表面活性剂
- 格式:docx
- 大小:18.90 KB
- 文档页数:3
月桂基磺化琥珀酸单酯二钠(DLS)一、英文名:Disodium Monolauryl Sulfosuccinate二、化学名:月桂基磺化琥珀酸单酯二钠三、化学构造式:ROCO-CH2-CH(SO3Na)-COONa四、产品特性1 .常温下为白色细腻膏体,加热后(>70βC)为透亮液体;2 .泡沫细密丰富;无滑时感,格外简洁冲洗;3 .去污力强,脱脂力低,属常见的温存性外表活性剂;4 .能与其它外表活性剂配伍,并降低其刺激性;5 .耐硬水,生物降解性好,性能价格比高。
五、技术指标:1 .外观(25βC):纯白色细腻膏状体2 .含量(%) :48.0—50.03 .Na2SO3 (%) :≤0.504 .PH 值11 %水溶液): 5.5—7.0六、用途与用量:1 .用途:配制温存高粘度高度清洁的洗手膏(液)、泡沫洁面音、泡沫洁面*、泡沫剃须膏, 也可配制爽洁无滑腻的泡沫沐浴露、珠光香波等。
2 .推举用量:10—60%。
脂肪醵聚氧乙烯醒(3)磺基琥珀酸单酯二钠MES一、英文名:Disodium Laureth(3) Sulfosuccinate二、化学名:脂肪醇聚氯乙烯酸(3)磺基琥珀酸单酯二钠三、化学构造式:RO(CH2CH2O)3COCH2CH(SO3Na)COONa四、产品特性:1 .具有优良的洗涤、*化、分散、润湿、增溶性能;2 .刺激性低,且能显著降低其他外表活性剂的刺激性;3 .泡沫丰富细密稳定;性能价格比高;4 .有优良的钙皂分散和抗硬水性能;5 .复配性能好,能与多种外表活性剂和植物提取液(如皂角、首乌)复配,形成格外稳定的体系,创制自然用品;6 .脱脂力低,去污力适中,极易冲洗且无滑腻感。
五、技术指标:1 .外观(25℃):无色至浅**透亮粘稠液体2 .活性物(%) :30.0±2.03 .PH 值(1%) : 5.5-6.54 .色泽(APHA) :≤505 .Na2SO3 (%):≤0.36 .泡沫(mm) :≥150六、用途与用量:1、用途:制造洗发香波、泡沫浴、沐浴露、洗手液、外科手术清洗及其它扮装品、洗涤日化产品等,还可作为*化剂、分散剂、润湿剂、发泡剂等。
1.表面活性剂定义:在加入量很少时即能明显降低溶剂表面张力,改变物系的界面状态,能够产生润湿,乳化,起泡,增溶及分散等一系列作用,从而达到实际应用的要求的一类物质。
2.表面活性剂的分类:按离子类型:1.阴离子表面活性剂2.阳离子表面活性剂3.两性表面活性剂按亲水基结构:1.羧酸盐类2.磺酸盐类3.硫酸酯盐类4.磷酸酯眼泪5.胺盐类6.季铵盐7.鎓盐类8.多羟基型9.聚氧乙烯型3.表面活性,表面活性物质,表面活性剂:表面活性:使溶剂表面张力降低的性质表面活性物质:具有表面活性的物质表面活性剂:一类表面活性物质,其在浓度极低时能明显降低溶液表面张力的物质4.表面活性如何表征:溶质在表面发生吸附,使溶液表面张力降低5.表面活性剂的两大性质:1.降低表面张力2.形成胶束6.什么是临界胶束浓度及其测定方法:临界胶束浓度:开始形成胶束的最低浓度测定方法:1.表面张力法2.电导法3.增溶作用法4.染料法5.光散射法7.什么是表面活性剂的HLB值,有什么意义HLB值:亲水亲油平衡值意义:HLB值越大,亲水性越强;HLB只越小,亲油性越强8.影响表面活性剂性能的结构因素包括哪些方面?表面活性剂分子形态,分子量和其润湿去活能力的关系?因素包括:亲水基;疏水基;分子形态;分子大小。
