区:/community•活动、年会和培训:/events•视频集锦:/video•知识库:/support/knowledgebasePart number: CM021105目录简介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5结构力学仿真. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5结构力学模块物理场接口. . . . . . . . . . . . . . . . . . . . . . . . 9根据空间维度和研究类型排列的物理场接口 . . . . . . 13基本原理:静态线性分析. . . . . . . . . . . . . . . . . . . . . . . 16参数化研究 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35结构力学建模技巧 . . . . . . . . . . . . . . . . . . . . . . . . . . 48包含预应变. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49对热膨胀建模. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 App库中的示例. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58| 34 || 5简介结构力学模块是对结构和固体力学应用和设计进行建模和模拟的定制模块。
结构力学: 结构力学模型案例结构力学模型案例通过以下两个不同情况来介绍如何进行线性静态应力分析。
• 外边界的均布水平载荷• 重力载荷这个案例来自NAFEMS 基本系列 (参考文献. 1).锥形膜末端载荷第一个案例介绍厚度为0.1mm的膜的2D平面应力。
水平载荷沿右末端平均分布,为10 MN/m (也就是应力为 100 MPa)。
在左末端,x方向位移零。
左端的中间点固定在y方向。
模型使用以下材料属性:• 材料是各向同性的。
• 杨氏模量(弹性模量)为210·103 MPa。
• 泊松比为0.3。
在COMSOL Multiphysics中建模使用平面应力模式的静态分析,这样可以直接进行应力分析。
有限元模型使用拉格朗日二次三角单元。
为了确定结果已经收敛到基准值,细化网格然后再次计算结果。
结果点(0,2)处x方向应力求解值和基准目标值61.3 MPa吻合很好。
如果采用初始化网格,COMSOL Multiphysics 计算结果为61.41 MPa。
两次连续的细化网格后计算值分别为T 61.36 MPa 和 61.35 MPa。
图8-1: 均布末端载荷下x方向的应力分布模型库路径: COMSOL_Multiphysics/Structural_Mechanics/edge_load_2d 图形用户界面建模建模导航1 在空间维度下拉框中选择2D。
2 在应用模式树下,依次选择COMSOL Multiphysics>结构力学>平面应力>静态分析。
3 点击确定。
几何建模1 在绘图菜单下,选择指定对象>线。
2 在线对话框中,在x编辑框中输入0 4 4 0 0,在y编辑框中输入 0 134 0。
3 点击确定。
4 点击主工具栏的缩放至窗口大小按钮。
5 点击绘图工具栏的强迫成实体按钮。
定义的点就是约束点,也是应力基准值点。
物理量设定边界和点条件—载荷和约束求解域设定—材料属性6 在绘图菜单下,选择指定对象>点。
Subsurface Flow Module基于地下水流动分析地球物理现象在建的核废料储存库,用于在接下来的10 万年内储存乏燃料棒。
该模型模拟的情形是:燃料束套筒发生破裂,导致核废料通过周围的岩石裂隙发生渗漏,并回充到上方的隧道中。
