现代密码学第五讲:流密码(三)
- 格式:ppt
- 大小:629.50 KB
- 文档页数:39
一、古典密码(1,2,4)解:设解密变换为m=D(c)≡a*c+b (mod 26)由题目可知密文ed 解密后为if,即有:D(e)=i :8≡4a+b (mod 26) D(d)=f :5≡3a+b (mod 26) 由上述两式,可求得a=3,b=22。
因此,解密变换为m=D(c)≡3c+22 (mod 26)密文用数字表示为:c=[4 3 18 6 8 2 10 23 7 20 10 11 25 21 4 16 25 21 10 23 22 10 25 20 10 21 2 20 7] 则明文为m=3*c+22 (mod 26)=[8 5 24 14 20 2 0 13 17 4 0 3 19 7 8 18 19 7 0 13 10 0 19 4 0 7 2 4 17]= ifyoucanreadthisthankateahcer4. 设多表代换密码C i≡ AM i + B (mod 26) 中,A是2×2 矩阵,B是0 矩阵,又知明文“dont”被加密为“elni”,求矩阵A。
解:dont = (3,14,13,19) => elni = (4,11,13,8)二、流密码 (1,3,4)1. 3 级 线 性 反 馈 移 位 寄 存 器 在 c 3=1 时 可 有 4 种 线 性 反 馈 函 数 , 设 其 初 始 状 态 为 (a 1,a 2,a 3)=(1,0,1),求各线性反馈函数的输出序列及周期。
解:设反馈函数为 f(a 1,a 2,a 3) = a 1⊕c 2a 2⊕c 1a 3当 c1=0,c2=0 时,f(a 1,a 2,a 3) = a 1,输出序列为 101101…,周期为 3。
当 c1=0,c2=1 时,f(a 1,a 2,a 3) = a 1⊕a 2,输出序列如下 10111001011100…,周期为 7。
当 c1=1,c2=0 时,f(a 1,a 2,a 3) = a 1⊕a 3,输出序列为 10100111010011…,周期为 7。
现代密码学第五讲(一):流密码《现代密码学》第五讲流密码(一)上讲内容回顾分组密码定义(分组填充)分组密码的发展历史(Shannon DES AES。
)保密系统的安全性分析及分组密码的攻击(主动/被动唯密文/已知明(密)文/选择明(密)文/自适应选择明(密)文)数据加密标准(DES)算法介绍高级加密标准(AES)算法介绍中国无限局域网标准(SMS4)算法介绍?分组密码算法的运行模式本章主要内容流密码(序列密码)的思想起源?流密码技术的发展及分类基于移位寄存器的流密码算法?其它流密码算法Estream推荐流密码算法软件算法硬件算法密钥流生成器种子密钥明文m1k1c1m2k2c2加密过程密钥流生成器种子密钥密文c1k1m1c2k2m2解密过程设明文为m=m1m2… m i∈GF(2), i>0?设密钥为k=k1k2… ki∈GF(2), i>0?设密文为c=c1c2… c i∈GF(2), i>0?则加密变换为c i=m i+ k i(mod 2) i>0?则解密变换为m i=c i+ k i(mod 2) i>0思想起源:20世纪20年代的Vernam 体制,即“一次一密”密码体制。
香农利用信息论证明“一次一密”密码体制在理论上不可破译?由有限的种子密钥生成无限长的随机密钥序列?流密码研究内容——设计安全高效的伪随机序列发生器密钥流生成、存储和分发困难随机序列计算机无法实现评测标准:线性复杂度高;周期大Golomb伪随机性测试周期为r的0-1序列的随机性公设如下:r是奇数,则0-1序列{si}的一个周期内0的个数比1的个数多一个或少一个;若r是偶数,则0的个数与1的个数相等.在长度为r的周期内,长为1的游程的个数为游程总数的1/2,长为2的游程的个数占游程总数的1/22,…, 长为c的游程的个数占总游程的1/2c.而且对于任意长度,0的游程个数和1的游程个数相等.例:0110111101中,4个游程长度为1,1个游程长度为2,1个游程长度为4异相自相关函数是一个常数.设一个周期为r的序列a1, a2,…, a r, a r+1, a r+2,…,将序列平移T位得到另外一个序列a T, a T+1,… a r+T, a r+T+1,…,若a i= a i+T, 则称对应第i位相等。
( 声 明:非 标 准 答 案,仅 供 参 考 )一、古典密码(1,2,4)字母 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 数字0 1 2 3 4 5 6 7 8 9 10 111213141516171819 20 21 22 2324251. 设仿射变换的加密是E11,23(m)≡11m+23 (mod 26),对明文“THE NATIONAL SECURITYAGENCY”加密,并使用解密变换D11,23(c)≡11-1(c-23) (mod 26) 验证你的加密结果。
解:明文用数字表示:M=[19 7 4 13 0 19 8 14 13 0 11 18 4 2 20 17 8 19 24 0 6 4 13 2 24] 密文 C= E11,23(M)≡11*M+23 (mod 26)=[24 22 15 10 23 24 7 21 10 23 14 13 15 19 9 2 7 24 1 23 11 15 10 19 1]=YWPKXYHVKXONPTJCHYBXLPKTB∵ 11*19 ≡1 mod 26 (说明:求模逆可采用第4章的“4.1.6 欧几里得算法”,或者直接穷举1~25)∴解密变换为D(c)≡19*(c-23)≡19c+5 (mod 26)对密文C进行解密:M’=D(C)≡19C+5 (mod 26)=[19 7 4 13 0 19 8 14 13 0 11 18 4 2 20 17 8 19 24 0 6 4 13 2 24]= THE NATIONAL SECURITY AGENCY2. 设由仿射变换对一个明文加密得到的密文为 edsgickxhuklzveqzvkxwkzukvcuh,又已知明文的前两个字符是“if”。
对该密文解密。
解:设解密变换为 m=D(c)≡a*c+b (mod 26)由题目可知密文 ed 解密后为 if,即有:D(e)=i :8≡4a+b (mod 26) D(d)=f :5≡3a+b (mod 26)由上述两式,可求得 a=3,b=22。