分子形态的影响:1.亲水基位于分子中间时,润湿性能比位于分子末端强,亲水基在末端的去活力强;2.亲油基团中带分子结构的具有较好的润湿和渗透性能,但去活力较小分子大小的影响:分子量大的洗涤,分散,乳化性能好;分子量少的润湿,渗透作用好。
9.表面张力的定义:作用在表面单位长度边缘上的力。
10.表面张力的测定方法:滴重法;毛细管上升法;环法;吊片法;最大气泡法;滴外形法。
11.表面活性剂的结构特征:由一部分疏水基团和一部分亲水基团构成,这两部分处于表面活性剂分子两端形成不对称的结构,疏水基团由疏水亲油的非极性碳氢链构成,亲水基团由亲水疏油的极性基团构成。
一、名词解释1.表面与界面:界面是指物质的相与相之间的交界面(约几个分子厚的过渡区)。
若其中一项为气体,这种界面通常称为表面。
2.表面活性剂:表面活性剂是这样一种物质,它活跃于表面和界面上,具有极高的降低表、界面张力的能力和效率。
在一定浓度以上的溶液中形成分子有序组合体,从而具有一系列应用功能。
3.表面活性:这种因表面正吸附而使液体表面张力降低的性质称为表面活性。
表面活性剂所具有的润湿和反润湿,渗透和防水,乳化和破乳,分散和凝聚,起泡和消泡,洗涤,抗静电,润滑以及增溶等一系列作用称为表面活性。
4.临界胶束浓度(cmc):表面活性剂在水中随着浓度增大,表面上聚集的活性剂分子形成定向排列的紧密单分子层,多余的分子在体相内部也三三两两的以憎水基互相靠拢,聚集在一起形成胶束,这开始形成胶束的最低浓度称为临界胶束浓度(critical micelle concentration, cmc)。
5.Krafft点与浊点:对离子型表面活性剂,在温度较低时,表面活性剂的溶解度一般都较小,当达到某一温度时,表面活性剂的溶解度突然增大,这一温度被称为Krafft点。
对非离子型表面活性剂则不同,它存在浊点(cloud point),即一定浓度的表面活性剂溶液在加热过程中,表面活性剂突然析出使溶液浑浊的温度点。
6.特劳贝(Traube)规则:在稀水溶液中,当c很小时,γ-c略成直线,每增加一个一CH2一基团时,其负斜率约为原来的三倍。
7.效率和有效值:表面活性剂的效率(efficiency)由测定表面活性剂使水的表面张力明显下降至一定值时的所需浓度来度量的。
有效值(effectiveness) 是表面活性剂能使溶液的表面张力降低到可能达到的(一般在cmc附近)最小值(γcmc)。
8.酸值:是指中和1克脂肪中的游离脂肪酸所需的氢氧化钾的毫克数。
9.皂化值:是指水解1克油脂所需要氢氧化钾的克数。
10.冰山结构(iceberg sturcture):表面活性剂溶于水后,使水中原来的氢键结构重新排列,亲油基周围也形成一“整齐结构”,即所谓“冰山结构”。
