初二数学期中试题
- 格式:doc
- 大小:806.00 KB
- 文档页数:11
北师大实验中学2024—2025学年度第一学期初二年级数学期中考试试卷试卷说明:1.本试卷考试时间为100分钟,总分数为110分.2.本试卷共8页,四道大题,28道小题.3.请将答案都写在答题纸上.4.一律不得使用涂改液及涂改带,本试卷主观试题铅笔答题无效.5.注意保持卷面整洁,书写工整.A 卷一、选择题(本大题共8道小题,每小题2分,共16分)1.下列四届奥运会会徽中,是轴对称图形的是()A .B .C .D .2.下列计算,错误的是( )A .()3328a a =B .358a a a ×=C .624a a a ¸=D .()236a a -=-3.如图,ABC CDA △△≌,50BCA Ð=°,90B Ð=°,则CAD Ð的度数等于( )A .40°B .45°C .50°D .60°4.若分式21x x -+的值为0,则x 的值为A .﹣1B .0C .2D .﹣1或25.等腰三角形的一个角为50°,则顶角的度数为( )A .65°或50°B .80°C .50°D .50°或80°6.下列因式分解正确的是( )A .()ab ac a a b c ++=+B .()()22331a a a a --=+-C .()2222a ab b a b ++=+D .()()4221644a a a -=+-7.下列说法中正确的是( )A .如果两个三角形全等,则它们一定关于某直线成轴对称.B .到线段两个端点距离相等的点在这条线段的垂直平分线上.C .等腰三角形任意角的平分线与该角所对边的高线、中线互相重合.D .到角两边距离相等的点在这个角的平分线上.8.如图是22´的正方形网格,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的ABC V 为格点三角形,则正方形网格中与ABC V 成轴对称的格点三角形的个数是( )A .6个B .5个C .4个D .3个二、填空题(本大题共8道小题,每小题2分,共16分)9.若分式12x -有意义,则x 的取值范围是 .10.计算234x x -×= .11.如图,BE 、CD 交于点O ,且BE CD =,请添加一个条件,使得ABE ACD V V ≌,则可以添加的条件是: .12.如图,一个直角三角板的一条直角边经过AOB Ð的顶点O ,一把直尺经过三角板的直角顶点E 并且与这条直角边垂直,直尺与AOB Ð的两边分别交于C 、D ,当CE DE =时,AOE Ð与AOB Ð的数量关系为: .13.关于x 的多项式()()13x x n +-展开合并后一次项系数为1-,则n 的值为 .14.如图,射线OG 为AOB Ð的平分线,点P 为射线OG 上一点,PM OA ^于点M ,PN OB ^于点N ,且3PN =,点C 为OA 上一点,9OCP S =△,则OC = .15.如图,线段BD 为ABC V 的中线,且BD BC ^,4BC =,若45A C Ð+Ð=°,则BD = .16.如图,在等边ABC V 中,点P 、Q 在边BC 上,并且满足BP CQ =,连接AP 、AQ ,点N 为AC 上一动点,连接PN 、QN .(1)当PN NQ +最短时,测量CN = cm ;(精确到0.1cm )(2)若4AB =,则在点P 从B 运动到C 的过程中,PN QN +最短时,CN = .三、解答题(本大题共10道小题,其中第17至21题每题8分,第22至23题每题6分,第24题5分,第25题4分,第26题7分,共68分)17.计算:(1)()()421x x x --+(2)()2322682a bc a b a b -¸18.计算:(1)22246ab c a c b c-׸(2)22331a a a a a a a -+æö××ç÷-+èø19.把下列各式分解因式:(1)221218xy xy x-+(2)()222a b a --20.如图,射线OM 平分BOA Ð.(1)按要求尺规作图:作线段AB 的垂直平分线交射线OM 于点C ,连接CB 、CA .(保留作图痕迹)(2)请把以下解题过程补充完整:求证:180OBC OAC Ð+Ð=°.证明:在OA 上截取OD OB =,连接CD .OM Q 平分BOAÐBOM AOM\Ð=Ð在OBC △与ODC V 中:_______OB OD BOM AOM=ìïÐ=Ðíïî①OBC ODC \≌△△(②)CD CB \=,OBC ODCÐ=ÐQ 点C 在线段AB 的垂直平分线上CB CA \=(③)CD CA\=CDA CAD \Ð=Ð(④)Q 点D 在射线OA 上180ODC CDA \Ð+Ð=°180OBC OAC \Ð+Ð=°21.如图,在平面直角坐标系xOy 中,()2,1A --,()1,2B -,连接AB .(1)画线段11A B ,使得线段11A B 与线段AB 关于y 轴对称,并写出11A B 的坐标:1A _______,1B _______;(2)如果点C 在y 轴上,且ABC V 是等腰三角形,试着写出一个满足条件的点C 的坐标:_______.这样符合条件的点C 共有_______个.22.化简求值:当2610x x --=时,求()()()23233x x x --+-的值.23.如图,等腰ABC V 中,AB AC =,AD BC ^于D ,过点D 分别作DE AB ^交AB 于点E ,DF AC ^交AC 于点F .求证:BE CF =.24.如图1,小长方形的长和宽分别为a 和b ,将四块这样的长方形按如图2所示位置摆放.(1)图2中的四边形EFGH 为正方形,其边长为_______.(2)能用图2中的图形面积关系来验证的等式是:_______=_______.(3)若3x y -=,4xy =,求x y +的值.25.已知:如图,36MON Ð=°,射线OM 、ON 上分别有点A 和点B ,点P 在线段OB 上,连接PA ,()0144OAB a a Ð=°<<°.若线段PA 将AOB V 分割为两个等腰三角形,则称线段PA 为AOB V 的“a 角等分线”.(1)如图1,当90a =°时,画出AOB V 的“90角等分线”此时OAP Ð=_______°.(2)当90a ¹°时,若存在线段PA 为AOB V 的“a 角等分线”,则a =_______°.26.如图1所示,在ABC V 中,AB AC =,2BAC a Ð=()4590a °<<°,D 为线段BC 上一点,E 为CD 中点,连接AE .作EAM a Ð=,得到射线AM ,过点E 作EF AE ^交射线AM 于点F .(1)依题意补全图形;(2)求证:B AFE Ð=Ð;(3)如图2,当60a =°时,连接BF 、DF ,求证:FBD V 为等边三角形.B 卷四、填空题(本大题共两道小题,其中27题4分,28题6分,共10分)27.如图,点B 在线段AC 上,点E 在线段BD 上,ABD DBC Ð=Ð,AB DB =,EB CB =,M ,N 分别是线段AE 、CD 的中点.以下结论正确的是: .①AE CD =;②AE CD ^;③AE 平分DAC Ð;④BM BN ^且BM BN=28.在平面直角坐标系xOy 中,已知点(),R a b .对于点P 给出如下定义:先将点P 向右()0a ³或向左()0a <平移a 个单位长度,再关于直线y b =对称,得到点P ¢,则称点P'为点P 的“R 关联点”(1)如图1,点P 坐标为()3,1①当点R 坐标为()1,2-时,则点P 的“R 关联点”P ¢的坐标为:_______;②若点()4,3Q -为点P 的“R 关联点”,则R 的坐标为_______;(2)如图2,点A (−2,0)、C (0,1),点B 与点A 关于y 轴对称.点R 在ABC V 边上,点P 坐标为()5,0①画出点P 所有的“R 关联点”;②这些关联点组成的图形形状是:_______.(3)如图3,点(),E n n -、(),F n n --、(),G n n -、(),H n n ,0n >,点R 在正方形EFGH 边上,点()6,4M 、()7,5N ,若线段MN 上存在点()3,0P n 的“R 关联点”,直接写出n 的取值范围.1.A【分析】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:B ,C ,D 选项中的图形都不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;A 选项中的图形能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:A .2.D【分析】本题考查同底数幂的乘除法、幂的乘方与积的乘方,熟练掌握运算法则是解题的关键.根据同底数幂的乘除法法则、幂的乘方与积的乘方法则进行计算即可.【详解】解:A 、()3328a a =,故该项正确,不符合题意;B 、358a a a ×=,故该项正确,不符合题意;C 、624a a a ¸=,故该项正确,不符合题意;D 、()236a a -=,故该项不正确,符合题意;故选:D .3.C【分析】本题考查了全等三角形的性质,由三角形全等可知ACB CAD Ð=Ð,进而即可得出答案.【详解】解:Q ABC CDA △△≌,ACB CAD Ð=Ð\,Q 50BCA Ð=°,50CAD \Ð=°,故选:C .4.C【分析】根据分式值为零的条件可得x ﹣2=0,再解方程即可.【详解】解:由题意得:x ﹣2=0,且x +1≠0,解得:x =2,故选C .5.D【分析】分50°角是等腰三角形的顶角和底角两种情况计算,熟练掌握等边对等角,三角形内角和定理是解题的关键.【详解】当50°角是等腰三角形的顶角时,顶角的度数是50°;当50°角是等腰三角形的底角时,顶角的度数是180505080°-°-°=°;故选D.6.C【分析】本题考查因式分解,熟记乘法公式,掌握提公因式法和公式法分解因式的步骤和要求是解答的关键.利用提公因式法或公式法对每个选项中的式子进行因式分解,进而可作出判断.【详解】解:A 、()1ab ac a a b c ++=++,原计算错误,不符合题意;B 、()()22331a a a a --=-+,原计算错误,不符合题意;C 、()2222a ab b a b ++=+,原计算正确,符合题意;D 、()()()()()42221644422a a a a a a -=+-=++-,原计算错误,不符合题意;故选:C .7.B【分析】本题考查了全等三角形的性质,等腰三角形的性质,线段垂直平分线的判定及角平分线的判定,熟练掌握全等三角形的性质,等腰三角形的性质,线段垂直平分线的判定及角平分线的判定依次进行判断即可.【详解】解:如果两个三角形全等,则它们不一定关于某直线成轴对称,故A 选项不符合题意;到线段两个端点距离相等的点在这条线段的垂直平分线上,故B 选项符合题意;等腰三角形顶角的平分线,底边上的中线和底边上的高相互重合,故C 选项不符合题意;在角的内部到角两边距离相等的点在这个角的平分线上,故D 选项不符合题意,故选:B .8.B【分析】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,根据网格结构分别确定出不同的对称轴,然后作出轴对称三角形即可得解.【详解】解:如图所示,BCD △,EBC V ,MHN V ,BAO V 与ABC V 成轴对称∴共5个.故选:B .9.2x ¹【分析】本题主要考查了分式有意义的条件,根据分式有意义的条件是分母不为0进行求解即可.【详解】解:∵分式12x -有意义,∴20x -¹,∴2x ¹,故答案为:2x ¹.10.312x -【分析】此题考查的是单项式乘单项式,解决此题的关键是掌握单项式乘单项式的运算法则.直接根据单项式乘单项式的运算法则计算即可.【详解】解:原式312x =-.故答案为:312x -.11.B C Ð=Ð(答案不唯一)【分析】本题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法.添加条件:B C Ð=Ð,再由已知条件BE CD =和公共角A Ð可利用AAS 定理证明ABE ACD V V ≌.【详解】解:添加条件:B C Ð=Ð,在ABE V 和ACD V 中,A ABC BE CD Ð=ÐìïÐ=Ðíï=î,\()AAS ABE ACD V V ≌,故答案为:B C Ð=Ð(答案不唯一).12.12AOE AOB Ð=Ð【分析】本题考查了全等三角形的性质与判定,解决本题的关键是熟练掌握全等三角形的性质与判定.根据SAS 可以证明OEC OED V V ≌,从而得结论.【详解】解:由题意得OE CD ^,90OEC OED \Ð=Ð=°,在OEC △和OED V 中,CE DE OEC OED OE OE =ìïÐ=Ðíï=î,(SAS)OEC OED \V V ≌,AOE BOE \Ð=Ð,12AOE AOB \Ð=Ð,故答案为:12AOE AOB Ð=Ð.13.4【分析】本题考查了多项式乘以多项式的法则的应用,关键是理解展开合并后一次项系数为1-.根据多项式乘以多项式法则展开后,根据x 项的系数等于1-可得出n 的值.【详解】解:()()()22133333x x n x nx x n x n x n+-=-+-=+--Q 一次项系数为1-,31n \-=-4n \=,故答案为:4.14.6【分析】本题主要考查了角平分线的性质定理,熟练掌握角平分线上的点到角两边的距离相等是解题的关键.首先根据角平分线的性质定理得到3PM PN ==,然后利用9OCP S =△代数求解即可.【详解】解:∵射线OG 为AOB Ð的平分线,PM OA ^,PN OB ^,且3PN =,∴3PM PN ==;∵9OCP S =△,∴192OC MP ×=,即1392OC ´=,∴6OC =.故答案为:6.15.2【分析】本题考查了全等三角形的判定和性质、等腰三角形的判定.解题的关键是作辅助线,构造全等三角形.延长BD 至点E ,使得DE BD =,连接CE ,证明ADB CDE △△≌,可得ECD A Ð=Ð,再证得45BCE Ð=°,最后根据等腰三角形判定求解可.【详解】解:如图,延长BD 至点E ,使得DE BD =,连接CE ,在ADB V 和CDE V 中,AD CD ADB CDE BD DE =ìïÐ=Ðíï=î,()SAS ADB CDE \V V ≌,ECD A \Ð=Ð,45A BCD Ð+Ð=°Q ,45ECD BCD \Ð+Ð=°,45BCE \Ð=°,BD BC ^Q ,45BCE BEC \Ð=Ð=°,4BE BC \==,122BD BE \==,故答案为:216. 0.5 1【分析】本题考查了等边三角形的性质和判定,三角形的外角,两点之间线段最短问题.(1)作点Q 关于直线AC 的对称点Q ¢,连接PQ ¢,交AC 于点N , 根据“两点之间线段最短”可知,此时PN NQ +最短,测量出CN 即可;(2)连接AQ CQ ¢¢,,根据题意证明()SAS ABP ACQ V V ≌,结合点Q 关于直线AC 的对称点Q ¢,证明()SSS AQC AQ C ¢V V ≌,因此AP AQ AQ BAP CAQ CAQ ¢¢==Ð=Ð=Ð,,进而证明APQ ¢△是等边三角形,根据“两点之间线段最短”可知,要使PN QN +最短,则P 、N 、Q ¢三点共线,此时PN NQ PQ ¢+=,又因为AP PQ ¢=,即AP 最小,过点A 作^AP BC 于点P ,此时AP 最小,由QN Q N ¢=,APQ ¢△是等边三角形,得AN PQ ¢^,再结合30NPC Ð=°,4AB =,即可求出答案.【详解】解:(1)作点Q 关于直线AC 的对称点Q ¢,连接PQ ¢,交AC 于点N ,此时PN NQ +最短,则测量0.5cm CN =;(2)连接AQ CQ ¢¢,,在等边ABC V 中,60AB AC B ACB =Ð=Ð=°,,BP CQ =Q ,()SAS ABP ACQ \V V ≌,Q 点Q 关于直线AC 的对称点Q ¢,AQ AQ CQ CQ ¢¢\==,,AC AC =Q ,()SSS AQC AQ C \¢V V ≌,AP AQ AQ BAP CAQ CAQ ¢¢\==Ð=Ð=Ð,,60BAC Ð=°Q ,60PAQ ¢\Ð=°,APQ ¢\V 是等边三角形,AP PQ ¢\=,PN QN PN NQ PQ ¢¢+=+³Q ,\要使PN QN +最短,则P 、N 、Q ¢三点共线,此时PN NQ PQ ¢+=,AP PQ ¢=Q ,即AP 最小,过点A 作^AP BC 于点P ,此时AP 最小,Q ABC V 为等边三角形,BP CP \=,Q BP CQ =,\此时P 、Q 重合,QN Q N ¢=Q ,APQ ¢△是等边三角形,AN PQ ¢\^,90906030NPC ACB \Ð=°-Ð=°-°=°,Q 4AB =,11222CP BC AB \===,112CN CP \==,\PN QN +最短时,1=CN ,故答案为:1.17.