饱和与变饱和渗流地下水流动模块面向需要仿真地下或其他多孔介质中的流体流动的工程师和科学家们,并且还可以将这种流动过程与其他现象建立联系,例如多孔弹性、传热、化学反应和电磁场等。
它可以用于模拟地下水流动、废料与污染物在土壤中的扩散、油与气体的流动,以及由于地下水开采而引发的土地沉陷等现象。
地下水流动模块可以模拟管道流、饱和与变饱和多孔介质或裂隙中的地下水,并可与传质、传热、地球化学反应和多孔弹性等模型相耦合。
许多不同的行业需要面对岩土物理和水力领域的挑战。
民事、采矿、石油、农业、化工、核能和环境工程等领域的工程师经常需要考虑这些现象,因为他们从事的行业会直接或间接(通过环境因素)影响我们生存的地球环境。
地下水渗流影响许多地球物理属性地下水流动模块内包含了许多专用的接口,用于模拟地下环境中的流动及其他现象。
作为物理接口,它们可以与地下水流动模块内的其他任意物理接口组合并直接耦合,或与COMSOL 模块套件中任何其他模块的物理接口组合并直接耦合。
例如,地下水流动模块的多孔弹性模型与岩土力学模块中的描述土壤和岩石的非线性固体力学模型相耦合。
融合地球化学反应速率和动力场COMSOL 使您可以在地下水流动模块物理接口中的编辑区域内灵活地输入任意公式,这对于在质量传递接口中定义地球化学反应速率和动力场非常有用。
但是,将这些物理接口与化学反应工程模块耦合将意味着,您可以通过该模块易用的物理接口定义化学反应,模拟多个多物质反应。
对于模拟核废料数千年间在其储存库中的扩散及多步反应过程,这两种模块的组合会很有用。
更多图片地下水流动的仿真物理接口地下水流动模块用于仿真多孔介质流动及其相关过程:多孔介质流动地下水流动模块的核心功能是模拟变饱和与完全饱和多孔介质中的流动。
COMSOL Multiphysics 结构力学模块介绍
结构力学模块专门用来计算结构的受力及变形情况。
例如,计算部件或子系统在载荷下的变形情况,对壳结构和桁架结构的分析功能等。
模块分析功能包括:
∙静力分析;
∙准静态瞬态分析;
∙动态分析;
∙固有频率分析;
∙频率响应分析;
∙线性屈曲分析;
∙弹塑性行为;
∙超弹性行为;
∙大变形分析;
∙参数研究。
基于材料破坏临界面理论,在后处理中可对结构进行高、低循环疲劳分析和多轴疲劳分析。
针对具体对象,结构力学模块可以和COMSOL Multiphysics模块或者其他分析模块任意组合,来分析实际问题中的多物理场现象。
应用领域:
∙声学-结构耦合
∙生物力学和生物工程学
∙屈曲分析
∙弹塑性材料和超弹性材料分析
∙机电设备
∙疲劳分析
∙流固耦合
∙断裂力学
∙多物理场接触
∙压电效应
∙聚合物力学
∙应力光学效应
∙热摩擦
∙热-结构耦合
∙粘弹性和热力蠕变
血管血流分析:血管在血流作用下发生变形
微型机器人足部三维模拟
曲轴模态分析
流-固耦合分析
血管支架展开过程的变形分析
粘弹性结构阻尼器。
COMSOL Multiphysics 结构力学模块介绍
结构力学模块专门用来计算结构的受力及变形情况。
例如,计算部件或子系统在载荷下的变形情况,对壳结构和桁架结构的分析功能等。
模块分析功能包括:
∙静力分析;
∙准静态瞬态分析;
∙动态分析;
∙固有频率分析;
∙频率响应分析;
∙线性屈曲分析;
∙弹塑性行为;
∙超弹性行为;
∙大变形分析;
∙参数研究。
基于材料破坏临界面理论,在后处理中可对结构进行高、低循环疲劳分析和多轴疲劳分析。
针对具体对象,结构力学模块可以和COMSOL Multiphysics模块或者其他分析模块任意组合,来分析实际问题中的多物理场现象。
应用领域:
∙声学-结构耦合
∙生物力学和生物工程学
∙屈曲分析
∙弹塑性材料和超弹性材料分析
∙机电设备
∙疲劳分析
∙流固耦合
∙断裂力学
∙多物理场接触
∙压电效应
∙聚合物力学
∙应力光学效应
∙热摩擦
∙热-结构耦合
∙粘弹性和热力蠕变
血管血流分析:血管在血流作用下发生变形