绪论1.表面活性物质:凡是能降低溶剂表面张力的物质——有机酸、醇、醛溶液2.非表面活性物质:不能降低溶剂表面张力的物质——NaCl、Na2SO4等3.表面活性剂:在浓度很低时能大大降低溶剂的表面张力,在浓度达到一定值时,随浓度的增加,表面张力不再变化或变化不明显的物质——C8以上有机酸、有机胺盐、磺酸盐、苯磺酸盐4.表面活性剂的功能:①在表(界)面上吸附,形成吸附膜②在溶液内部自聚,形成胶团5.表面活性剂分类:⑴阴离子型:极性基带负电——羧酸盐(RCOO-M+)、磺酸盐(RSO3-M+)、硫酸酯盐(ROSO3-M+)、磷酸盐(RPO4-M+)⑵阳离子型:极性基带正电——季铵盐(RN+R’3 A-)、胺盐(RnNHm+A-,m=1~3,n=1~3)⑶两性型:正电性基团主要为氨基、季铵基,负电性基团主要是羧基和磺酸基。
氨基酸型:R-NH(CH2)n-CH2COO- 甜菜碱型:RN+(CH3)2CH2COO-咪唑啉型:N----CH2----CH2|| |R——C————-N+——CH2CH2OH|CH2COO-⑷非离子型:极性基不带电①多元醇类化合物(蔗糖酯型、甘油酯型、失水山梨醇脂肪酸酯——司盘)②聚乙二醇型(OP型——烷基酚聚氧乙烯醚平平加型——脂肪醇聚氧乙烯醚吐温型——聚山梨酯)⑸混合型:两种亲水基团,一种带电,一种不带电醇醚硫酸盐 R(C2H4O)nSO4Na6.表面张力:作用于液体表面单位长度上使表面收缩的力(N/m)第一章表面活性剂的功能及其作用1.临界溶解温度(Tk 克拉夫特点):离子型表面活性剂在水中的溶解度随温度的上升逐渐增加,当达到某一特定温度时,溶解度急剧陡升,该温度称为临界溶解温度2.Sa的浊点:非离子表面活性剂在水中的溶解度随温度的上升而降低,升至某一温度,溶液出现浑浊,经放置或离心可得到富胶团和贫胶团两个液相,这个温度称为该Sa的浊点(Tp)亲水基相同时,亲水基增加,亲水性升高,浊点升高;亲水基加成数固定,碳增加,亲油性升高,浊点降低。
常见的17种表面活性剂
一、阴离子型表面活性剂
1. 磺酸盐类:硫酸钠、硫酸钾、氢氧化钠等;
2. 聚氧化乙烯类:聚乙二醇醚(PEG)、聚乙二醇硫酸酯(PES)、聚氧乙烯乙基醚(POE)等;
3. 硫醇类:硫醇钠、硫醇钾、磷酸硫醇、硫酸硫醇等;
4. 氯化物类:氯化钠、氯化钾等;
5. 脂肪醇类:甘油、乙基己基醇、硬脂醇等;
6. 葡萄糖醇类:玉米醇、葡萄糖醇、甘露醇等;
7. 脂肪酸类:棕榈酸、肉豆蔻酸钠等;
8. 醚类:苯乙醇、异丁基羟基苯醚、异戊二基羟基苯醚等;
9. 芳香族表面活性剂:苯甲醚树脂、羟基乙基苯乙醚等。
二、阳离子型表面活性剂
1. 烷基氧基醚类:芳香族烷基氧基醚、烷基氧基醚磺酰脲等;
2. 羧基化合物类:氯化月桂基醇、苯甲酸钠、氯化磺酰胺等;
3. 叠氮化合物类:氯化二苯基硫磺酸酯、氯化硫酰胺等;
4. 其他类:聚乙二醇偶联剂、乙二胺四乙酸、氨基磺酸类等。
;。
常见表面活性剂介绍FMESFMES为阴/非两性表面活性剂,是脂肪酸甲酯乙氧基化物的磺酸盐,兼备阴离子和非离子表面活性剂的特点,主要表现为:FMES同时具有非离子的乳化净洗的特点,亦具有阴离子的耐碱、耐高温等特点。
FMES在分子链两端引入环状磺化封端结构,使其具有立体结构的分子链,从而具有更好的分散性能。
与AES性能比较AES增稠性能好于FMES,起泡沫性能和泡沫丰富性远高于FMES。