(1)2491x x --(2)34c ab-【分析】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.(1)直接利用单项式乘多项式法则进行化简,再去括号,最后合并进而得出答案;(2)直接利用多项式除以单项式法则计算得出答案.【详解】(1)解:原式2481x x x =---,2491x x =--;(2)解:原式34c ab=-18.(1)23-(2)3a -【分析】本题考查了分式的乘法运算和分式的除法运算,熟记分式的运算法则是解题的关键.(1)根据分式的乘除法则,先将除法转化为乘法,再约分化简即可;(2)先将分子分母因式分解,再约分化简即可.【详解】(1)解:22246ab c a c b c-׸22246ab c c c b a-××=23=-;(2)22331a a a a a a a -+æö××ç÷-+èø()()223131a a a aa a a -+=××-+3a =-.19.(1)()223x y -(2)()()3a b a b --【分析】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.(1)先提公因式,然后利用完全平方公式因式分解即可.(2)利用平方差公式因式分解即可.【详解】(1)221218xy xy x-+()2269x y y =-+()223x y =-;(2)()222a b a --()()22a b a a b a =-+--()()3a b a b =--.20.(1)见解析(2)OC OC =;SAS ;线段垂直平分线的性质;等边对等角【分析】本题考查尺规作图,全等三角形的判定与性质,线段垂直平分线的性质,等腰三角形的判定,熟练的作图是解本题的关键.(1)按题意作出图形即可;(2)根据全等三角形的判定与性质、线段垂直平分线的性质及等腰三角形的判定,逐步填写推理过程与推理依据即可.【详解】(1)解:如图;.(2)证明:在OA 上截取OD OB =,连接CD .OM Q 平分BOAÐBOM AOM\Ð=Ð在OBC △与ODC V 中:OB OD BOM AOMOC OC =ìïÐ=Ðíï=î()SAS OBC ODC \V V ≌CD CB \=,OBC ODCÐ=ÐQ 点C 在线段AB 的垂直平分线上CB CA \=(线段垂直平分线的性质)CD CA\=CDA CAD \Ð=Ð(等边对等角)Q 点D 在射线OA 上180ODC CDA \Ð+Ð=°180OBC OAC \Ð+Ð=°故答案为:OC OC =;SAS ;线段垂直平分线的性质;等边对等角21.(1)图见解析,()12,1A -,()11,2B ;(2)()0,0,4.【分析】()1根据轴对称的性质画出图形并写出对称点的坐标即可;()2选取一点与线段AB 构成等腰三角形分三种情况:以点A 为等腰三角形的顶点AB 为腰;以点B 为等腰三角形的顶点AB 为腰;以AB 为等腰三角形的底边时,则等腰三角形的顶点在线段AB 的垂直平分线上.【详解】(1)解:如下图所示,分别作点A 、B 关于y 轴的对称点1A 、1B ,连接11A B ,线段11A B 与线段AB 关于y 轴对称;Q 已知点A 、B 的坐标分别是()2,1--、()1,2-,1A \的坐标是()2,1-,1B 的坐标是(1,2);(2)解:当以点A 为等腰三角形的顶点AB 为腰时,在y 轴上有2个点可以与线段AB 组成等腰三角形,如下图所示,当以点B 为等腰三角形的顶点AB 为腰时,在y 轴上有两个点使3C B AB =、4C B AB =,可以看出点A 、B 、3C 在同一条直线上,不能构成三角形,\在y 轴上有1个点可以与线段AB 组成等腰三角形,如下图所示,当以AB 为等腰三角形的底边时,则等腰三角形的顶点在线段AB 的垂直平分线上,如下图所示,可以发现这个点恰好是原点.综上所述,在y 轴上有4个点可以与线段AB 构成等腰三角形,其中一个满足条件的点是()0,0.【点睛】本题考查了轴对称变换和等腰三角形的性质.关于y 轴对称的两个点的纵坐标相等,横坐标互为相反数;有两条边相等的三角形是等腰三角形.22.23【分析】此题考查了整式乘法的混合运算,化简求值,熟练掌握运算法则是解决本题的关键.原式第一项利用完全平方公式展开,第二项利用平方差公式化简,去括号合并得到最简结果,将已知等式整体变形代入计算即可求值.【详解】解:∵2610x x --=∴261x x -=∴22122x x -=()()()23233x x x --+-()()223449x x x =-+--22312129x x x =-+-+221221x x =-+221=+23=.23.见解析【分析】此题考查了等腰三角形三线合一性质,等边对等角,全等三角形的性质和判定等知识,解题的关键是掌握以上知识点.首先由三线合一性质和等边对等角得到BD CD =,B C Ð=Ð,然后证明出()AAS BDE CDF ≌△△,.即可得到BE CF =.【详解】解:∵等腰ABC V 中,AB AC =,AD BC ^于D ,∴BD CD =,B CÐ=Ð∵DE AB ^,DE AB^∴90BED CFD Ð=Ð=°∴()AAS BDE CDF ≌△△∴BE CF =.24.(1)()a b -(2)()2a b -,()24a b ab+-(3)5x y +=±【分析】此题考查了列代数式,完全平方公式和几何图形的应用,利用完全平方公式的变形求值,解题的关键是掌握以上知识点.(1)由小长方形的长和宽分别为a 和b 求解即可;(2)分别用两种方法表示出正方形EFGH 的面积即可求解;(3)由(2)得()()224x y x y xy -=+-,然后整体代数求解即可.【详解】(1)解:∵小长方形的长和宽分别为a 和b ,∴图2中的四边形EFGH 为正方形,其边长为()a b -;(2)解:正方形EFGH 的面积为()22EF a b =-;正方形EFGH 的面积还可以表示为()24a b ab +-;∴()()224a b a b ab -=+-;(3)解:由(2)得,()()224x y x y xy-=+-∵3x y -=,4xy =,∴()22344x y =+-´∴()225x y +=∴5x y +=±.25.(1)画图见解析;36;(2)72或108【分析】本题考查了等腰三角形的性质与判定、三角形内角和定理及外角的性质,解决本题的关键是熟练掌握等腰三角形的性质与判定.(1)作出线段OB 的中点P ,连接AP ,线段PA 为AOB V 的“90角等分线”,再根据直角三角形性质及等腰三角形性质求解即可;(2)作出图形并分两种情况讨论:作72OAB Ð=°,OB 交ON 于点B ,在线段上作点P ,使得OP AP =;作108OAB Ð=°,OB 交ON 于点B ,在线段上作点P ,使得OP AP =,再求解即可.【详解】(1)解:如图,作出线段OB 的中点P ,连接AP ,线段PA 为AOB V 的“90角等分线”,Rt AOB Q △中,AP 是斜边上的中线,OP AP PB \==,\线段PA 将AOB V 分割为两个等腰三角形,\线段PA 为AOB V 的“90角等分线”,36OAP MON \Ð=Ð=°,故答案为:36;(2)解:如图,作72OAB Ð=°,OB 交ON 于点B ,在线段上作点P ,使得OP AP =,36MON Ð=°Q ,OP AP =,36OAP MON \Ð=Ð=°,72OAB Ð=°Q ,723636PAB \Ð=°-°=°,72APB MON OAP Ð=Ð+Ð=°Q ,18072ABP PAB APB Ð=°-Ð-Ð=°Q ,ABP APB \Ð=Ð,AP AB \=,\线段PA 将AOB V 分割为两个等腰三角形,72a =°;如图,作108OAB Ð=°,OB 交ON 于点B ,在线段上作点P ,使得OP AP =,36MON Ð=°Q ,OP AP =,36OAP MON \Ð=Ð=°,108OAB Ð=°Q ,1083672PAB \Ð=°-°=°,72APB MON OAP Ð=Ð+Ð=°Q ,PAB APB \Ð=Ð,AB PB \=,\线段PA 将AOB V 分割为两个等腰三角形,108a =°;故答案为:72或10826.(1)见详解(2)见详解(3)见详解【分析】本题考查了等边三角形的判定及性质,全等三角形的判定及性质,等腰三角形的判定及性质等;(1)按要求补全图形,即可求解;(2)由角的和差得90AFE EAF Ð=°-Ð,由等腰三角形的性质得()118022B a Ð=°-,即可求证;(3)延长AE 至H 使AE EH =,连接,DH FH ,证明()SAS AEC HED V V ≌得出AC DH =,CAE EHD Ð=Ð,进而证明DHF BAF Ð=Ð,证明()SAS ABF HDF V V ≌,推出FB FD =,AFB HFD Ð=Ð,即可得出60BFD AFH Ð=Ð=°,则FBD V 为等边三角形.【详解】(1)解:如图,(2)证明:Q EF AE ^,90AEF \Ð=°,90AFE EAF\Ð=°-Ð90a =°-,AB AC =Q ,2BAC a Ð=,()118022B a \Ð=°-90a =°-,\B AFE Ð=Ð;(3)证明:延长AE 至H 使AE EH =,连接,DH FH ,∵,,AE EH AEC HED DE EC=Ð=Ð=∴()SAS AEC HED V V ≌∴AC DH =,CAE EHDÐ=Ð又∵AB AC=∴AB DH=∵60a =°,则120BAC Ð=°,60FAE Ð=°∴60BAF EACÐ=°-Ð∵EF AH ^,AE EH=∴AF FH =,∴60DHF AHF EHD EAC BAC FAE EAC BAFÐ=Ð-Ð=°-Ð=Ð-Ð-Ð=Ð∴()SAS ABF HDF V V ≌∴FB FD =,AFB HFDÐ=Ð∴60BFD AFH Ð=Ð=°∴FBD V 为等边三角形.27.①②④【分析】本题主要考查全等三角形的性质与判定,三角形内角和定理等知识,熟练掌握全等三角形的判定方法是解题的关键.首先证明出()SAS ABE DBC V V ≌,得到AE CD =,即可判断①;延长AE 交CD 于点F ,得到EAB BDC Ð=Ð,然后结合三角形内角和 得到90ABD DFE ==°∠∠,即可判断②;根据题意无法证明AE 平分DAC Ð,即可判断③;证明出()ASA ABM DBN V V ≌,得到ABM DBN Ð=Ð,进而可判断④.【详解】解:在ABE V 和DBC △中,AB DB ABD DBC EB CB =ìïÐ=Ðíï=î,∴()SAS ABE DBC V V ≌,∴AE CD =,故①正确;如图所示,延长AE 交CD 于点F∵ABD DBC Ð=Ð,点B 在线段AC 上,∴90ABD DBC Ð=Ð=°∵ABE DBCV V ≌∴EAB BDCÐ=Ð∵AEB DEFÐ=Ð∴AE CD ^,故②正确;根据题意无法证明AE 平分DAC Ð,故③错误;∵ABE DBC V V ≌,M ,N 分别是线段AE 、CD 的中点∴BM BN=又∵MAB NDB Ð=Ð,AB BD=∴()ASA ABM DBN V V ≌∴ABM DBNÐ=Ð∴ABM DBM DBN DBMÐ+Ð=Ð+Ð∴90ABD MBN Ð=Ð=°∴BM BN ^,故④正确;综上所述,结论正确的是:①②④.故答案为:①②④.28.(1)①(2,3);②(1,1)-(2)①图见解析;②等腰三角形(3)522n ££或732n ££【分析】本题考查了坐标变换,解题关键是得到“R 关联点”变化规律.(1)根据“R 关联点”定义可得点P (,)x y 的“(),R a b 关联点”的坐标为(),2P x a b y ¢+-,据此计算即可;(2)①根据(),R a b 关联点的定义计算出当R 在三角形的顶点时,点P 的“R 关联点”坐标,即可画图;②由图可知关联点组成的图形形状是三角形.(3)分点R 在正方形的四条边上上时,坐标不同,根据()3,0P n 的“R 关联点”在线段MN 上方程和不等式求解即可.【详解】(1)解:设P 坐标为(,)x y ,设P ¢的坐标为(),P x y ¢¢¢,先将点P 向右()0a ³或向左()0a <平移a 个单位长度,得到点的坐标为(,)x a y +,再关于直线y b =对称,得到点P ¢,则2x x a y y b =+ì¢+=¢ïíïî,∴2x x a y b y =+ìí=-¢¢î即P ¢坐标为(),2x a b y +-①当点P 坐标为()3,1,点R 坐标为()1,2-时,则点P 的“R 关联点”P ¢的坐标为(31,221)-´-,即(2,3);②点()4,3Q -为点P ()3,1的“R 关联点”,∴43321a b =+ìí-=-î解得:11a b =ìí=-î,即R 的坐标为(1,1)-,(2)解:①如图②这些关联点组成的图形形状是等腰三角形.(3)∵点()6,4M 、()7,5N ,①当点R 在EH 上时,设点(,)R a n 其中n a n -££,则线段MN 上存在点()3,0P n 的“R 关联点”坐标为(3,2)n a n +,∴322n a n +-=,∴2a n=-又∵637n a n a n £+£ìí-££î即63(2)72n n n n n£+-£ìí-£-£î解得:522n ££,当点R 在EH 上时,522n ££, 线段MN 上存在点()3,0P n 的“R 关联点”②当点R 在FG 上时,设点(,)R a n -其中n a n -££,则线段MN 上存在点()3,0P n 的“R 关联点”坐标为(3,2)n a n +-,∵0n >,∴(3,2)n a n +-不可能在第一象限,故点R 在FG 上时,线段MN 上不存在点()3,0P n 的“R 关联点”;③当点R 在H G 上时,设点(,)R n b 其中n b n -££,则线段MN 上存在点()3,0P n 的“R 关联点”坐标为(4,2)n b ,∴422n b -=,∴21b n =-又∵647n n b n ££ìí-££î即64721n n n n££ìí-£-£î不等式组无解,故点R 在H G 上时,线段MN 上不存在点()3,0P n 的“R 关联点”;④当点R 在EF 上时,设点(,)R n b -其中n b n -££,则线段MN 上存在点()3,0P n 的“R 关联点”坐标为(2,2)n b ,∴222n b -=,∴1b n =-又∵627n n b n ££ìí-££î即6271n n n n££ìí-£-£î解得:732n ££,当点R 在EF 上时,732n ££, 线段MN 上存在点()3,0P n 的“R 关联点”综上所述:当522n ££或732n ££时,线段MN 上存在点()3,0P n 的“R 关联点”。