微型机器人足部三维模拟
曲轴模态分析
流-固耦合分析
血管支架展开过程的变形分析
粘弹性结构阻尼器。
COMSOL软件介绍与应用COMSOL Multiphysics是一种基于有限元方法的多物理场仿真软件。
它能够模拟和分析不同物理场(如结构力学、电磁场、流体力学、传热、化学反应等)之间的相互作用,并预测或优化系统的行为和性能。
COMSOL具有强大的建模和求解能力,广泛应用于科学研究、工程设计和产品开发等领域。
COMSOL软件的核心是有限元方法,它将复杂的物理问题离散为有限个简单的单元,并在每个单元上近似求解控制方程,然后将这些单元组合起来以得到整个问题的解。
COMSOL的通用性使得用户能够解决各种物理学问题,只需要选择适当的模块和相应的物理学接口。
1.结构力学模块:用于分析和优化结构的强度和刚度,例如材料破裂、弯曲、振动等。
2.电磁模块:用于预测电场、磁场、电磁波传播和电磁感应等现象,适用于电子器件、天线设计等。
3.流体力学模块:用于模拟液流、气流、等离子体流动以及相应的湍流、传热和质量运输过程。
广泛应用于航空航天、汽车工程、生物医学等领域。
4.传热模块:用于热传导、辐射传热、对流传热等问题的模拟和优化。
在能源系统、电子元件散热设计等领域具有重要应用价值。
5.化工反应工程模块:用于模拟和优化化学反应、质量传输、热力学等,可应用于催化剂设计、化学反应器等。
6.多物理场耦合模块:用于模拟和优化涉及多个物理场耦合的问题,例如热机耦合、电动机耦合。
COMSOL的应用领域非常广泛。
在工程设计中,可以用于优化产品的性能,验证设计的可行性和安全性。
在科学研究中,可以用于模拟和预测物理现象,探索新的理论和机制。
在教育领域,可以用于学生的实践教学和科学研究。
总之,COMSOL Multiphysics是一款功能强大的多物理场仿真软件,可应用于各种领域的科学研究、工程设计和产品开发。
它能够帮助用户解决复杂的物理问题,优化系统的性能,并提供直观和方便的用户界面和后处理功能。
学习COMSOL案例库中的例子1,打开COMSOL MULTIPHYSICS: 双击COMSOL MULTIPHYSICS图标,进入基本功能界面,如下图2,进入案例库:单机“文件”-“案例库”,如下图:3,在“案例库”页面寻找个人感兴趣的案例,通常有如下两种方式:(1)直接在模块下进行搜索,这种方法要求对每个模块包含的内容比较了解,因为感兴趣的内容大多数时候分布在不同的模块。
如一部分的压电案例包含在“结构力学模块”,单击“结构力学模块”,打开子模块列表,找到“压电效应”,单击“压电效应”,展开所有压电效应下的案例,如下图(2)关键词搜索选择感兴趣案例,该方法能尽肯能全面的搜索到案例库中包含的所有感兴趣案例。
如在搜索框内输入“压电”(建议输入英文” piezoelectric”,搜索的结果更全,下图所示分别为中文和英文搜索结果),点击“搜索”,即出现所有与压电相关的案例,如下图:4,打开搜索到的案例,如在通过关键词搜索得到的结果中的“结构力学模块”-“压电效应”-“shear_bender”,鼠标左键单击“shear_bender”,弹出该案例的基本介绍,如下图:注意页面左下角有两个可以执行的图标选项和,其中(1):打开案例运行文件,其中包含该案例在COMSOL中的具体设置,部分案例同时包含运行结果(案例图标前面是实心蓝点的是包含结果的,如果是空心蓝点是不包含结果,但是可以打开后运行出结果)。
鼠标左键单击打开该案例COMSOL文件,如下图,任何部分都可以查看具体设置。
(2):打开该案例的背景介绍、COMSOL操作要点以及在COMSOL中的具体操作(step-by-step)。
鼠标左键单击打开PDF文件(电脑需要安装PDF阅读器),如下图,对照案例PDF说明以及COMOSL文件一步一步就可以重复出来。