在渗透、净洗、水溶性等方面FMES则明显优于AES。
因此AES适用于日化产品(洗洁精、洗手液等),日化产品要求的是低含量、低成本、高泡沫、高稠度,日化产品对于渗透力没有要求,对于日化产品的洗涤能力、去油能力,普通使用者无法做出判断,能做出判断的仅仅是泡沫的多少与稠度,因此也掩盖了AES的缺陷。
FMES适用于工业清洗,大部分工业清洗的条件较为苛刻,工业清洗对乳化力、洗涤力、耐高温、耐酸碱,要求较高,对洗涤效果亦有明确的评价指标。
与LAS性能比较LAS具有极佳的渗透性,渗透力远高于FMES,LAS的使用受水质影响较大,在硬水中,LAS的洗涤力明显下降,FMES则不受水质的影响。
与MES性能比较MES是未经乙氧基化的脂肪酸甲酯磺化后的产品,MES的原料主要是天然脂肪酸,因此MES的更加环保,在日化领域具有绿色、亲肤的概念,具有很大发展潜力。
FMES的环保性能较差,不易于生物降解,由于脱脂力度大,对皮肤亦有一定的损伤(如干燥、粗糙)。
油田开采中作为驱油剂,FMES耐温能力达140-160℃,抗Na+能力达15-50g/L,抗Ca2+能力达2-5g/L,具有较好的耐温抗盐及乳化能力,与原油间形成超低界面张力(<10-3mN/m),可以与聚丙烯酰胺组成二元驱油体系,提高采收率。
工业清洗作为高效清洗剂,FMES的洗涤能力、脱脂能力远高于AES、LAS 等,可用于提高脱脂、除蜡等洗涤效果。
FMES具有良好的耐碱性能,对于玻璃瓶、幕墙的清洗较为适用。
表面活性剂(surfactant),是指具有固定的亲水亲油基团,在溶液的表面能定向排列,并能使表面张力显著下降的物质。
表面活性剂的分子结构具有两亲性:一端为亲水基团,另一端为憎水基团;亲水基团常为极性的基团,如羧酸、磺酸、硫酸、氨基或胺基及其盐,也可是羟基、酰胺基、醚键等;而憎水基团常为非极性烃链,如8个碳原子以上烃链。
表面活性剂分为离子型表面活性剂和非离子型表面活性剂等。
定义及应用表面活性剂是由两种截然不同的粒子形成的分子,一种粒子具有极强的亲油性,另一种则具有极强的亲水性。
溶解于水中以后,表面活性剂能降低水的表面张力,并提高有机化合物的可溶性。
表面活性剂范围十分广泛(阳离子、阴离子、非离子及两性),为具体应用提供多种功能,包括发泡效果,表面改性,清洁,乳液,流变学,环境和健康保护。
表面活性剂在许多行业配方中被用作性能添加剂,如个人和家庭护理,以及无数的工业应用中:金属处理、工业清洗、石油开采、农药等。
组成表面活性剂分子结构具有两亲性:一端为亲水基团,另一端为疏水基团。
吸附性溶液中的正吸附:增加润湿性、乳化性、起泡性;固体表面的吸附:非极性固体表面单层吸附,极性固体表面可发生多层吸附表面活性剂的结构传统观念上认为,表面活性剂是一类即使在很低浓度时也能显著降低表(界)面张力的物质。
随着对表面活性剂研究的深入,目前一般认为只要在较低浓度下能显著改变表(界)面性质或与此相关、由此派生的性质的物质,都可以划归表面活性剂范畴。
无论何种表面活性剂,其分子结构均由两部分构成。
分子的一端为非极亲油的疏水基,有时也称为亲油基;分子的另一端为极性亲水的亲水基,有时也称为疏油基或形象地称为亲水头。