2024-2025学年度第一学期初二数学学科期中阶段质量反馈参考答案一、单项选择(30分,每题3分)1-5 CADBD 6-10ABBAA二、填空题(18分,每题3分)11.±312.三角形的稳定性13.814.815.16.4三、解答题(72分)17.(1) (1)53(共10分,每问5分,第一步化简乘方、开方正确2分)18. (共12分,(1)每空1分,(2)8分)(1)①;②;③;④.(2)延长至点,使得,连接,延长至点,使得,连接,,...................................................................................................辅助线1分,在△和△中,,△△,,..............................................................................................................................3分同理△△,3-52B B '∠=∠12BD BC =12B D BC ''''=SAS ADE DE DA =BE A D ''E 'D E D A ''''=B E ''AD A D ='' AE A E ∴=''ADC EDB AD ED ADC EDB CD BD =⎧⎪∠=∠⎨⎪=⎩∴ADC ≅()EDB SAS AC BE ∴=A D C '''≅()E D B SAS ''',,,............................................................................................................................4分在△和△中,,△△,,同理,,.................................................................................................................6分在△和△中,,△△.............................................................................. .....................8分19. (共4)分方法一:如图,连接并延长,.......................................................... .....................1分在中,,在中,,, (2)分A CB E ''''∴=AC A C '=' BE B E ''∴=BAE B A E '''AB A B BE B E EA E A ''=⎧⎪''=⎨⎪''=⎩∴BAE ≅()B A E SSS '''BAD B A D ∴∠=∠'''CAD C A D ∠=∠'''BAC B A C ∴∠=∠'''ABC A B C '''AB A B BAC B A C AC A C ''=⎧⎪'''∠=∠⎨⎪''=⎩∴ABC ≅()A B C SAS '''AC ADC ∆1D DAC ∠=∠+∠ABC ∆2B BAC ∠=∠+∠12140BCD D B BAC DAC D B A ∴∠=∠+∠=∠+∠+∠+∠=∠+∠+∠=︒李叔叔量得,就可以断定这个零件不合格......................................1分方法二:如图,延长交于,,,,,李叔叔量得,就可以断定这个零件不合格.20. (共10分,(1)4分,(2)6分)(1)如图,点即为所求;(2)连接,由作图可知,为的垂直平分线,则,设 ,则,..............................................1分,在中,由勾股定理得:,..............................................2分即......................................................................................................5分解得:,答:深圳号驱逐舰行驶的航程的长为. (6)分∴142BCD ∠=︒DC AB M 180180903060AMD A D ∠=︒-∠-∠=︒-︒-︒=︒ 180********CMB AMD ∴∠=︒-∠=︒-︒=︒1801802012040MCB B CMB ∴∠=︒-∠-∠=︒-︒-︒=︒180********DCB MCB ∴∠=︒-∠=︒-︒=︒∴142BCD ∠=︒C BC CD AB BC AC =BC AC x ==nmile (90)OC x nmile =-OA OB⊥ 90O ∴∠=︒Rt OBC ∆222BO OC BC +=22230(90)x x +-=50x =BC 50nmile21. (共9分,(1)3分,(2)3分,点描对1个给1分(3)3分)22.(共5分)解:如图,设C ′D 与AC 交于点O ,∵∠C=35°,∴由折叠可得∠C ′=∠C=35°,.....................................................................................1分∵∠1=∠DOC+∠C ,∠1=106°,∴∠DOC=∠1-∠C=106°-35°=71°, (3)分∵∠DOC=∠2+∠C ′,∴∠2=∠DOC-∠C ′=71°-35°=36°..............................................................................5分23.(共10分,(1)6分,(2)4分)(1)截取AC=CE 给2分;平行尺规作图:利用角的关系或做全等,有痕迹作对都可给4分(2)解:,,............................................................................................................1分在和中,,,............................................................................................................3分,即的长就是、之间的距离...............................................................4分//DE AB A E ∴∠=∠ABC ∆EDC ∆A E ACB ECD BC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABC EDC AAS ∴∆≅∆DE AB ∴=DE A B24.(共12分,(1)2分,(2)8分,(3)2分)解:(2)结论成立............................................................................1分证明:四边形是正方形,,............................................................................2分在和中,,..,即....................................................................................................................5分在和中,,.,...............................................................................................7分,,,.(8分).........................................................................................................8分 ABCD BA AD DC ∴==90BAD ADC ∠=∠=︒EAD ∆FDC ∆EA FD ED FC AD DC =⎧⎪=⎨⎪=⎩EAD FDC ∴∆≅∆EAD FDC ∴∠=∠EAD DAB FDC CDA ∴∠+∠=∠+∠BAE ADF ∠=∠BAE ∆ADF ∆BA AD BAE ADF AE DF =⎧⎪∠=∠⎨⎪=⎩BAE ADF ∴∆≅∆BE AF ∴=ABE DAF ∠=∠⋯90DAF BAF ∠+∠=︒ 90ABE BAF ∴∠+∠=︒90AMB ∴∠=︒AF BE ∴⊥⋯。
2024北京昌平一中初二(上)期中数 学2024.10本试卷共4 页,4 道大题,29 个小题,满分110 分。
考试时间 120 分钟。
考生务必将答案填涂或书写在答题卡上,在试卷上作答无效。
考试结束后,请交回答题卡。
一.选择题(共8道小题,每小题2分,共16分) 第1-8题均有四个选项,符合题意的选项只有..一个. 1. 9的算术平方根是(A )3 (B )±3 (C )81 (D )±81 2.若分式32aa −有意义,则a 的取值范围是 (A )a ≠2(B )a ≠0 (C )a <2(D )a ≥23.下列计算错误..的是(A )3=− (B ===4.若将分式32xx y+中的x ,y 都扩大10倍,则分式的值(A )不改变 (B )缩小为原来的110(C )缩小为原来的1100(D )扩大为原来的10倍 5.下列各式从左到右变形正确的是(A )11n n m m +=+ (B ) 22n n m m = (C ) n m n m m n mn −−= (D )2362x x x =6.x成立的条件是 (A )0≤x <6 (B ) 0≤x ≤ 6 (C )x ≥6 (D )x >6且x ≠07是同类二次根式,则a 的平方根是(A )a =2(B )a =±2(C )(D )±8.对于分式x nx m−−(,m n 为常数),若当0≥x 时,该分式总有意义;当0x =时,该分式的值为负数. 则,m n 与0的大小关系正确的是(A )0n m << (B )0m n << (C )0m n << (D )0n m << 二.填空题(共8道小题,每小题2分,共16分)9.有意义,则实数a 的取值范围是 . 10.若分式121xx −+的值为0,则x = . 11.比较大小:(填“>”,“=”或“<”).12.已知a ,b 是有理数,且满足()210a +=. 那么a b = . 13.关于x 的方程2111ax x =+−−(a 为常数)无解,则a= .14.实数m 的结果为 .15.如图所示,点F 、O 、D 、A 是数轴上四个点,O 与原点重合,边长为3的正方形OABC 被分成形状、大小完全相同的四个直角三角形和一个小正方形,OD =2,DE =DF .则小正方形的边长DE = ,点F 表示的数是 .16.北宋科学家沈括在《梦溪笔谈》中曾记载了宋代行军时的后勤供应情况:人负米六斗,卒自携一斗,人食日二升.其大意为,在行军过程中,民夫可以背负六斗(60升)米,士兵可以自己背一斗(10升)米,民夫(士兵)每人一天行军会消耗2升米.若每个士兵雇佣4个民夫随其一同行军,则在没有其他粮食补充的情况下,背负的米支持行军的天数为天;若每个士兵雇佣n 个民夫随其一同行军,则在没有其他粮食补充的情况下,背负的米支持行军的天数为 (用含有n 的代数式表示).三.解答题(本题共13道小题,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分)17−.18.计算:2)+−. 19.计算:(1)23122x x x x −−−−−. (2)22.y x y x y⋅÷() 20.计算:221.42x x x+−− 21.解方程:12.3x x =+m22.解方程:31.11x x x +=−+23.学习了分式运算后,老师布置了这样一道计算题:22111x x −−−,甲、乙两位同学的解答过程分别如下:老师发现这两位同学的解答过程都有错误.请你从两位同学中,选择一位同学的解答过程,帮助他分析错因,并加以改正. (1)我选择 同学的解答过程进行分析;(填“甲”或“乙”) (2)该同学的解答从第 步开始出现错误;(填序号) (3)请写出正确解答过程. 24.已知x y ==,求代数式x 2-3xy+y 2的值.25.已知2340m m +−=,求代数式253222m m m m m−⎛⎫+−÷ ⎪−−⎝⎭的值. 26. 列方程解应用题.随着科技的发展,人工智能使生产生活更加便捷高效.某科技公司生产了一批新型搬运机器人,打出了如下的宣传:根据该宣传,求新型机器人每天搬运的货物量.27.小石根据学习“数与式”积累的经验,想通过“由特殊到一般”的方法探究下面二次根式的运算规律.下面是小石的探究过程,请补充完整: (1)具体运算,发现规律.= ==,=== =,= (填写运算结果). (2)观察、归纳,得出猜想.如果n 为正整数,用含n 的式子表示上述的运算规律为: . (3)证明你的猜想. (4)应用运算规律.= ;=(a ,b 均为正整数),则a b +的值为 . 28. 我们已经学过()()()2---,x a x b x a b x ab =++如果关于x 的分式方程满足abx a b x+=+(a ,b 分别为非零整数),且方程的两个跟分别为12=,x a x b =. 我们称这样的方程为“十字方程”. 例如:2=3x x +可化为1212=3x x⨯+=+ ∴12=1,2x x = 再如:6=-5x x+可化为()()-2-3-2-3=-5x x ⨯+= ∴12=-2,-3x x = 应用上面的结论解答下列问题: (1)“十字方程”8-6x x+=,则12= , x x =; (2)“十字方程”2--1x x=的两个解分别为12,x a x b ==,求11a b +的值;(3)关于x 的 “十字方程”2243n nx n x ++=+−的两个解分别为1212,()x x x x <,求211x x +的值. 四、附加题(10分)29. 阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当a >0,b >0时,∵(a -b )2=a -2ab +b ≥0,∴a +b ≥2ab ,当且仅当a =b 时取等号.请利用上述结论解决以下问题:(1)当x >0时,x +x 1的最小值为 ;当x <0时,x +x1的最大值为 ; (2)当x >0时,求当x 取何值,y =xx x 1632++有最小值,最小值是多少?(3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,则四边形ABCD 的面积的最小值为 .C参考答案一、选择题(本题共8道小题,每小题2分,共16分)2−=. ………………………………………………………5分18. 解:原式 33−⨯= ………………………………………………3分 =4 ……………………………………………………4分 =…………………………………………………5分19. 解:(1)原式=2312x x x −−−−()()=2312x x x −−+−…………………………………………… 1分=22x x −−=1 ……………………………………………2分(2)原式=2221y x x y y ⋅⋅……………………………………… 4分 2.x =…………………………………………………5分 20. 21(2)(2)2x x x x =−+−−原式 ……………………………… 1分22(2)(2)(2)(2)x x x x x x +=−+−+− ……………………………… 2分222)(2)x x x x −−=+−( ……………………………………………… 3分 2(2)(2)x x x −=+− ……………………………………………… 4分1.2x =+ ……………………………………………… 5分 21.解:去分母,得: x + 3= 2x ……………………………………2分 移项,得: x - 2x = - 3合并同类项,得: -x = -3 ………………………………………3分 系数化1,得: x = 3. ……………………………………………4分 经检验:x = 3是原方程的解. ………………………………………… 5分 ∴原方程的解是x = 3.22.解:去分母,得: x (x +1)+3(x -1)= (x +1)(x -1) …………………1分 去括号,得: x 2+x +3x -3= x 2-1 ……………………2分 移项并合并同类项,得: 4x = 2 ……………………………3分 系数化为1,得: 12x = . ……………………… 4分 经检验:12x =是原方程的解. …………………………………………… 5分 ∴原方程的解是12x =. 23.解:(1)甲(或乙). ………………………………1分 (2)②(或③). …………………………………………………2分 (3) 22111x x −−−()()21111x x x =−+−−()()()()211111x x x x x +=−+−+−…………………………3分()()2111x x x −−=+−…………………………………………4分()()111x x x −=+−…………………………………………5分11x =−+ ………………………………………………6分24.解:(解法1)∵x y==x y−=−∴…………………………1分.xy=∴=1…………………………2分2222()317.x y xx xy yy=−=−=−+∴-(…………………………4分…………………………6分(解法2)∵x y==225x==+∴…………………………2分225y=−=−∴…………………………4分.xy=∴=1…………………………5分2253573.x xy y=++−−+=∴…………………………6分25.解:原式2245223m m mm m−−−=⋅−−…………………………………………2分()()()33223m m m mm m+−−=⋅−−……………………………………………4分23m m=+…………………………………………………5分∵2340m m+−=,∴234m m+=,∴原式4=…………………………………………6分26.解:设新型机器人每天搬运的货物量为x吨,则旧型机器人每天搬运的货物量为(20)x−吨. ………………………1分根据题意,得96072020x x=−……………………………………3分解得80x=. …………………………………4分检验:当80x =时,(20)0x x −≠且符合实际问题的意义. ……………………………5分 所以,所列分式方程的解为80x =.答:新型机器人每天搬运的货物量为80吨. …………………………6分27.(1) ………………………… 1分(2=n 为正整数). ………………………… 3分(3)证明:左边==∵n 为正整数,∴左边== ………………………… 5分又∵右边= ∴左边=右边.=. (4)①20;②57. ………………………… 7分 28.(1)1x =-2, 2x =-4; ……………………………… 2分 (2)解: ∵21x x−=− ∴21x x−+=− ∴1(2)1(2)1x x⨯−+=+−=− ∴11x a ==,22x b ==−∴111122a b a b ab +−+===− ……………………………… 4分 (3)解:∵2243n n x n x ++=+−为关于x 的“十字方程”∴2(3)213n nx n x +−+=+−∴(1)(3)(1)3n n x n n x +−+=++−∴3x n −=或31x n −=+ ……………………………… 6分 ∵12x x <∴13x n =+或24x n =+ ∴214411314x n n x n n ++===++++ ……………………………… 7分 四、附加题(10分)29.(1)2;-2; ……………………………… 4分(2)y =2316163,x x x x x ++=++ ……………………………… 6分 ∵x >0163311,x x ++=∴≥∴当x =4时y 的最小值为11. ……………………………… 8分(3)25.……………………………… 10分。