注意:并不是所有的案例都经过汉化,因此一些案例库的PDF文件是英文的,但是前提如果安装是选择的语言是“ENGLISH”,所有的案例库文件都是英文版本,只有语言选择“中文”的情况,部分案例文件才是中文的。
COMSOL Multiphysics 岩土力学模块介绍
岩土力学模块是作为结构力学模块的一个特殊附加模块,主要用于模拟一些岩土工程应用,比如隧道、挖掘、边坡稳定性和支护结构。
模块中设置的专门的接口以研究塑性问题、变形问题、土壤和岩石的失效问题、以及它们与混凝土和人造结构间的交互作用问题。
模块中也提供了不同土壤材料本构:Cam-Clay, Drucker-Prager, Mohr-Coulomb, Matsuoka-Naka, and Lade-Duncan。
除了内置的塑性模型,用户还可以借助于COMSOL Multiphysics提供的通用的方程接口创建屈服函数。
此外,计算温度场和其他场数值的关系也能被融合到材料的定义中。
岩土力学模块还为混凝土和岩石的模拟提供了非常强大的工具:Willam-Warnke, Bresler-Pister, Ottosen, 和Hoek-Brown都被作为内置参数供用户选择,更可被应用和扩展于更通用的脆性材料上。
此外,该模块能方便的与其他模块功能,如多孔介质流,孔隙弹性,以及基体模块的溶质传输功能等结合使用。
应用领域:
•混凝土模型
•混凝土和脆性材料
•土壤模型
•延展性材料和饱和土
•河堤
•挖掘
•基础
•Hoek-Brown 岩石模型
•Matsuoka-Nakai and Lade-Duncan土壤模型
•Modified Cam-Clay土壤模型
•核废料装置
•支撑结构和加强
•道路
•板材
•边坡稳定性
•土壤,岩土模拟
•隧道
•用户自定义土壤,岩石和水泥土材料•Willam-Warnke混凝土模型。
Comsol多物理场模拟软件在工程领域中开发利用引言:在工程领域中,模拟和仿真工具的使用越来越普遍,以解决各种复杂问题。
Comsol多物理场模拟软件是一款功能强大的工具,它可以模拟和分析各种场景和物理现象,如电场、热场、流体力学等。
本文将探讨Comsol软件在工程领域中的开发利用,并介绍其优点和应用案例。
一、Comsol多物理场模拟软件的基本概况Comsol是一种综合性的多物理场模拟软件,其功能包括电磁场、传热、流体力学等多个方面,可以模拟和分析各种物理现象。
该软件提供了一种直观的界面,使得工程师和研究人员可以轻松地进行模拟操作,并得到准确的结果。
Comsol软件还提供了丰富的建模和分析工具,如网格生成、后处理和优化算法等。
二、Comsol多物理场模拟软件的优点1. 多领域覆盖性:Comsol软件涵盖了电磁场、传热、结构力学、声学、流体力学等多个领域,可以模拟和分析各种物理过程和现象。
这使得它在工程领域中得到了广泛的应用。
2. 高度可定制化:Comsol软件提供了丰富的建模和分析工具,可以根据用户的需求进行定制化操作。
用户可以选择合适的物理方程和边界条件,以解决特定的工程问题。
3. 直观易用的界面:Comsol软件的界面设计简洁直观,使得用户可以轻松地进行模拟操作。
即使对于不熟悉该软件的用户,也能快速上手,并进行模拟分析。
4. 快速准确的仿真结果:Comsol软件采用了高效的数值算法和优化技术,可以得到快速准确的仿真结果。
这对于工程设计和优化具有重要意义。
5. 多平台支持:Comsol软件可以在多个操作系统上运行,并与其他工程软件进行集成。
这使得用户可以灵活地进行各种模拟操作,并与其他软件进行数据交换和共享。
三、Comsol多物理场模拟软件在工程领域中的应用案例1. 电磁场分析:Comsol软件可以用于设计和优化各种电子器件,如天线、电路板和传感器等。
通过模拟电磁场的分布和相互作用,可以进行电磁兼容性分析和电磁波传播研究。
Comsol经典实例015:殷刚的热变形初始温度为20℃的刚性轴,一端插入极端环境试验箱中加热或降温,另一端在常温环境下,中间绝热。