两类结构与性能截然相反的分子碎片或基团分处于同一分子的两端并以化学键相连接,形成了一种不对称的、极性的结构,因而赋予了该类特殊分子既亲水、又亲油,便又不是整体亲水或亲油的特性。
表面活性剂的这种特有结构通常称之为“双亲结构”(amphiphilic structure),表面活性剂分子因而也常被称作“双亲分子”。
表面活性剂的名词解释
表面活性剂是一种在化学和物理领域中广泛使用的添加剂,也被称为表面活性物质或高分子活性物质。
它们可以改变液体的物理性质,从而使其更容易与其它液体和固体分子混合,并形成更加稳定的聚合物。
更重要的是,表面活性剂可以有效地保护和改善少量添加剂的物理和力学性质,并维持其稳定性。
表面活性剂的类型主要有三种:阴离子活性剂、阳离子活性剂和非离子活性剂。
阴离子活性剂是指含有负电荷的分子,它们在水中有很好的溶解度,可以在液体中形成聚合物。
阳离子活性剂含有正电荷,它们在液体中形成聚合物,而非离子活性剂则不含电荷,它们可以在液体中形成均匀的乳状液体。
表面活性剂在众多行业中都有重要的应用,其中最常见的应用包括家用化妆品和清洁剂、农药、纺织品助剂以及工业用的洗涤剂和润滑剂等。
它们可以帮助消解泥沙,改善液体的稳定性,保护和改善基质的物理和力学性质,防止结晶,降低表面张力,增强乳状液体的流变性,提高界面活性物质的稳定性,去除污染物并延长储存时间等。
表面活性剂的安全性取决于它的化学结构,部分活性剂会对人体和环境产生不良影响,因此在使用表面活性剂时应非常小心,避免受到污染物的危害。
此外,应按照产品说明书的指示和产品性能要求,遵循相关法律和法规,并正确使用和处理表面活性剂,以确保生产环境的安全性。
表面活性剂具有许多特性,可以改善液体的力学性能,减少表面
张力和结晶,防止物质的污染,提高乳状液体的流变性,延长储存时间等。
它们可以有效地改善少量添加剂的物理和力学性质,并维持其稳定性,因此是大多数工业生产中不可或缺的添加剂。
1、表面活性剂是农药助剂主要成分,农药助剂中以表面活性剂为活性组分的散剂、润湿剂、粘着剂等,其中重点有:分散剂、乳化剂、润湿渗透剂。
2、表面活性剂的HLB含义是表面活性剂分子中亲水基部分与疏水基部分的比值,也称为亲水亲油平衡值,其数值在0-40之间,该值大小与表面活性剂亲水亲油关系为HLB增大亲水减小,HLB减小亲友增大3、影响泡沫稳定性因素有影响:液膜厚度和表面膜强度4、临界胶团浓度的测定方法有:表面张力法、电导法、染料法、浊度法、光散射法5、表面活性剂广泛应用于钻井等各个生产环节中,其所发挥的重要作用是:保证钻井安全、提高原油采收率、油品质量和生产效率,以及节省运输,设备防护,开发油品品种和防止环境污染6、阳离子型表面活性剂有哪两类:胺盐型阳离子表面活性剂、季胺盐型阳离子表面活性剂7、两性离子表面活性剂是指:兼有阴离子性和阳离子性亲水基的表面活性剂8、胶团的加溶作用是指:能增加在溶剂中原本不溶或微溶物的溶解度,加溶能力如何表示:表面活性剂溶液浓度9、分散作用概念是:一种或几种物质分散在另一种物质中形成分散体系的作用10 分散体系可分为哪三类:粗分散体系、胶体分散体系、分子分散体系11 乳液的鉴别方法有;12 