南昌市2023—2024学年第一学期期中形成性测试八年级(初二)数学试卷说明:本卷共有六个大题,23个小题,全卷满分120分,考试时间120分钟。
一、选择题(本大题6小题,每小题3分,共18分,每小题只有一个正确选项)1.2023年暑假期间,国家高度重视预防溺水安全工作,要求各级各类学校积极落实防溺水安全教育,以下与防溺水相关的标志中是轴对称图形的是( )A .B .C .D .2.如图,是线段的垂直平分线,为直线上的一点,已知线段,则线段的长度为( )A .6B .5C .4D .33.下列计算正确的是( )A .B .C .D .4.我国的纸伞工艺十分巧妙,如图,伞圈能沿着伞柄滑动,伞不论张开还是缩拢,伞柄始终平分同一平面内所成的角,为了证明这个结论,我们的依据是( )A .B .C .D .5.如图,在Rt 中,是角平分线,,则的面积为()CD AB P CD 5PA =PB 3332b b b ⋅=()()2222x x x +-=-22(2)4a a -=222()a b a b +=+D AP BAC ∠SAS SSS AAS ASAABC △90,C AF ∠=︒35,2AB CF ==AFB △A .5 B. C . D .6.如图,在Rt 中,,以的一边为边画等腰三角形,使得它的第三个顶点在的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .5B .6C .7D .8二、填空题(本大题共6小题,每小题3分,共18分)7.在平面直角坐标系中,点关于轴对称点的坐标为______________.8.分解因式:______________.9.如图所示,已知是上的一点,,请再添加一个条件:______________,使得.10.已知:,则______________.11.如图,等腰三角形的底边长为4,面积是14,腰的垂直平分线分别交于点,若点为底边的中点.点为线段上一动点,则的周长的最小值为______________.11.已知中,如果过顶点的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为的关于点的二分割线.如图1,Rt 中,显然直线是的关于点的二分割线.在图2的中,,若直线是的关于点154152132ABC △90C ∠=︒ABC △ABC △()2,5y 22ax ay -=P AD ABP ACP ∠=∠ABP ACP △≌△2,3m na a ==2m n a +=ABC BC AB EF ,AB AC E F 、D BC M EF BDM △ABC △B ABC △B ABC △BD ABC △B ABC △110ABC ∠=︒BD ABC △B的二分割线,则的度数是______________.三、(本大题共5小题,每小题6分,共30分)13.(1)计算:(2)如图,点在一条直线上,,.求证:.14.先化简,再求值:,其中.15.如图所示,的顶点分别为.(1)画出关于直线(平行于轴且该直线上的点的横坐标均为2)对称的图形,则的坐标分别为(______________),(______________),(______________);(2)求的面积.16.如果,那么我们规定,例如:因为,所以.(1)【理解】根据上述规定,填空:______________,______________;(2)【应用】若,试求之间的等量关系.17.如图是由小正方形组成的网格,每个小正方形的顶点叫做格点.的三个顶点都是格点,仅CDB ∠()()424242y y y y +÷--,,,B E C F ,B DEF BE CF ∠=∠=A D ∠=∠AB DE =()()()2232a b ab b b a b a b --÷-+-1,12a b ==-ABC △()()()2,3,4,1,1,2A B C ---ABC △2x =y 111A B C △111,,A B C 1A 1B 1C 111A B C △nx y =(),x y n =239=()3,92=()2,8=()2,4=()()()4,12,4,5,4,60a b c ===,,a b c 66⨯ABC △用无刻度的直尺在给定的网格中完成作图.(1)在图1中,作边上的中线;(2)在图2中,作边上的高.四、(本大题3小题,每小题8分,共24分)18.为了测量一幢高楼的高,在旗杆与楼之间选定一点.测得旗杆顶的视线与地面的夹角,测楼顶的视线与地面的夹角,量得点到楼底距离与旗杆高度相等,等于8米,量得旗杆与楼之间距离为米,求楼高是多少米?19.如图,甲长方形的两边长分别为,面积为;乙长方形的两边长分别为.面积为(其中为正整数).(1)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积与图中的甲长方形面积的差(即)是一个常数,求出这个常数;(2)试比较与的大小.20.如图:已知等边中,是的中点,是延长线上的一点,且,垂足为.AC BH AC BD AB CD P C PC 17DPC ∠=︒A PA 73APB ∠=︒P PB 33DB =AB 1,7m m ++1S 2,4m m ++2S m S 1S 1S S -1S 2S ABC △D AC E BC ,CE CD DM BC =⊥M(1)试问和有何数量关系?并证明之;(2)求证:是的中点.五、(本大题2小题,每小题9分,共18分)21.图1是一个长为、宽为的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的周长等于______________;(2)观察图2,请直接写出下列三个代数式之间的等量关系;(3)运用你所得到的公式,计算:若为实数,且,试求的值;(4)如图3,点是线段上的一点,以为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积.22.课本再现:如图,一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等,我们把这种图形的变换叫全等变换.生活体验:(1)数学作图工具中有一个三角尺是等腰直角三角形,它的两个锐角相等,都是______________.问题解决:(2)如图1,在等腰直角三角形中,为边上的一点(不与点重合),连接,把绕点顺时针旋转后,得到,点与点恰好重合,连接.DM DE M BE 2a 2b 22(),(),a b a b ab +-m n 、3,4mn m n =-=m n +C AB AC BC 、8AB =1226S S +=︒AOB 90,,AOB AO BO C ∠=︒=AB ,A B OC AOC △O 90︒BOD △A B CD①填空:______________;______________.②若,求的度数.结论猜想:(3)如图1,如果是直线上的一点(不与点重合),其他条件不变,请猜想与的数量关系,并直接写出猜想结论.六、(本大题共12分)23.【探究发现】(1)如图1,中,,点为的中点,分别为边上两点,若满足,则之间满足的数量关系是______________.【类比应用】(2)如图2,中,,点为的中点,分别为边上两点,若满足,试探究之间满足的数量关系,并说明理由.【拓展延伸】(3)在中,,点为的中点,分别为直线上两点,若满足,请直接写出的长.OC OD COD ∠=30AOC ∠=︒BDC ∠C AB ,A B AOC ∠BDC ∠ABC △,90AB AC BAC =∠=︒D BC E F 、AC AB 、90EDF ∠=︒AE AF AB 、、ABC △,120AB AC BAC =∠=︒D BC E F 、AC AB 、60EDF ∠=︒AE AF AB 、、ABC △5,120AB AC BAC ==∠=︒D BC E F 、AC AB 、1,60CE EDF =∠=︒AF南昌市2023—2024学年第一学期期中形成性测试八年级(初二)数学试卷参考答案一.选择题(共6小题)1.D2.B .3.C .4.B5.B6.C二.填空题(共6小题)7.(﹣2,5).8. . 9. ∠BAP=∠CAP 或∠APB=∠APC 或AP 平分∠BAC(答案不唯一) .10. 12 11. 9. 12. 140°或90°或40°三.解答题13.(1)计算:解:(1)y 4+(y 2)4÷y 4﹣(﹣y 2)2=y 4+y 8÷y 4﹣y 4=y 4+y 4﹣y 4=y 4;……………………3分(2)证明:∵BE=CF∴BE+EC=CF+EC即BC=EF……………………1分在△ABC 和△EDF 中,∴△ABC ≌△DEF (AAS ),∴AB=DE……………………3分14.解:原式…………………1分…………………3分…………………4分将代入上式得,原式…………………6分15.,,,则为所求作的三角形,…………………4分如图所示:()()y x y x a -+⎪⎩⎪⎨⎧=∠=∠∠=∠EF BC DEFB D A 22222()a ab b a b =----22222a ab b a b =---+2ab =-112a b ==-,12(1)2=-⨯⨯-1=()16,3A ()18,1B ()15,2C 111A B C △1111111111A B C DA C EB C FA B DEB F S S S S S =--- 矩形…………………6分16.解:(1)23=8,(2,8)=3,,(2,4)=2,故答案为:3;2;……………………2分(2)证明:∵(4,12)=a ,(4,5)=b ,(4,60)=c ,∴4a =12,4b =5,4c =60,∴4a ×4b =60,∴4a ×4b =4c ,∴a +b =c ;………………6分17.即中线BH 为所求 ………………3分即高BD 为所求 ………………6分18.,,,,………………2分在和中,,∴(ASA ), (5)分11132132211222=⨯-⨯⨯-⨯⨯-⨯⨯2=17CPD ∠=︒ 73APB ∠=︒90CDP ABP ∠=∠=︒73DCP APB ∴∠=∠=︒CPD ∆PAB ∆CDP ABP DC PBDCP APB ∠=∠⎧⎪=⎨⎪∠=∠⎩CPD PAB ≅,米,米,………………7分(米),答:楼高是25米.………………8分19.解:(1)图中的甲长方形周长为2(m +7+m +1)4=4m +16,∴该正方形边长为m +4,∴S ﹣S 1=(m +4)(m +4)﹣(m +1)(m +7)=(m 2+8m +16) -(m 2+8m +7)=9,∴该正方形面积S 与图中的甲长方形面积S 1的差是一个常数9;……………4分(2)S 1=(m +1)(m +7)=m 2+8m +7,S 2=(m +2)(m +4))=m 2+6m +8,S 1﹣S 2=(m 2+8m +7)﹣(m 2+6m +8)=2m ﹣1,∵m 为正整数,∴2m ﹣1>0,∴S 1>S 2.……………………8分20.(1)DM 和DE 有何数量关系为:DE=2DM证明:∵三角形ABC 是等边△ABC ,∴∠ACB =∠ABC =60°,又∵CE =CD ,∴∠E =∠CDE ,又∵∠ACB =∠E +∠CDE ,∴∠E=∠ACB =30°;又∵∠DME=90°∴DE=2DM………………………4分(2)证明:连接BD ,∵等边△ABC 中,D 是AC 的中点,∴∠DBC=∠ABC =30°由(1)知∠E =30°∴∠DBC =∠E =30°∴DB =DE又∵DM ⊥BC∴M 是BE 的中点.………………………8分21.(1)阴影部分的正方形边长为a -b ,故周长为4(a -b )=4a -4b ;故答案:4a -4b ;………………………1分(2)大正方形面积可以看作四个矩形面积加阴影面积,故可表示为:4ab +(a -b )2,大正方形边长为a+b ,故面积也可表达为:(a +b )2,因此(a +b )2=(a -b )2+4ab ;故答案为:(a +b )2=(a -b )2+4ab ; (3)分为DP AB ∴=33DB = 8PB =33825AB ∴=-=AB(3)由(2)知:(m +n )2=(m -n )2+4mn ;………………………4分已知m -n =4,mn =-3;所以(m +n )2=42+4×(-3)=16-12=4;所以m +n =2或一2;………………………6分(4)设AC =a ,BC =b ;因为AB =8,S 1+S 2=26;所以a +b =8,a 2+b 2=26;因为(a +b )2=a 2+b 2+2ab ,所以64=26+2ab ,解得ab =19,由题意:∠ACF =90°,所以S 阴影=ab =,故答案为:.………………………9分22.解:(1)∵三角形的内角和为180°,等腰直角三角形的两个锐角相等,∴它的两个锐角都是;故答案为:.………………………1分(2)①根据旋转可得,∴,∴,∴是等腰直角三角形,故答案为:.………………………3分②∵等腰直角三角形中,,∴,∵,∴∵∴∵是等腰直角三角形,∴,∴………………………7分(3)当在上时,1219219245︒45ACO BDO ≌AOC BOD ∠=∠OC OD=90COD AOB ∠=∠=︒COD △90=︒,AOB 90,AOB AO BO ∠=︒=45A ∠=︒30AOC ∠=︒105ACO ∠=︒ACO BDO≌105BDO ∠=︒COD △45CDO ∠=︒60BDC BDO CDO ∠=∠-∠=︒C AB∵,∵∴∵是等腰直角三角形,∴,∴即;………………………8分当在的延长线上时,如图所示,∵,∵∴∵是等腰直角三角形,∴,∴即;当在的延长线上,如图所示,∵,∵∴∵是等腰直角三角形,∴,∴即;………………………9分综上所述,或.23.(1)()180135ACO A AOC AOC ∠=︒-∠+∠=︒-∠ACO BDO≌135BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒90BDC BDO CDO AOC∠=∠-∠=︒-∠90AOC BDC ∠+∠=︒C BA 45ACO AOC ∠=︒-∠ACO BDO≌45BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒454590BDC BDO CDO AOC AOC ∠=∠+∠=︒+︒-∠=︒-∠90AOC BDC ∠+∠=︒C AB 180135ACO BAC AOC AOC ∠=-∠-∠=︒-∠ACO BDO≌135BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒()4513590BDC CDO BDO AOC AOC ∠=∠-∠=︒-︒-∠=∠-︒90AOC BDC ∠-︒=∠90AOC BDC ∠+∠=︒90AOC BDC ∠-︒=∠如图1,∵AB =AC ,∠BAC =90°,∴∠B =∠C =45°,∵D 为BC 中点,∴AD ⊥BC ,∠BAD =∠CAD =45°,AD =BD =CD ,∴∠ADB =∠ADF +∠BDF =90°,∵∠EDF =∠ADE +∠ADF =90°,∴∠BDF =∠ADE ,∵BD =AD ,∠B =∠CAD =45°,∴△BDF ≌△ADE (ASA ),∴BF =AE ,∴AB =AF +BF =AF +AE ;故答案为:AB =AF +AE ;………………………2分(2)AE +AF=AB .理由是:………………………4分如图2,作AG=AD ,∵AB =AC ,∠BAC =120°,点D 为BC 的中点,∴∠BAD =∠CAD =60°,AD ⊥BC又∵AG=AD∴△AGD 为等边三角形∴DG =AG =AD∴∠GDA =∠BAD =60°,即∠GDF +∠FDA =60°,又∵∠FAD +∠ADE =∠FDE =60°,∴∠GDF =∠ADE ,在和中,12GDF ∆ADE ∆,∴(ASA )∴GF =AE ,∵AD ⊥BC ,∠BAD=60°∴∠B=90°-60°=30°又∵∠AGD=60°∴∠GDB=∠AGD-∠B=60°-30°=30°∴BG=GD又∵GD=AG∴AG=BG∴AG=AB =AF +FG =AE +AF ,∴AE +AF =AB ;………………………8分(3)当点E 在线段AC 上时,如图3,作AH=AD 同理可得△AD H 为等边三角形当AB =AC =5,CE =1,∠EDF =60°时,AE =4,此时F 在BA 的延长线上,∴∠DAF=180-∠BAD=180°-60°=120° ∠DHC=180-∠AHD=180°-60°=120°∴∠FAD=∠CHD=120°同(2)可得:△ADF ≌△HDE (ASA ),∴AF =HE ,同(2)可得:DH=HC ,AH=DH∴AH=HC∵AH =CH =AC =,CE =1,∴,GDF ADE DG ADAGD DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩GDF ADE ≅ 1212125253122AF HE CH CE ==-=-=当点E 在AC 延长线上时,如图4,同理可得:;综上:AF 的长为或.………………………12分57122AF HE CH CE ==+=+=3272。