本案例仿真出稳定后根轴的温度场分布和热变形量。
本案例中极端环境温度为-100~100℃,以10℃为步长,常温环境温度为20℃。
长度为(30+70)mm,直径为20mm,刚性轴为实心,材料为殷钢。
一、物理场选择及因变量设置Step01:打开comsol软件,单击“模型向导”选项创建模型,在模型的“选择空间维度”界面选择“二维轴对称”,在“选择物理场”界面分别选择“传热→固体传热(ht)”和“结构力学→固体力学(solid)”,单击“添加”按钮。
对应变量设置完毕以后,单击“研究”按钮,在“选择研究”树中添加“一般研究”中的“稳态”研究,单击“完成”按钮进入软件主界面,“传热→固体传热(ht)”如图1所示。
图1 软件主界面二、全局参数设置Step02:在模型开发器中,单击“全局定义”节点下的“参数1”子节点,输入如图2所示的全局参数变量。
图2 设置全局参数三、几何模型Step03:单击“几何”节点,定位到“单位”栏,在“长度单位”下拉列表中选择mm。
右键单击“几何1”节点,在弹出的菜单中选择“矩形”,在“矩形”设置窗口,定位到“大小”栏,在“高度”文本输入框中输入“r_c/2”,在宽度文本输入框中输入200;定位到“层”栏,在“层1”的“厚度”文本输入框中输入140。
单击“构建选定对象”,如图3所示。
四、函数定义右键单击“定义”节点,在下拉菜单中选择“函数”,然后选择“插值”,在“插值”设置窗口,定位到“函数名称”栏,在数据输入栏中分别输入“700,-100”和“700.001,100”,单击“绘制”,如图4所示。
图3 创建“矩形1”图4 定义函数五、材料定义Step05:在“材料”工具栏中单击“添加材料”按钮。
在“添加材料”设置窗口中选择材料“Invar [solid,calculated from the single crystal compliances]”,如图4所示。
comsol仿真案例Comsol仿真案例。
在工程领域,仿真技术被广泛应用于产品设计、工艺优化、性能预测等方面。
Comsol Multiphysics作为一款多物理场仿真软件,具有强大的建模和求解能力,能够模拟电磁、结构力学、流体力学等多个物理场的耦合效应,为工程师和科研人员提供了强大的工具来解决复杂问题。
本文将以一个实际案例来介绍Comsol Multiphysics的仿真应用。
我们将以磁场传感器的设计为例,展示如何利用Comsol进行多物理场的仿真分析。
首先,我们需要建立磁场传感器的几何模型。
在Comsol中,可以通过几何建模模块来创建传感器的三维几何结构,包括传感元件的形状、尺寸和材料属性等。
在建模过程中,可以直观地观察和调整传感器的几何参数,以满足设计要求。
接下来,我们需要定义磁场传感器的物理特性。
通过Comsol的物理场模块,可以添加磁场、电磁感应等物理场效应,并设置材料的磁性参数、电导率等物理属性。
这些物理特性将直接影响传感器的性能和响应。
然后,我们可以进行多物理场的耦合仿真。
Comsol Multiphysics能够同时求解多个物理场的方程,并考虑它们之间的相互作用。
在磁场传感器的案例中,我们可以将磁场、电磁感应和结构力学等物理场进行耦合,分析传感器在外部磁场作用下的响应和变形情况。
在仿真过程中,可以通过Comsol的后处理模块来可视化仿真结果,包括磁感应强度分布、电流密度分布、应力应变分布等。
这些结果能够直观地展现传感器的工作状态和性能表现,为设计优化和性能预测提供重要参考。
最后,我们可以通过参数化设计和优化算法,对传感器的关键参数进行调整和优化。
Comsol Multiphysics提供了丰富的参数化建模和优化工具,能够快速高效地进行设计方案的评估和优化,以实现传感器性能的最大化。
总的来说,Comsol Multiphysics作为一款多物理场仿真软件,能够为工程师和科研人员提供强大的仿真分析工具,帮助他们解决复杂的工程和科学问题。