表面活性剂在石油开采方面应用有:钻井液、固井液、原油破乳脱水用表面活性剂13 金属加工工业使用表面活性剂的目的是:提高产品质量、降低消耗、减轻劳动强度、改善劳动保护14 涂料是由哪几部分构成:成膜物质、溶剂、颜料助剂四部分组成15 影响表面活性剂洗涤作用的因素是:16 阳离子型表面活性剂的特性是,按亲水基团分为几类:17 纺织工业用表面活性剂都用在哪些工序中:纺纱、纺丝、上浆、针织、精炼、颜色、印花、整理18 当今各类燃料专用的添加剂有:润湿分散剂、消泡剂、流平剂、乳化剂、抗静电剂19 化妆品的概念:保护、修饰、梅美化人体,使容貌整洁,增加魅力,具有令人愉快香气,以涂、搽、撒、喷、洗、漱等方式使用的日常生活用品,分类:皮肤用、发用、美容、空腔卫生用化妆品二、判断题1、沾湿、铺展、浸湿的关系2、牛奶是乳状液的概念3、表面活性剂复配的影响因素4、表面活性剂在涂料方面的应用5、表面活性剂概念6、化妆品分类7、表面活性剂在制药工业中应用哪几方面1、阴离子表面活性剂的主要用途答:作为杀菌剂;在水溶液或有些溶液中形成胶团,降低溶液表面张力,有乳化、润湿、去污性能;中和纤维表面负电荷,减少摩擦产生的自由电子,具较好抗静电能力;降低纤维静摩擦系数,具有良好柔软平滑性,,克做纤维柔软整理剂2、表面活性剂在洗涤过程中起到什么作用答:表面活性剂已有单一品发展成为多元复合,以发挥其协同作用,使其性能得到相互补偿,能使去污能力好,加工时工艺上易处理。
表面活性剂的名词解释
表面活性剂(SurfaceActiveAgent)是一种具有表面活性的有机物,它们的分子具有双性结构,其中含有一个水溶性的部分(阴离子或阳离子)和一个油溶性的部分(芳烃),使之具有表面活性,能够在液体表面上形成一层附着膜,从而改变液体的物理性质。
表面活性剂在工业生产中有广泛的应用。
表面活性剂的性质:由于表面活性剂分子具有双性结构,因此可以将表面活性剂分为三类:阴离子表面活性剂、阳离子表面活性剂和非离子表面活性剂。
其中,阴离子表面活性剂的水溶性部分是一个负离子,油溶性部分是芳烃,使之具有较强的吸附性和极性。
阳离子表面活性剂的水溶性部分是一个正离子,油溶性部分是芳烃,使之具有良好的乳化性和亲水性。
非离子表面活性剂的水溶性部分是一个非离子,油溶性部分是芳烃,使之具有良好的乳化性和亲油性。
表面活性剂的应用:表面活性剂广泛应用于化学工业、冶金工业、食品工业、医药工业和日常生活等领域,其应用的具体功能如下:(1)表面活性剂可以改变液体的物理性质,如改善润湿性、稳定解吸、减少拉力和油水分离等。
(2)表面活性剂可以调节表面和界面,如稳定油水界面、减少接触角、控制气溶胶的大小和形状等。
(3)表面活性剂可以用作乳化剂,如石油钻井液中的乳化剂、乳腺的乳化剂、高分子的乳化剂等。
(4)表面活性剂还可以用于皮革加工、洗涤剂、石油脱蜡剂、
燃料添加剂等。
综上所述,表面活性剂在化学工业、冶金工业、食品工业、医药工业和日常生活等领域都具有重要的应用。
从生产成本、性能等角度出发,表面活性剂一般分为三类,分别是阴离子表面活性剂、阳离子表面活性剂和非离子表面活性剂,具有不同的性质和应用功能。
表面活性剂第二章作业
(第一次作业)
1、表面活性剂按疏水基分类有哪几种?他们分别有什么特征?