人大附中2023~2024学年度第二学期初二年级数学期中练习说明:1.本试卷共6页,共两部分,三道大题,24道小题,满分100分,考试时间90分钟.2.试题答案一律填涂或书写在答题卡上,在试卷、草稿纸上作答无效.3.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.第一部分 选择题一、选择题(共24分,每题3分)1. 以下列长度的三条线段为边能组成直角三角形的是( )A. 6,7,8B. 2,3,4C. 3,4,6D. 6,8,10【答案】D【解析】【分析】根据勾股定理逆定理即两短边的平方和等于最长边的平方逐一判断即可.【详解】解:.,不能构成直角三角形,故本选项错误;.,不能构成直角三角形,故本选项错误;.,不能构成直角三角形,故本选项错误;.,能构成直角三角形,故本选项正确.故选:.【点睛】本题考查的是勾股定理逆定理,熟知如果三角形的三边长,,满足,那么这个三角形就是直角三角形是解答此题的关键.2. 如图,中,于点,若,则的度数为( )A. B. C. D. 【答案】B【解析】【分析】由在□ABCD 中,∠EAD =35°,得出∠D 的度数,根据平行四边形的对角相等,即可求得∠B 的度数,继而求得答案.【详解】解:∵∠EAD =35°,AE ⊥CD ,∴∠D =55°,A 222678+≠ ∴B 222234+≠ ∴C 222346+≠ ∴D 2226810+= ∴D a b c 222+=a b c ABCD Y AE CD ⊥E 35EAD ∠=︒B ∠35︒55︒65︒125︒∴∠B =55°,故选:B .【点睛】此题考查了平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.3. 下列各式中,运算正确的是( )A. B. C. D. 【答案】A【解析】【分析】本题考查了算术平方根,二次根式的加减运算.熟练掌握算术平方根,二次根式的加减运算是解题的关键.根据算术平方根,二次根式的加减运算求解作答即可.【详解】解:AB .,错误,故不符合要求;C .D,错误,故不符合要求;故选:A .4. 在菱形中,点分别是的中点,若,则菱形的周长是( )A. 12B. 16C. 20D. 24【答案】D【解析】【分析】根据三角形中位线定理可得,再根据菱形的周长公式列式计算即可得到答案.【详解】解:点分别是的中点,是的中位线,,菱形的周长,=3=2=2=-=3=≠2+≠22=≠-ABCD E F ,AC DC ,3EF =ABCD 26AD EF == E F ,AC DC ,EF ∴ACD 2236AD EF ∴==⨯=∴ABCD 44624AD ==⨯=【点睛】本题主要考查了三角形中位线定理,菱形性质,熟练掌握三角形的中位线等于第三边的一半及菱形的四条边都相等,是解题的关键.5. 如图,正方形的边长为2,是的中点,,与交于点,则的长为( )A. B. C. D. 3【答案】A【解析】【分析】由正方形的性质得出∠DAF =∠B =90°,AB =AD =2,由E 是BC 的中点,得出BE =1,由勾股定理得出AEADF ≌△BAE(ASA ),即可得出答案.【详解】∵四边形ABCD是正方形,∴∠DAF =∠B =90°,BC =AB =AD =2,∴∠BAE +∠2=90°,∵AB =2,E 是BC 的中点,∴BE =1,∴AE ,∵AD ∥BC ,∴∠1=∠2,∵DF ⊥AE ,∴∠1+∠ADF =90°,∴∠ADF =∠BAE ,在△ADF 和△BAE 中,,的ABCD E BC DF AE ⊥AB F DF =DAF B AD ABADF BAE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF ≌△BAE (ASA ),∴DF =AE故选:A .【点睛】此题主要考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.6. 一个正方形的面积是22.73,估计它的边长大小在( )A. 2与3之间B. 3与4之间C. 4与5之间D. 5与6之间【答案】C 【解析】【分析】设正方形的边长为,根据其面积公式求出的值,估算出的取值范围即可.【详解】解:设正方形的边长为,正方形的面积是22.73,,,,它的边长大小在4与5之间,故选:C .【点睛】本题考查的是估算无理数的大小及算术平方根,估算无理数的大小时要用有理数逼近无理数,求无理数的近似值.7. 要判断一个四边形是否为矩形,下面是4位同学拟定的方案,其中正确的是 ( )A. 测量两组对边是否分别相等B. 测量两条对角线是否互相垂直平分C. 测量其中三个内角是作都为直角D. 测量两条对角线是否相等【答案】C【解析】【分析】根据矩形的判定和平行四边形的判定以及菱形的判定分别进行判断,即可得出结论.【详解】解:矩形的判定定理有①有三个角是直角的四边形是矩形,②对角线互相平分且相等的四边形是矩形,③有一个角是直角的平行四边形是矩形,、根据两组对边分别相等,只能得出四边形是平行四边形,故本选项错误;a a a a a ∴=1622.7325<< <<45<<∴A、根据对角线互相垂直平分得出四边形是菱形,故本选项错误;、根据矩形的判定,可得出此时四边形是矩形,故本选项正确;、根据对角线相等不能得出四边形是矩形,故本选项错误;故选:.【点睛】本题考查了矩形的判定、平行四边形和菱形的判定,主要考查学生的推理能力和辨析能力.8. 如图,点A ,B ,C 在同一条直线上,点B 在点A ,C 之间,点D ,E 在直线AC 同侧,,,,连接DE ,设,,,给出下面三个结论:①;②;.上述结论中,所有正确结论的序号是( )A. ①B. ①③C. ②③D. ①②③【答案】D【解析】【分析】此题考查了勾股定理,全等三角形的判定与性质,完全平方公式的应用,熟记勾股定理是解题的关键.①根据直角三角形的斜边大于任一直角边即可;②在三角形中,两边之和大于第三边,据此可解答;③将用和表示出来,再进行比较.【详解】解:①过点作,交于点;过点作,交于点.∵,,,又,,B C D C AB BC <90A C ∠=∠=︒EAB BCD ≌△△AB a =BC b =DE c =a b c +<a b +>)a b c +>c a b D DF AC ∥AE F B BG FD ⊥FD G DF AC ∥AC AE ⊥DF AE ∴⊥BG FD ⊥ BG AE ∴四边形为矩形,同理可得,四边形也为矩形,,在中,则,故①正确,符合题意;②∵,,在中,,,故②正确,符合题意;③∵,,,又,,.,,,,,.故③正确,符合题意;故选:D第二部分 非选择题二、填空题(共24分,每题3分)∴ABGF BCDG FD FG GD a b ∴=+=+∴Rt EFD DF ED<a b c +<EAB BCD ≌△△AE BC b ∴==Rt EAB△BE ==AB AE BE +>a b ∴+>EAB BCD ≌△△AEB CBD ∠∠∴=BE BD =90AEB ABE ∠+∠=︒ 90CBD ABE ∴∠+=∠︒90EBD ∴∠︒=BE BD = 45BED BDE ∴∠=∠=︒sin 45BE c ∴==⋅︒=c ∴= 22222222()2(2)2()42()a b a ab b a b ab a b +=++=++>+∴)a b +>∴)a b c +>9.有意义,则实数x 的取值范围是______.【答案】【解析】【分析】本题主要考查了二次根式有意义的条件,解题的关键是熟练掌握二次根式被开方数为非负数.有意义,∴,解得:,故答案为:.10. 如图,在中,若,点D 是的中点,,则的长度是_____.【答案】2【解析】【分析】本题考查了直角三角形的性质,利用直角三角形斜边上的中线等于斜边的一半可得的长度.【详解】解:∵在中,,点D 是的中点,,∴.故答案为:2.11. 如图,在数轴上点 A 表示的实数是_____.【解析】【分析】根据勾股定理求得的长度,即可得到的长度,根据点的位置即可得到点表示的数.【详解】解:如图,1x ≥10x -≥1x ≥1x ≥ABC 90ACB ∠=︒AB 4AB =CD CD ABC 90ACB ∠=︒AB 4AB =114222CD AB ==⨯=BD AB B A根据勾股定理得:,,点【点睛】本题考查了实数与数轴,掌握直角三角形两直角边的平方和等于斜边的平方是解题的关键.12. 如图,在四边形中,对角线相交于点O .如果,请你添加一个条件,使得四边形成为平行四边形,这个条件可以是______________________.【答案】(答案不唯一)【解析】【分析】本题考查了平行四边形的判定.熟练掌握平行四边形的判定是解题的关键.根据平行四边形的判定作答即可.【详解】解:由题意知,可添加的条件为,∵,,∴四边形平行四边形,故答案为:.13. 如图,矩形的对角线相交于点O ,,,则矩形对角线的长为___________,边的长为___________.【答案】①. 8 ②. 【解析】【分析】本题主要考查了矩形的性质,等边三角形的性质与判定,勾股定理,先由矩形对角线相等且互相是BD ==∴AB BD ==∴A ABCD AC BD ,AB CD ∥ABCD AD BC ∥AD BC ∥AD BC ∥AB CD ∥ABCD AD BC ∥ABCD AC BD ,60AOB ∠=︒4AB =BD BC平分得到,再证明是等边三角形,得到,则,据此利用勾股定理求出的长即可.【详解】解:∵四边形是矩形,∴,∵,∴是等边三角形,∴,∴,在中,由勾股定理得故答案为:8;14. 小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示的菱形,并测得,对角线的长为,接着活动学具成为图2所示的正方形,则图2中对角线的长为________.【答案】【解析】【分析】如图1,2中,连接AC .在图2中,利用勾股定理求出BC ,在图1中,只要证明△ABC 是等边三角形即可解决问题.【详解】解:如图1,2中,连接AC .如图1中,∵AB =BC ,∠B =60°,∴△ABC 是等边三角形,∴AB =BC =AC =30,在图2中,∵四边形ABCD 是正方形,2290AC BD OA BD ABC ====︒,∠AOB 4OA OB AB ===28AC BD OB ===BC ABCD 2290OA OB AC BD OA BD ABC =====︒,,∠60AOB ∠=︒AOB 4OA OB AB ===28AC BD OB ===Rt ABC △BC ===60B ∠︒AC 30cm AC cm∴AB =BC ,∠B =90°,∵AB =BC =30cm ,∴AC =cm ,故答案为:.【点睛】本题考查菱形的性质、正方形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15. 如图,将菱形纸片ABCD 折叠,使点B 落在AD 边的点F 处,折痕为CE ,若∠D =80°,则∠ECF 的度数是________.【答案】40°【解析】【分析】根据题意由折叠的性质可得∠BCE =∠FCE ,BC =CF ,由菱形的性质可得BC ∥AD ,BC =CD ,可求∠BCF =∠CFD =80°,即可求解.【详解】解:∵将菱形纸片ABCD 折叠,使点B 落在AD 边的点F 处,∴∠BCE =∠FCE ,BC =CF ,∵四边形ABCD 是菱形,∴BC ∥AD ,BC =CD ,∴CF =CD ,∴∠CFD =∠D =80°,∵BC ∥AD ,∴∠BCF =∠CFD =80°,∴∠ECF =40°.故答案为:40°.【点睛】本题考查翻折变换以及菱形的性质,熟练掌握并运用折叠的性质是解答本题的关键.16. 图1中的直角三角形有一条直角边长为3,将四个图1中的直角三角形分别拼成如图2,图3所示的正方形,其中阴影部分的面积分别记为,,则的值为___________.【答案】9【解析】【分析】设直角三角形另一直角边为,然后分别用表示出两个阴影部分的面积,最后求解即可.本题主要考查了三角形和正方形面积的求法,解题的关键在于能够熟练地掌握相关的知识点.【详解】解:设直角三角的另一直角边为,则,,,.故答案为:9三、解答题(共52分,第17题8分,第18-19题,每题5分,第20题6分,第21题5分,第22题6分,第23题7分,第24题10分)解答应写出文字说明、演算步骤或证明过程.17. 计算:(1);(2).【答案】(1(2)【解析】【分析】本题考查了利用二次根式的性质进行化简,二次根式的加减运算,二次根式的混合运算.熟练掌握利用二次根式的性质进行化简,二次根式的加减运算,二次根式的混合运算是解题的关键.(1)先利用二次根式的性质进行化简,然后进行加减运算即可;1S 2S 12S S -a a a 2211(3)4392S a a a =+-⨯⨯=+22S a a a =⋅=221299S S a a ∴-=+-=(1-(2)先分别计算二次根式的乘除,然后进行加减运算即可.【小问1详解】解:【小问2详解】解:.18. 如图,四边形为平行四边形,,是直线上两点,且,连接,.求证:.【答案】见详解【解析】【分析】本题考查平行四边形的性质、平行线的性质、全等三角形的判定与性质,根据可得,再根据平行四边形的性质可得,且,即,即可证明,即可得到结论.【详解】证明:∵,∴,∴,∵四边形为平行四边形,∴,且,∴,在和中,2=⨯=(32=+1=-ABCD E F BD BE DF =AF CE AF CE =BE DF =ED FB =AB DC =AB DC =EDC FBA ∠∠()SAS DEC BFA ≌BE DF =BE BD DF BD +=+ED FB =ABCD AB DC =AB DC =EDC FBA ∠∠DEC BFA V,∴,∴.19. 已知,求的值.【答案】11【解析】【分析】本题考查了已知式子的值求代数式的值,平方差公式,先整理,再代入计算,即可作答.【详解】解:依题意,20. 如图,在中,点D 是线段的中点.求作:线段,使得点E 在线段上,且.作法:①连接,②以点A 为圆心,长为半径作弧,再以C 为圆心,长为半径作弧,两弧相交于点M ;③连接,交于点E ;所以线段即为所求的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明:证明:连接∵,,∴四边形是平行四边形.(①)(填推理的依据)∵交于点E ,∴,即点E 是的中点.(② )(填推理的依据)DE BF EDC FBA DC AB =⎧⎪∠=∠⎨⎪=⎩()SAS DEC BFA ≌AF CE=1x =-227x x ++()22727x x x x ++=++()))2272711751711x x x x ++=++=⨯++=-+=ABC AB DE AC 12DE BC =CD CD AD DM AC DE AM CM ,,AM CD =AD CM =ADCM AC DM ,AE CE =AC∵点D 是AB 的中点,∴.