答:表面活性剂按疏水基分类可以分为碳氢链、聚醚、硅氧烷和氟碳链4中类型。
A:碳氢链疏水基;
(1)直链烷基:增加表面活性剂直链烷基的链长,增加其在有机溶剂中的溶解度,降低其在水溶液中的溶解度,在水中表面活性增加,界面吸
附与胶束化趋势增强。
(2)支链或不饱和烷基:在疏水基中引入支链或者不饱和烷基,与相应的直链烷基同系物相比,表面活性剂在水或者有机溶剂中的溶解度增加,
胶束化能力减弱。
并且具有支链烷基的表面活性剂生物降解性一般较
差,不饱和烷基比较容易被氧化、变色。
(3)含芳香环或脂肪环的烷基:在疏水基中加入芳香环,表面活性剂疏水性增加,但增加幅度不如直链烷基,并且其生物降解性较差,也难以
形成紧密的膜结构。
B:聚氧丙烯醚链疏水基:聚氧丙烯醚链有环氧丙烷聚合而成。
含有聚氧丙烯醚链的表面活性剂往往容易吸附在极性界面上,也有利于在一些极性有机溶剂中溶解。
C:聚硅氧烷链疏水基:该疏水基是非碳链疏水基,他与碳氢链相比,耐热性好、化学稳定性高,由于硅氧链既不亲水也不亲油,所以在水相和非水系统都有表面活性。
缺点是生物降解性差,价格较高,而且在胶束形成和增溶方面不遵循表面活性剂一般规律。
2、表面活性剂按亲水基分类有哪几种?他们分别有什么特征?
答:表面活性剂按亲水基分类可分为单一型和复合型两类。
其中单一型可分为阴离子型、阳离子型、两性离子型和非离子型。
复合型表面活性剂是指含有2种以上亲水基的表面活性剂。
A:阴离子型表面活性剂
a、羧酸盐阴离子型:(1)一般C10以下脂肪酸水溶性过强,表面活性较弱,
C20以上水溶性太差,只能用于非水系统。
常见的脂肪酸皂碳链介于C10
—C20之间。
(2)N—羧乙基脂肪酰胺的盐:无毒、无刺激性、起泡性和抑酶性好,对硬
水、酸的敏感性小于肥皂。
(3)全氟代烷基羧酸盐:有较好的耐强酸、耐氧化还原及耐热性能。
而且其表面活性比相应脂肪酸盐强得多,降低表面张力很强,其同样具有极佳的化学与热稳定性。
缺点是价格高,直链全氟代烷基羧酸盐生物降解性差。
b、磺酸盐阴离子型:
(1)烷基苯磺酸盐:耐酸碱性、耐硬水性稍好于肥皂,水溶液呈中性。
(2)烷基磺酸盐:水溶液黏度低,于皮肤亲和性好,生物降解性比相似链长LAS更好
(3)脂肪酸亚乙基磺酸盐:C12-C17饱和酸在室温下水溶性较差,不耐硬水,降低水溶液表面张力能力较大,具有出色的泡沫性,洗涤性和分散性能,在热酸碱中易分解。
(4)烯烃磺酸盐:水溶性好,在硬水中也具有出色的泡沫性,对皮肤没有刺激,生物降解优于LAS。
C、硫酸酯盐阴离子型:
(1)脂肪醇硫酸酯盐或烷基磺酸盐:耐硬水、泡沫性强,若有少量未反应脂肪醇,泡沫性更强。
无毒,但对皮肤有刺激,在热酸碱中易分解。
(2)脂肪醇醚硫酸盐:其具有聚氧乙烯醚和硫酸酯盐两种亲水基的复合型表面活性剂,耐硬水、电解质的能力优于AS,但引入聚氧乙烯醚会使溶液黏度增加,尤其加入盐是会大大提高。
d、磷酸酯盐阴离子型
(1)脂肪醇磷酸酯盐或烷基磷酸盐:MAP是二元酸,优点是毒性、刺激性小,耐热碱,低泡,具有抗静电作用。
(2)脂肪醇醚磷酸酯盐:性能与MAP相同,但由于脂肪醇醚磷酸酯盐是聚氧乙烯醚和磷酸酯盐的复合表面活性剂,所以水溶性和耐硬水性更好。
B:阳离子型表面活性剂
a、胺及其盐
(1)长链烷基胺及其盐:水溶性较差,尤其在碱性介质中,易生成亲水性较差的胺而溶解度降低。
同时这类阳离子型表面活性剂在PH>7水中