(③ )(填推理的依据)【答案】见详解【解析】【分析】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.(1)根据几何语言画出对应的几何图形即可;(2)先证明四边形是平行四边形,得出点E 是的中点,再结合然后点D 是的中点,即三角形中位线性质得到.【详解】解:(1)如图,;(2)证明:连接AM ,CM ,∵,,∴四边形是平行四边形.(①两组对边分别相等的四边形是平行四边形)(填推理的依据)∵AC ,DM 交于点E ,∴,即点E 是中点.(②平行四边形的对角线互相平分)(填推理的依据)∵点D 是的中点,∴(③中位线的性质).故答案为:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;中位线的性质.21. 如图,四边形中,,,.的12DE BC =-ADCM AC AB 12DE BC =AM CD =AD CM =ADCM AE CE =AC AB 12DE BC =ABCD 90BAD ∠=︒AB AD ==4BC =CD =(1)求的度数;(2)求四边形的面积.【答案】(1)(2)5【解析】【分析】(1)由题意得,,由勾股定理得,,由,可得是直角三角形,且,根据,计算求解即可;(2)根据,计算求解即可.【小问1详解】解:∵,∴,由勾股定理得,,∵,∴,∴是直角三角形,且,∴,∴的度数为;【小问2详解】解:由题意知,,∴四边形的面积为5.【点睛】本题考查了三角形内角和定理,等边对等角,勾股定理,勾股定理逆定理等知识.熟练掌握三角形内角和定理,等边对等角,勾股定理,勾股定理逆定理是解题的关键.ABC ∠ABCD 135︒1802BADABD ADB ︒-∠∠=∠=2BD =222BD BC CD +=BCD △90CBD ∠=︒ABC ABD CBD ∠=∠+∠1122ABD BCD ABCD S S S AB AD BC BD =+=⨯+⨯ 四边形90BAD ∠=︒AB AD ==180452BAD ABD ADB ︒-∠∠=∠==︒2BD ==(2222420+==222BD BC CD +=BCD △90CBD ∠=︒135ABC ABD CBD ∠=∠+∠=︒ABC ∠135︒11522ABD BCD ABCD S S S AB AD BC BD =+=⨯+⨯= 四边形ABCD22. 在中,,点D 是边上的一个动点,连接.作,,连接.(1)如图1,当时,求证:;(2)当四边形是菱形时,①在图2中画出四边形,并回答:点D 的位置为 .②若,,则四边形的面积为 .【答案】(1)见解析,(2)①见解析,为的中点;②【解析】【分析】(1)由,,可证四边形是平行四边形,由,可证四边形是矩形,进而结论得证;(2)①由题意作图如图2,由四边形是菱形,可得,则,由,可得,则,,即为的中点;②如图2,记的交点为,则,,,由勾股定理求,则,根据,计算求解即可.【小问1详解】证明:∵,,∴四边形是平行四边形,∵,∴,∴四边形是矩形,∴;【小问2详解】①解:如图2,Rt ABC △90ACB ∠=︒AB CD AE DC ∥CE AB ∥DE CD AB ⊥AC DE =ADCE ADCE 10AB =8DE =ADCE D AB 24AE DC ∥CE AB ∥AECD 90CDA ∠=︒AECD ADCE AD CD =DAC DCA ∠=∠18090B ACB DAC DCB DCA ∠=︒-∠-∠∠=︒-∠,B DCB ∠=∠CD BD =AD BD =D AB AC DE 、O 5AD =142DO DE ==AC DE ⊥3AO =26AC AO ==12ADCE S AC DE =⨯四边形AE DC ∥CE AB ∥AECD CD AB ⊥90CDA ∠=︒AECD AC DE =∵四边形是菱形,∴,∴,∵,∴,∴,∴,∴为的中点;②解:如图2,记的交点为,∵四边形是菱形,为的中点,,,∴,,,由勾股定理得,,∴,∴,故答案为:.【点睛】本题考查了矩形的判定与性质,等边对等角,三角形内角和定理,菱形的性质,勾股定理等知识.熟练掌握矩形的判定与性质,等边对等角,三角形内角和定理,菱形的性质,勾股定理是解题的关键.23. 如图,四边形中,,,对角线平分,过点A 作的垂线,分别交,于点E ,O ,连接.(1)求证:四边形菱形;(2)连接,若,,求的长.是ADCE AD CD =DAC DCA ∠=∠18090B ACB DAC DCB DCA ∠=︒-∠-∠∠=︒-∠,B DCB ∠=∠CD BD =AD BD =D AB AC DE 、O ADCE D AB 10AB =8DE =5AD =142DO DE ==AC DE⊥3==AO 26AC AO ==1242ADCE S AC DE =⨯=四边形24ABCD AD BC ∥90BCD ∠=︒BD ABC ∠BD AE BC BD DE ABED CO 3AB =2CE =CO【答案】(1)见解析(2)【解析】【分析】(1)先证明,再由等腰三角形的性质得,然后证,得,则四边形是平行四边形,然后由菱形的判定即可得出结论;(2)由勾股定理得,根据直角三角形斜边上的中线等于斜边的一半,即可得出【小问1详解】证明:∵,∴,∵平分,∴,∴,∴,∵,∴,∵,在和中,,,,四边形是平行四边形,又,平行四边形为菱形;【小问2详解】解:∵四边形为菱形,∴,,CO =AB AD =OB OD =()ASA OBE ODA ≌OE OA =ABED CD =BD =CO =AD BC ∥ADB DBE ∠=∠BD ABC ∠ABD DBE ∠=∠ABD ADB ∠=∠AB AD =AE BD ⊥BO DO =AD BC ∥OBE △ODA V DBE ADB OB ODBOE DOA ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA OBE ODA ∴ ≌OE OA ∴=∴ABED AB AD = ∴ABED ABED 3BE DE AB ===BO DO =∵,,,∴在中,根据勾股定理得:,∵,为直角三角形,∴.【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、等腰三角形的性质以及勾股定理、直角三角形斜边上的中线等于斜边的一半,二次根式的混合运算等知识,熟练掌握菱形的判定与性质是解题的关键.24. 在中,,,点D 为射线上一动点(不与点B 、C 重合),点B 关于直线的对称点为E ,作射线,过点C 作的平行线,与射线交于点F .连接(1)如图1,当点E 恰好在线段上时,用等式表示与的数量关系,并证明;(2)如图2,当点D 在线段的延长线上时,①依题意补全图形;②用等式表示和的数量关系,并证明.【答案】(1),证明见详解(2)①见详解②,证明见详解【解析】【分析】本题考查了全等三角形的判定与性质、正方形的性质与判定,矩形的性质,轴对称性质,正确掌握相关性质内容是解题的关键.(1)先由轴对称性质,得出再证明,因为,得出得证即可作答.90BCD ∠=︒CD =∴=325BC BE CE =+=+=Rt BCDBD ===BO DO =BCD△12CO BD ==ABC 90ABC ∠=︒AB BC =BC AD DE AB DE AE AF ,.AC DF BD BC ADB ∠AFE ∠2DF BD =45ADB AFE ∠+︒=∠AB AE BD ED ==,,()SSS ADE ADB ≌CF AB ∥45ECD ECF ∠=∠=︒,()ASA CED CEF ≌,(2)①根据题意的描述作图即可;②易得,过点作于点,四边形是正方形,证明,则,再通过角的运算,即可作答.【小问1详解】解:,证明如下:如图:当点E 恰好在线段上时,∵在中,∴,∵点B 关于直线的对称点为E ,∴在和中,∴,∴,∴,,∵,∴在和中,∴ADE ADB ≌A AG CF ⊥G ABCG ()Rt Rt HL AFG AFE ≌FAG FAE EAG ∠==∠2DF BD =AC ABC 90ABC AB BC∠=︒=,45BAC ACB ∠=∠=︒AD AB AE BD ED ==,,ADE V ADB AE AB ED BD AD AD =⎧⎪=⎨⎪=⎩,()SSS ADE ADB ≌90AED ABD ∠=∠=︒AC DF ⊥90CED CEF ∠=∠=︒CF AB ∥45ECF BAC ∠=∠=︒,45ECD ECF ∴∠=∠=︒,CED △CEF △CED CEF CE CEECD ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA CED CEF ≌,∴ ∴,即有;【小问2详解】解:当点在线段的延长线上时①依题意补全图形如下②用等式表示和的数量关系是,证明如下∵点关于直线的对称点为E ,∴,∴,过点作于点,如上图,则,∵,∴∴四边形是矩形,∵,∴四边形是正方形,∴,在和中,∴,∴,即有,12DE EF DF ==,12BD DE DF ==2DF BD =D BC ADB ∠AFE ∠45ADB AFE ∠+︒=∠B AD ADE ADB ≌90AE AB AEF ABC =∠=∠=︒,12EAD BAD BAE ∠=∠=∠,A AG CF ⊥G 90AGF AGC ∠=∠=︒CF AB ∥90BAG AGF ABC AGC∠=∠=︒=∠=∠ABCG AB BC =ABCG AG AB AE ==Rt AFG △Rt AFE AG AE AF AF=⎧⎨=⎩()Rt Rt HL AFG AFE ≌FAG FAE EAG ∠==∠2EAG FAE ∠=∠∵∴,∴,∴∴在中,,∴∴.人大附中2023~2024学年度第二学期初二年级数学期中练习附加题说明:1.附加题共4页,共两道大题,9道小题,满分40分,考试时间30分钟.2.试题答案一律填涂或书写在答题卡上,在试卷、草稿纸上作答无效.3.在答题卡上,作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.一、填空题(共15分,第1题4分,第2-4题,每题3分,第5题2分)25. 矩形中,,,点E 是边上一点,连接,将沿折叠,使点B 落在点处,连接.(1)如图1,当时,的长为___________.(2)如图2,当点恰好在矩形的对角线上,则的长为___________.【答案】①. 4 ②. 【解析】【分析】(1)由矩形性质得,由折叠得:,,由平行线的性质得:,,进而得出:,,即;90AFE FAE ∠+∠=︒90FAE AFE ∠=︒-∠21802EAG FAE AFE ∠=∠=︒-∠2702BAE BAG EAG AFE∠=∠+∠=︒-∠135.BAD BAE AFE ∠=∠=︒-∠Rt △ABD 90ADB BAD ∠+∠=︒13590ADB AFE ∠+︒-∠=︒45ADB AFE ∠+︒=∠ABCD 6AB =8BC =BC AE ABE AE B 'CB 'CB AE '∥BE B 'ABCD ACAE 90ABE ∠=︒B E BE '=AEB AEB '∠=∠AEB ECB '∠=∠AEB EB C ''∠=∠ECB EB C ''∠=∠B E EC '=142BE EC BC ===(2)利用勾股定理可得,由折叠得:,,,设,则,,利用勾股定理建立方程求解即可;本题是矩形综合题,考查了矩形的性质,折叠变换的性质,勾股定理等,熟练掌握相关知识,学会添加辅助线是解题关键.【详解】解:(1)四边形是矩形,,由折叠得:,,,,,,,,,,故答案为:4;(2)如图,点恰好在矩形的对角线上,四边形是矩形,,,,,由折叠得:,,,,,设,则,,在中,,10AC ===AB AB '=B E BE '=90AB E ABE '∠=∠=︒BE x =B E x '=8CE x =- ABCD 90ABE ∴∠=︒B E BE '=AEB AEB '∠=∠CB AE ' AEB ECB '∴∠=∠AEB EB C ''∠=∠ECB EB C ''∴∠=∠B E EC '∴=12BE EC BC ∴==8BC = 4BE ∴=B 'ABCD AC ABCD 90ABC ∴∠=︒=6AB 8BC=10AC ∴===AB AB '=B E BE '=90AB E ABE '∠=∠=︒1064B C AC AB ''∴=-=-=18090CB E AB E ''∠=︒-∠=︒BE x =B E x '=8CE x =-Rt CB E '△222B E B C CE ''+=,解得:,,在中,;故答案为:4,26. 如图,四边形中, ,的平分线交于点E ,连接.在以下条件:①平分;②E 为中点;③中选取两个作为题设,另外一个作为结论,组成一个命题.(1)请写出一个真命题:题设为___________,结论为___________.(填序号)(2)可以组成真命题的个数为___________.【答案】①. ②, ②. ③, ③. 6【解析】【分析】(1)根据挑选题设为②,结论为③,结合,的平分线交这个两个条件,先证明,再进行边的等量代换,即可作答.(2)注意分类讨论以及逐个分析,不管取哪个作为条件都可以证明,从而利用全等三角形的性质进行边的等量代换或者角的等量代换,即可作答.【详解】解:(1)题设为②,结论为③;理由如下:延长交的延长线于点,∵∴,()22248x x ∴+=-3x =3BE ∴=Rt ABEAE ===ABCD AD BC ∥BAD ∠CD BE BE ABC ∠CD AD BC AB +=AD BC ∥BAD ∠CD ()AAS AED FEC ≌AED FEC △≌△AE BC F AD BC∥DAE F ∠=∠∵E 为中点,∴,在和中,∴,∴,,∵的平分线交于点E ,∴,∴∴∴(2)由(1)知,题设为②,结论为③是真命题,同理:题设为③,结论为②是真命题,过程如下:延长交的延长线于点,∵的平分线交于点E∴,∵∴∴∵∴∴∵CD DE CE =AED △FEC DAE F DEA CEFDE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AED FEC ≌CF AD =AD BC CF BC BF +=+=BAD ∠CD DAE BAD ∠=∠BAD F∠=∠AB BF=AD BC AB+=AE BC F BAD ∠CD DAE BAD ∠=∠AD BC∥BAD DAE F∠=∠=∠AB BF=AD BC AB+=AD BC AB BF+==AD CF=AD BC∥∴∵∴∴即E 为中点;当题设为①,结论为②是真命题,过程如下:延长交的延长线于点,∵的平分线交于点E∴,∵∴∴∵平分∴∵∴∴即E 为中点;同理:当题设为②,结论①为是真命题,同理,∴,,∵的平分线交于点E ,∴,∴∴∴DAE F∠=∠DEA CEF∠=∠ ≌DEA CEFDE CE=CD AE BC F BAD ∠CD DAE BAD ∠=∠AD BC∥BAD DAE F∠=∠=∠AB BF=BE ABC∠EB AF AE EF⊥=,DEA CEF DAE F∠=∠∠=∠, ≌DEA CEFDE CE=CD CF AD =AD BC CF BC BF +=+=BAD ∠CD DAE BAD ∠=∠BAD F∠=∠AB BF=AD BC AB+=则当题设为①,结论为③是真命题,同理:当题设为③,结论为②是真命题,综上共有6个命题:分别是题设为②,结论为③;题设为③,结论为②;题设为①,结论为②;题设为②,结论①;题设为①,结论为③,题设为③,结论为②.【点睛】本题考查了全等三角形的判定与性质、真命题,等腰三角形的判定与性质,角平分线的定义,正确掌握相关性质内容是解题的关键.27. 如图,在正方形中,,点E 为对角线上的动点(不与A ,C 重合),以为边向外作正方形,点P 是的中点,连接,则的取值范围为___________.【解析】【分析】先取的中点O,结合正方形的性质,得证,当时,有最小值,在中,,计算即可作答.【详解】解:如图,取的中点O ,连接,∵四边形、是正方形,∴,,∴,则在和中ABCD 4AB =AC DE DEFG CD PG PG PG ≤<AD ()SAS ODE PDG ≌OEAC ⊥OE Rt AOE △2224OE AE AO +==AD OE DEFG ABCD 90ODE EDC ︒∠+∠=90PDG EDC ∠+∠=︒ODE PDG ∠=∠ODE PDG △OD OP ODE PDGDE DG =⎧⎪∠=∠⎨⎪=⎩,∴,当时,有最小值,此时为等腰直角三角形,,∵,∴,在中,,即,解得,∴.当点运动到点的时候,如图:此时即为点H 的位置,此时正方形的边长最大且为则的值最大,此时∴则.【点睛】本题考查了正方形性质,全等三角形的判定与性质,垂线段最短,勾股定理等知识,正确掌握相关性质内容是解题的关键.28.如图,正方形ABCD 边长为2,点E 是射线AC 上一动点(不与A ,C 重合),点F 在正方形ABCD 的外角平分线CM 上,且CF=AE ,连接BE , EF , BF 下列说法:①的值不随点E 的运动而改变的()SAS ODE PDG ∴ ≌OE PG =OE AC ⊥OE AOE △OE AE =4AD AB ==122AO AB ==Rt AOE △2224OE AE AO +==224OE =OE =OE E C G DEFG 4CD AD ==PH PH ===PG PG ≤<PG ≤<②当B ,E , F 三点共线时,∠CBE=22.5°;③当△BEF 是直角三角形时,∠CBE=67.5°;④点E 在线段AC 上运动时,点C 到直线EF 的距离的最大值为1;其中正确的是__________(填序号).【答案】①②④【解析】【分析】连接、,由正方形的对称性可知,,,证明,得出,,证出,证出是等腰直角三角形得出,因此,得出①正确;当,,三点共线时,证出,,,四点共圆,由圆周角定理得出,证出,得出,求出,②正确;当是直角三角形时,证出,得出,,③不正确;当点在线段上运动时,过点作于,则,最大时,与重合,即,证出是的中位线,得出,④正确;即可得出结论.【详解】解:连接、,如图1所示:由正方形的对称性可知,,四边形是正方形,,,点是正方形外角平分线上一点,,,在和中,,,,,ED DF BE DE =CBE CDE ∠=∠()ABE CDF SAS ∆≅∆BE DF =ABE CDF ∠=∠DE DF =EDF∆EF=EF B E F E C F D BFC CDE ∠=∠CDE CBE =∠∠CBF CFB ∠=∠22.5CBF ∠=︒BEF ∆9045135BED ∠=︒+︒=︒1(36013590)67.52CBE ∠=︒-︒-︒=︒67.5CBF ∠<︒E AC C CQ EF ⊥Q CQ CH …CQ CQ CH CD EF ⊥QE ACD ∆112CQ DQ CD ===ED DF BE DE =CBE CDE∠=∠ ABCD AB CD ∴=45BAC ∠=︒ F ABCD CM 45DCF ∴∠=︒BAC DCF ∴∠=∠ABE ∆CDF ∆AB CD BAC DCF AE CF =⎧⎪∠=∠⎨⎪=⎩()ABE CDF SAS ∴∆≅∆BE DF ∴=ABE CDF ∠=∠,,,即,是等腰直角三角形,,的值不随点的运动而改变,①正确;当,,三点共线时,如图2所示:,,,,四点共圆,,,,,,,,②正确;当是直角三角形时,如图3所示:是等腰直角三角形,,DE DF ∴=90ABE CBE ∠+∠=︒ 90CDF CDE ∴∠+∠=︒90EDF ∠=︒EDF∴∆EF ∴=EF ∴=∴EF BEE B EF 90ECF EDF ∠=∠=︒ E ∴C F D BFC CDE ∴∠=∠ABE ADE ∠=∠ 90ABC ADC ∠=∠=︒CDE CBE ∴∠=∠CBF CFB ∴∠=∠45FCG CBF CFB ∠=∠+∠=︒ 22.5CBF ∴∠=︒BEF ∆EDF ∆ 9045135BED ∴∠=︒+︒=︒,,③不正确;当点在线段上运动时,如图4所示:过点作于,则,最大时,与重合,即,当时,,,是的中位线,,④正确;综上所述,①②④正确;故答案为:①②④.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、四点共圆、圆周角定理等知识;本题综合性强,有一定难度.29. 如图,在平行四边形中,,,,在线段上取一点E ,使,连接,点M ,N 分别是线段上的动点,连接,则的最小值为___________.1(36013590)67.52CBE ∴∠=︒-︒-︒=︒67.5CBF ∴∠<︒E AC C CQ EF ⊥Q CQ CH …CQ ∴CQ CH CD EF ⊥CD EF ⊥//EF AD CF CE AE ==QE ∴ACD ∆112CQ DQ CD ∴=== ABCD 3AB =4BC =60ABC ∠=︒AD 1DE =BE AE BE ,MN 12MN BN +【解析】【分析】如图,作于,于,于,则四边形是矩形,,由题意可求,,,则,,由,可知当三点共线且时,最小,为,求的长,进而可求最小值,【详解】解:如图,作于,于,于,则四边形是矩形,∴,∵平行四边形中,,,,,∴,,∴,∴,∴,∴,∴当三点共线且时,最小,为,∵,∴,由勾股定理得,,∴,【点睛】本题考查了平行四边形的性质,矩形的判定与性质,含的直角三角形,等边对等角,勾股定理NF BC ^F AH BC ⊥H MG BC ⊥G AHGM MG AH =3AE AB ==120BAC ∠=︒30ABE AEB ∠=∠=︒30EBC ∠=︒12NF BN =12MN BN MN NF +=+M N F 、、MF BC ⊥12MN BN +MG AH 12MN BN +NF BC ^F AH BC ⊥H MG BC ⊥G AHGM MG AH =ABCD 3AB =4BC =1DE =60ABC ∠=︒3AE AB ==120BAC ∠=︒30ABE AEB ∠=∠=︒30EBC ∠=︒12NF BN =12MN BN MN NF +=+M N F 、、MF BC ⊥12MN BN +MG =30BAH ∠︒1322BH AB ==AH ==12MN BN +30︒等知识.明确线段和最小的情况是解题的关键.二、解答题(共25分,第6题5分,第7题4分,第8-9题,每题8分)解答应写出文字说明、演算步骤或证明过程.30. 如图是由小正方形组成的网格,每个小正方形的边长为,其顶点称为格点,四边形的四个顶点都在格点上,请运用课本所学知识,仅用无刻度的直尺,在给定网格中按要求作图.(1)①线段的长为 个单位长度;②在图1中求作边的中点E ;(2)在图中求作边上一点,使平分.注:保留作图痕迹,同时标出必要的点;当你感觉方法比较复杂时,可用文字简要说明作法.【答案】(1)①;②作图见解析;(2)见解析.【解析】【分析】(1)①利用勾股定理即可求解;②取格点、,连接交于点,则点为所求;(2)取格点、,连接、相交于点,作射线交于点,则点为所求.【小问1详解】解:①,故答案为:;②如图,点为所求作图形,【小问2详解】解:如图,点为所求,87⨯1ABCD CD CD 2AB F CF BCD ∠5M N MN AC E E G H AQ DH Q CF AB FF 5CD ==5E F。
大兴区2024~2025学年度第一学期期中检测初二数学2024.11考生须知1.本试卷共7页,共三道大题,28道小题,满分100分.考试时间120分钟.2.在答题纸上准确填写学校名称、准考证号,并将条形码贴在指定区域.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题纸上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.的相反数是()(A)(B(C)(D2.下列四个图标中是轴对称图形的是()(A)(B)(C)(D)3.下列四组线段中,能组成三角形的是()(A)2,3,5(B)3,4,5(C)3,4,8(D)5,5,104.如图,用三角尺作的边上的高,下列三角尺的摆放位置正确的是()(A)(B)(C)(D)5.正十二边形的外角和为()(A)30°(B)150°(C)360°(D)1800°6.在中,,则()(A)是锐角三角形(B)是直角三角形(C)是钝角三角形(D)不存在7.如图,在中,,是的平分线,已知,,则的面积是()(A)3.5(B)5(C)7(D)148.在中,和的平分线交于点F,过点F作的平行线,分别交,于点ABC△ABABC△::1:2:3A B C∠∠∠=ABC△ABC△90C∠=︒AD CAB∠2CD=7AB=ADB△ABC△ABC∠ACB∠BC AB ACD ,E .给出下面四个结论:①若,则;②若,则;③;④若,,则的周长为.上述结论中,正确的个数是( )(A )1(B )2(C )3(D )4二、填空题(共16分,每题2分)9.把二元一次方程改写成用含x 的式子表示y 的形式,则y =______.10.点关于y 轴的对称点的坐标为______.11.在数轴上点M ,N 表示的数分别为2,,且点N 在点M 的右侧,则x 的取值范围是______.12.方程的解为______.13.如图,在中,,于点D ,,若,则______.14. 如图,,,垂足分别为点B ,D .若只添加一个条件,使,则这个条件可以是______.(写出一种情况即可).15.如图,在中,点D ,E 分别是,的中点,若的面积为a ,则的面积是______.16.若是的高,且,,则的度数是______.120A ∠=︒160BFC =︒∠AB AC =BDF CEF ≌△△2DE BF FC <+8cm AB =6cm AC =ADE △14cm 34x y +=()2,1M -21x -+36x x -=ABC △90ACB ∠=︒CD AB ⊥30B ∠=︒4AB =BD =AB BC ⊥AD DC ⊥ABC ADC ≌△△ABC △AB CD ABC △ADE △AD ABC △20ABD ∠=︒50ACD ∠=︒BAC ∠三、解答题(共68分,第17-22题,每题5分,第23-26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.18.解不等式组:19.如图,、. 求证:平分.20.如图,在中,作的平分线,交于点P .在射线上,截取线段,使.(1)用直尺和圆规补全图形(保留作图痕迹,不写作法);(2)连接,求证:.21.如图,是的中线,过点C 作,交的延长线于点E ,求证:.22.如图,的三个顶点的坐标分别为,,(1)若与关于x 轴成轴对称,请画出;(2)在x 轴上找一点P ,使的值最小,在图中画出点P .(-()3142925x x x x -<+⎧⎪⎨->⎪⎩AB AC =BO CO =AO BAC ∠ABC △BAC ∠AP BC AC AD AD AB =PD PB PD =AD ABC △CE AB ∥AD AD DE =ABC △()1,1A ()4,2B ()3,4C A B C '''△ABC △A B C '''△PA PB +23.在科技节活动中,小明利用几何图形及其元素的关系,设计了一款风筝(如图1所示),并结合所学知识利用图2进行了讲解和展示,获得了大家的一致好评.下面是他对自己设计理念中两个特点的描述.特点一:图2是该“风筝”中平面图形的主要部分,它是轴对称图形;特点二:延长 交于点E ,此时恰好是的垂直平分线.阅读以上材料完成下面问题:(1)根据描述,补全图形;(2)根据上面的特点,小明发现与相等,并写出他的探究过程.请认真阅读,完成下面的证明过程,并在括号中填写依据.证明:是的垂直平分线, ______()与关于直线______对称,,______,,().24.在历史上数学家欧拉最先用记号来表示关于x 的多项式.当时,多项式的值用来表示.BC AD BE AD CAB ∠B ∠ BE AD ∴CA = ACB △ACD △∴ACB ACD ≌△△∴CB =∴CA CB =∴CAB B ∠=∠()f x x a =()f a例如,对于多项式,当时,多项式的值为当多项式时,回答下面问题:(1)______;(2)若,求的值;(3)若,求m 的取值范围.25.如图,在四边形中,,平分,,求的度数.26.如图,在平面直角坐标系中,的顶点坐标分别为点,,.将向左平移两个单位长度得到,线段与线段相交于点M .(1)求证:;(2)连接,交于点N .①求证:平分;②直接写出的面积.27.在中,,,点D 是射线上一点(点D 不与点B ,C 重合),连接,将线段 绕点A 逆时针旋转60°,旋转后且,连接,,延长线段交直线于点F .(1)如图1,证明:是等边三角形;(2)当点D 在如图1所示的位置时:①求证:;②直接用等式表示线段, 和之间的数量关系;(3)当点D 在线段上时(点D 不与点B ,C 重合),直接用等式表示线段、和之间的数量关系.()21f x x x =++2x =()222217f =++=()322f x mx mx x m =-+-()2f =()00f =()2024f ()()11f f ≤-ABCD AB AD =AC BCD ∠90BAD ∠=︒ACB ∠xOy Rt ABC △()5,2A ()1,0B ()5,0C Rt ABC △Rt DEF △DF AB AM BM =CD AB CD ACB ∠ACN △ABC △90ACB ∠=︒30BAC ∠=︒CB AD AD AE AD =60DAE ∠=︒DE EC EC AB ADE △BD BF =AB BF CD BC AB BF CD28.在平面直角坐标系中,对于点,若点Q 坐标为,则称点Q 为点P 的“关联点”.例如,点,则点是点P 的“关联点”.(1)若点是点的“关联点”,则点的坐标为______;(2)若点是点的“关联点”,且点在x 轴上,求t 的值;(3)若点是点的“关联点”,且线段与x 轴有交点,直接写出t 的取值范围.xOy (),P x y (),2x y x -+()1,2P ()1,4Q -1Q ()12,3P 1Q 2Q ()21,1P t --2Q 3Q ()3,3P t t --33PQ大兴区2024~2025学年度第一学期期中检测初二数学参考答案及评分标准一、选择题(共16分,每题2分)题号12345678答案A D B A C B C B二、填空题(共16分,每题2分)9.10.11.12.13.314.答案不唯一,如15.16.30°或110°三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,第27-28题,每题7分)17.18.解:解不等式①得:解不等式②得:原不等式组的解解集是.19.证明:在和中,,平分.20.(1)解:43x-()2,1--12x<-3x=AB AD=4a(-172=+-+4=+()3142925x xxx-<+⎧⎪⎨->⎪⎩①②7x<1x>-17x-<<ABO△ACO△AB ACBO COAO AO=⎧⎪=⎨⎪=⎩∴ABO ACO≌△△∴BAO CAO∠=∠∴AO BAC∠(2)证明:平分,,在和中,.21.证明:证明:是的中线,,.,.在和中,.(方法不唯一)22.解:AP BAC ∠∴BAP CAP ∠=∠ABP △ADP △AB CD BAP CAP AP AP =⎧⎪∠=∠⎨⎪=⎩∴ABP ADP ≌△△∴PB PD = AD ABC △∴BD CD = AB CE ∥∴BAD E ∠=∠ABD △ECD △BDA C E B D BD CD AD E ⎧⎪∠=∠⎨⎪==∠⎩∠∴ABD ECD ≌△△∴AD DE =(第二问,也还可以连接,与x 轴交点也是P 点)23.解:(1)(2);线段垂直平分线上的点与这条线段两个端点的距离相等;;;等边对等角.24.解:(1);(2),.,,.把代入.,.(3),AB 'CD AC CD 2m - ()32f x mx mx x m =-+-∴()3200200f m m m m =⨯-⨯+-=- ()00f =∴0m -=∴0m = 0m =()32f x mx mx x m =-+-∴()f x x =∴()20242024f = ()32f x mx mx x m =-+-,.,..25.解:在上截取,连接.平分,.在和中,.,,...在四边形中,,.即 26.(1)证明:连接.∴()12121f m m m m =-+-=-+()12141f m m m m -=----=-- ()()11f f ≤-∴2141m m -+≤--∴1m ≤-CD CE CB =AE AC BCD ∠∴12∠=∠AEC △ABC △12CE CB AC AC =⎧⎪∠=∠⎨⎪=⎩∴AEC ABC ≌△△∴3B ∠=∠AE AB = AB AD =∴AE AD =∴4D ∠=∠ 34180∠+∠=︒∴180B D ∠+∠=︒ ABCD 360BAD B BCD D +++=︒∠∠∠∠∴180BAD BCD ∠+∠=︒ 90BAD ∠=︒∴90BCD ∠=︒ 12∠=∠∴245∠=︒45ACB ∠=︒AD向左平移两个单位得到,,,.,,.,,.(2)①过点N 作于H ,于G .,,,,.,.,,,为的平分线.②.27.解:(1),,是等边三角形;(2)①证明: 延长至点G ,使, 连接,,Rt ABC △Rt DEF △∴AD BC ∥2AD CF ==∴MAD MBF =∠∠ ()1,0B ()5,0C ∴4BC =∴2BF BC CF =-=∴BF AD = DMA FMB ∠=∠∴DMA FMB ≌△△∴AM BM =NH BC ⊥NG AC ⊥ ()5,2A ()5,0C ∴2AC =∴AC AD =∴ADC ACD ∠=∠ AD CB ∥∴180DAC ACB +=︒∠∠ 90ACB ∠=︒∴90DAC ∠=︒∴90ACD ADC ∠+∠=︒∴45ACD ∠=︒∴45BCD ∠=︒∴CD ACB ∠4360DAE ∠=︒AD AE =∴ADE △BC BC CG =AG EG,.,,是等边三角形,. .在和中,,.在和中,,.②.(3)28.解:(1)点;(2)点,点,BC CG =90C ∠=︒∴AB AG = 90ACB ∠=︒30BAC ∠=︒∴60ABC ∠=︒∴ABG △120ABD =︒∠∴60AGB BAG ∠=∠=︒∴60DAE BAG ∠=∠=︒∴DAB EAG ∠=∠ABD △AGE △AD AE DAB EAGAB AG =⎧⎪∠=∠⎨⎪=⎩∴ABD AGE ≌△△∴BD GE =120ABD AGE =∠=︒∠ 60AGB ∠=︒∴60EGC ∠=︒∴EGC ABC ∠=∠BCF △GCE △ABC EGC BC GCBCF GCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴BCF GCE ≌△△∴BF EG =∴BD BF =()2AB CD BF =-()2AB CD BF =+()12,7Q - ()21,1P t --∴()21,3Q t -;(3)或.∴30t -=∴3t =3t ≥3t ≤-。