微非离子,在PH<7中为阳离子,所以他是一类具有PH值敏感性的阳
离子型表面活性剂,容易在负电荷表面吸附,也容易去除。
(2)聚氧乙烯醚化得长链胺及其盐:它是长链胺和聚氧乙烯醚的复合型表面活性剂,具有长链胺的PH值敏感性,而且在碱性介质中水溶性更
好。
b、季铵盐
(1)长链季铵盐:对PH不敏感,其表面活性片段在不同PH值中都表现为阳离子,所以一旦吸附基质表面就难以去除。
(2)聚氧乙烯醚化得季铵盐:是季铵盐和PEO得复合表面活性剂,具有长链季铵盐的特性,而且耐硬水、耐电解质性能更好。
C、两性离子型表面活性剂
a、氨基酸型两性离子型表面活性剂
(1)N-烷基-β-氨基丙酸:IEP在PH=4附近,在酸碱介质中分别呈阳、阴离子性,能溶于强酸强碱,耐电解质。
但在绝大多数有机溶剂中溶解度较低,在碱性介质乳化和泡沫能力比酸性介质强。
对皮肤刺激小,毒性低。
(2)N-烷基氨基二丙酸:IEP在PH=1.7-3.5,比相应N—烷基氨基丙酸及其衍生物更易溶于水,刺激性更小,将PH调到IEP以上,可比较容易从基质表面出去被吸附的表面活性剂。
b、甜菜碱型两性离子型表面活性剂
(1)N-烷基甜菜碱:IEP为中性偏碱区域,酸性介质内事阳离子。
在PH=7
时刺激性最小,往往易于吸附负电荷表面而不受PH影响。
在酸性介质中泡沫型和湿润性优于碱性。
(2)磺基甜菜碱:是PH不敏感的两性离子型表面活性剂,在任何PH条件下都能吸附在带电表面而不会形成水膜。
水溶性不如羧基或硫酸基同系物。
C、咪唑啉型两性离子型表面活性剂
特性:随取代基不同,性质有较大变化。
当R=H是表现为完全PH敏感型表面活性剂。
当R=CH3时,PH敏感性接近N-烷基甜菜碱。
其能与所有种类的表面活性剂复配,能溶于高浓度的盐、酸和碱水溶液。
当R中含羧酸是,其对皮肤和眼的刺激性极小。
D、非离子型表面活性剂
特征:与其他表面活性剂配伍性好,耐电解质、硬水及金属离子的能力强。
在水中表面活性较高,且随温度升高而增高,其不仅能溶于水还能溶于有机溶剂,甚至烃类。
缺点是在带电界面没有强的静电吸附作用。
3、除了传统意义上的表面活性剂之外,还有哪些其他的表面活性剂?他们分别
有什么特征?
答:除了传统意义的表面活性剂之外,还有以下几类表面活性剂:
(1)高分子活性剂:由很多重复单元通过化学键连接而成,相对分子质量在数千以上的并具有表面活性的高分子化合物。
与传统表面活性剂相
比,高分子表面活性剂表面张力作用较差,扩散渗透作用较弱。
(2)偶联型表面活性剂:表面活性非常高,易表面吸附,有利于降低表面张力,也有利于固体表面平滑。
容易形成胶团胶束,提高其增溶作用。
而且其还能在很宽的浓度范围内形成囊泡和液晶。
(3)反应性表面活性剂:具有良好的表面活性,具有反应活性,在UV光或者引发剂的引发下课发生自聚或者共聚合。
但使用引发剂要考虑反应
基团在表面活性剂分子中的位置。
当可聚合双键在疏水基部分是,最
好采用油溶性引发剂,反之采用水溶性引发剂更。
(4)微生物表面活性剂:微生物表面活性剂不仅生产工艺安全、生态、友好、环境友好以及其本身无毒、无刺激性和可生物降解之外,最大特
点是具有很好的表面活性。
其中一部分相对分子质量较小的微生物表
面活性剂具有极强的表面张力的能力,另一部分质量较大的则具有与
油水界面很强的亲和力。
(5)绿色表面活性剂:无毒、无害、无刺激、可生物降解、生态能循环利用和环境友好。