四川省成都市七中育才学校2024-2025学年八年级上学期11月期中考试数学试题一、单选题1.16的平方根是()A .4B .4±C .2D .2±2.下列数中,2.134,0,117-,π无理数的个数是()A .1个B .2个C .3个D .4个3.下列各组数据中的三个数作为三角形的边长,能构成直角三角形的是()A .2,3,4B .6,8,10C .9,12,13D .8,24,254.下列计算正确的是()A B .2-=C 4=D 4=5.下列二次根式中,属于最简二次根式的是()A BC D 6.点()3,2A m -在第二象限的角平分线上,则m 的值为()A .5B .5-C .1D .1-7.下列说法中正确的是()A .点()2,3P -在第四象限B .两个无理数的和还是无理数C .8-没有立方根D .平方根等于本身的数是0或18.在第三象限内,点(),P m n 到x 轴距离为5,到y 轴的距离为2,则点P 坐标为()A .()5,2B .()2,5C .()2,5--D .()5,2--二、填空题9.若()23232a a x y --+=是关于x ,y 的二元一次方程,则a =.10.满足1<<x 的整数x 是.11.如图所示的是一个圆柱,底面圆的周长是12cm ,高是5cm ,现在要从圆柱上点A 沿表面把一条彩带绕到点B ,则彩带最短需要cm .12.已知点A 坐标()2,3-,在点A 左侧有一点B 坐标(),3m ,若4AB =,则m =.13.如图,在Rt ABC △中,90BAC ∠=︒,按以下步骤作图:①分别以点A ,B 为圆心,大于12AB 的长为半径作弧,两弧相交于M ,N 两点;②作直线MN 交BC 于点D ,连接AD .若16AB =,10AD =,则AC 的长为.三、解答题14.(1)计算:()12202412--+--.(2)解方程组231045x y x y +=⎧⎨+=⎩15.已知21a +的算术平方根是24=,c 3的整数部分.(1)求a ,b ,c 的值.(2)求42a b c +-的立方根.16.在正方形网格中,每个小正方形的边长为1,如图所示建立平面直角坐标系,在ABC V 中,点()4,5A -,()1,3B -,()3,1C -.(1)若点H 与点A 关于x 轴对称,则点H 的坐标是______;(2)作出ABC V 关于y 轴对称的图形DEF ;(点A 对应点为点D ,点B 对应点为点E ,点C 对应点为点F )(3)连接BD ,BF ,求BDF V 的面积.17.四川的人民渠(利民渠、幸福渠、官渠堰)是都江堰扩灌工程之一,也是四川省建成的第一座大型水利工程,有“巴蜀新春第一渠”之称.现为扩建开挖某段干渠,如图,欲从干渠某处A 向C 地、D 地、B 地分流(点C ,D ,B 位于同一条直线上),修三条笔直的支渠AC ,AD ,AB ,且AC BC ⊥;再从D 地修了一条笔直的水渠DH 与支渠AB 在点H 处连接,且水渠DH 和支渠AB 互相垂直,已知6km AC =,10km AB =,5km BD =.(1)求支渠AD 的长度.(结果保留根号)(2)若修水渠DH 每千米的费用是0.7万元,那么修完水渠DH 需要多少万元?18.如图1,平面直角坐标系中有矩形OABC ,点A 坐标为()0,a ,点C 坐标为(),0c ,点D 在OC 边上,13OD =,点P 在OA 边上,将矩形OABC 沿直线PD 翻折,点O 落在AB 边上的点E 处.若实数a ,c 满足120a -=.(1)点B 的坐标为______,点E 的坐标为______;(2)如图2,若点M 从点D 出发以每秒2个单位的速度沿折线D C B E →→→的方向匀速运动,当M 与点E 重合时运动停止;设点M 的运动时间为t 秒,以点D 、E 、M 为顶点的三角形的面积记为S ,请用含t 的式子表示S ;(3)在(2)的条件下,当DEM △为等腰三角形时,请直接写出点M 的坐标.四、填空题19.已知8b =+,则a b -为.20.若方程组31331x y a x y a +=+⎧⎨+=-⎩的解满足1x y +=,则a 的值为.21.如图,在ABC V 中,CD AB ⊥于点D ,E 在AD 上,连接CE ,AE CE =.若6AD =,5BC =,3BD =,则DE 长为.22.学习了平面直角坐标系后,初二(1)班的同学组成了数学课外小组,为学校的一块空地设计植树方案如下:第k 棵树种植在点(),k k k P x y 处,其中11x =,11y =,当2k ≥时,1111255k k k k x x k k y y --=+⎧⎪--⎨⎡⎤⎡⎤=+-⎪⎢⎥⎢⎥⎣⎦⎣⎦⎩,其中[]a 表示非负实数a 的整数部分,例如:[]2.62=,[]0.50=.按此方案,第6棵树种植点6P 为;第2024棵树种植点2024P 为.23.如图,在ABC V 中,45ABC ∠=︒,75BAC ∠=︒,2AC =,点E 与点D 分别在射线BC 与射线AD 上,且AD BE =,则AE BD +的最小值为,AE ED +的最小值为.五、解答题24.如图,正方形ABCD 中,2AB =,数轴上点A 表示的数为3,以点A 为圆心,AC 为半径作圆,与数轴相交于点E 和F ,点E 表示的数记为x ,点F 表示的数记为y ;(1)x =______,y =______;(2)化简求值:223x xy y ++;(3)若1a x=,求265a a -+的值.25.给出如下定义:在平面直角坐标系xOy 中,已知平面内一定点(),A a b ,若对于一点(),P c d ,有点T 与点(),P c a d '+关于点A 对称,即A 为线段P T '的中点,则称点T 为点P 关于点A 的完美对称点.例如:若已知定点()1,0A ,则对于点()1,1P ,有()2,1P ',因为点P '与点T 关于点A 对称,则可得P 关于A 的完美对称点()0,1T -.(1)若定点()1,0A ,点()4,0P -,则P 关于点A 的完美对称点T 的坐标为______;(2)在(1)的条件下,若点()1,3C ,在直线CT 上有一点M 使得12TOM TOC S S =△△,求点M 的坐标;(3)已知定点(),0A m ,对任意的点(),1P n n +关于定点A 的完美对称点为T .①T 的坐标为______,②连接PT ,若PT 的最小值为m 的值为______.。
2024-2025学年度第一学期联盟试卷(一)八年级 数学注意事项:1.请准备好必要的答题工具在答题卡上作答,在试卷上作答无效.2.本试卷共三大题,23小题,满分120分.考试时间120分钟.第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分)1. 第33届夏季奥运会将于2024年7月26日至8月11日在法国巴黎举行,如图所示巴黎奥运会项目图标中,轴对称图形是( )A. B. C. D.【答案】B【详解】解:A 、不是轴对称图形,故此选项不符合题意;B 、是轴对称图形,故此选项符合题意;C 、不是轴对称图形,故此选项不符合题意;D 、不是轴对称图形,故此选项不符合题意;故选:B .2. 如图,用一条宽相等的足够长的纸条,打一个结,如图1所示,然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE ,其中∠BAE 的度数是( )A. 90°B. 108°C. 120°D. 135°【答案】B 【详解】解:正五边形的内角和=(52)180540−×°=°, ∴∠BAE=5401085=°°,故选:B .3. 在平面直角坐标系中,点()6,2P −关于x 轴的对称点的坐标是( )A. ()6,2−−B. ()6,2C. ()2,6−D. ()6,2−【答案】A【详解】解:点()6,2P −关于x 轴的对称点的坐标是()6,2−−,故选A .4. 如图,在ABC 和DEF 中,A D ∠=∠,AC DF =,要使得ABC DEF ≌△△,还需要补充一个条件,则下列错误的条件是( )A. BF CE =B. //AC DFC. B E ∠=∠D. AB DE =【答案】A 【详解】解: 在ABC 和DEF 中,已有,A D AC DF ∠=∠=, ∴要使ABC DEF ≅△△,只需增加一组对应边相等或对应角即可,即需增加的条件是AB DE =,DFE B E ∠=∠∠=∠,观察四个选项可知,只有选项A 符合,故选择:A .5. 已知等腰三角形的两边长分别为5cm 、2cm ,则该等腰三角形的周长是( )A. 7cmB. 9cmC. 12cm 或者9cmD. 12cm【答案】D【详解】若2cm 为腰长,5cm 为底边长,∵2+2=4<5,不能组成三角形,∴不合题意,舍去;若2cm 为底边长,5cm 为腰长,则此三角形的周长为:2+5+5=12cm .故选D .6. 小丽与爸妈在公园里荡秋千.如图,小丽坐在秋千的起始位置A 处,OA 与地面垂直,两脚在地面上用力一蹬,妈妈在距地面1m 高的B 处接住她后用力一推,爸爸在C 处接住她.若妈妈与爸爸到OA 的水平距离BD 、CE 分别为1.4m 和1.8m ,90BOC ∠=°.爸爸在C 处接住小丽时,小丽距离地面的高度是( )A. 1mB. 1.6mC. 1.8mD. 1.4m【答案】D 【详解】解:90BOC ∠=° ,90BOD COE ∴∠+∠=°,90BDO ∠=°,90CEO ∠=°, 90BOD OBD ∴∠+∠=°,90COE OCE ∠+∠=°,COE OBD ∴∠=∠,BOD OCE ∠=∠,又OB CO = ,()OBD COE AAS ∴≅ ,1.4m OE BD ∴==, 1.8m OD CE ==,1.8m 1m 1.4m 1.4m AE OA OE OD DA OE ∴=−=+−=+−=.故选:D .7. 如图,工人师傅设计了一种测零件内径AB 的卡钳,卡钳交叉点O 为AA ’、BB 的中点,只要量出A ’B ’的长度,就可以知道该零件内径AB 的长度.依据的数学基本事实是( )A. 两边及其夹角分别相等的两个三角形全等B. 两点确定一条直线C. 两角及其夹边分别相等的两个三角形全等D. 两点之间线段最短【答案】A【详解】解: 点O 为AA ′、BB ′的中点,OA OA ∴′=,OB OB ′=,由对顶角相等得AOB A OB ′′∠=∠,在AOB 和A OB ′′△中,OA OA AOB A OB OB OB ′′= ∠=∠′′ =, ()SAS AOB A OB ′′∴△≌△,AB A B ′′∴=,即只要量出A B ′′的长度,就可以知道该零件内径AB 的长度,故选:A .8. 如图,在ABC 中,62B ∠=°,34C ∠=°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交AC 的两侧于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则BAD ∠的度数为( )A. 50°B. 45°C. 40°D. 35°【答案】A 【详解】解:根据作图可知,MN 垂直平分AC ,∴AD CD =,∴34DAC C ∠=∠=°,∵18084BAC B C ∠=°−∠−∠=°,∴843450BAD BAC DAC ∠=∠−∠=°−°=°,故A 正确.故选:A .9. 元旦联欢会上,3 名同学分别站在 ABC 三个顶点的位置上.游戏时,要求在他们中间放一个凳子,该先坐到凳子上谁获胜,为使游戏公平,则凳子应放置的最适当的位置是在ABC 的( )A. 三边垂直平分线的交点B. 三条角平分线的交点C. 三边中线的交点D. 三边上高的交点【答案】A【详解】解:∵ABC 的垂直平分线的交点到ABC 三个顶点的距离相等,∴凳子应放置的最适当的位置时在ABC 的三边垂直平分线的交点,故选:A .10. 如图,BD 是ABC ∠的平分线,DE AB ⊥于E ,236cm ABC S =△,18cm AB =,12cm BC =,则DE 的长为( )A. 2cmB. 36cm 13C. 12cm 5D. 3cm【答案】C 【详解】解:如图,过点D 作DF BC ⊥于F ,∵BD 是ABC ∠的平分线,DE AB ⊥,∴DE DF =,∵18cm AB =,12cm BC =, ∴1118122623ABC DE S DF =×+×= , 即6111812223DE DE ×+×=, 解得()12cm 5DE =. 故选:C .第二部分 非选择题(共90分)二、填空题(本题共5小题,每小题3分,共15分)11. 如图,ABC 中,4AB AC ==,P 是BC 上任意一点,过P 作PD AC ⊥于D ,PE AB ⊥于E ,若12ABC S =△,则PE PD +=_________【答案】6【详解】解:连接AP ,由图可得,ABCABP ACP S S S =+△△△, ∵PD AC ⊥于D ,PE AB ⊥于E ,12ABC S =△, ∴()1111442122222AB PE AC PD PE PD PE PD ×+×=××+××=+=, ∴6PE PD +=.故答案为:6.12. 小明将两把完全相同的长方形直尺如图放置在AOB ∠上,两把直尺的接触点为P ,边OA 与其中一把直尺边缘的交点为C ,点C 、P 在这把直尺上的刻度读数分别是2、5,则OC 的长度是______.【答案】3cm【详解】解:过P 作PN OB ⊥于N ,由题意得:PM PN =,PC OB ∥,PM OA ⊥,PO ∴平分AOB ∠,COP NOP ∴∠=∠,∵PC OB ∥,CPO NOP ∴∠=∠,COP CPO ∴∠=∠,OC PC ∴=, C 、P 在这把直尺上的刻度读数分别是2、5,()523cm PC ∴=−=,OC ∴长度是3cm .故答案为:3cm .13. 如图,在Rt △ABC 与Rt △DCB A =∠D =90°,请你添加一个条件(不添加字母和辅助线),使Rt △ABC ≌Rt △DCB ,你添加的条件是______.【答案】AB =DC【详解】解:添加条件是AB =CD .理由是:∵∠A =∠D =90,AB =CD ,BC =BC ,∴Rt △ABC ≌Rt △DCB (HL ),故答案为:AB =CD .14. 如图,亮亮想测量某湖A ,B 两点之间的距离,他选取了可以直接到达点A ,B 的一点C ,连接CA ,CB ,并作BD AC ∥,截取BD AC =,连接CD ,他说,根据三角形全等的判定定理,可得ABC DCB △≌△,所以AB CD =,他用到三角形全等的判定定理是______.的【答案】SAS【详解】解:∵BD AC ∥,∴ACB DBC ∠=∠,在ACB △与DBC △中,AC BD ACB BDC BC CB = ∠=∠ =, (SAS)ACB DBC ∴ ≌,AB CD ∴=, 故答案为:SAS .15. 如图,在等边ABC 中,BF 是AC 上中线且4BF =,点D 在线段BF 上,连接AD ,在AD 的右侧作等边ADE ,连接EF ,则AE EF +的最小值为 ____________________.【答案】4【详解】解:ABC 、ADE 都是等边三角形,AB AC ∴=,AD AE =,60BAC DAE ∠=∠=°,BAD CAE ∴∠=∠,()SAS BAD CAE ∴ ≌,ABD ACE ∴∠=∠,AF CF = ,30ABD CBD ACE ∴∠=∠=∠=°,∴点E 在射线CE 上运动(30ACE ∠=°), 作点A 关于CE 的对称点M ,连接FM 交CE 于E ′,此时AE E F ′′+的值最小,即AE E F ME E F FM ′′′′+=+=,CA CM = ,260ACM ACE ∠=∠=°, ACM ∴ 是等边三角形,ABC 是等边三角形,(AAS)ACM ACB ∴≌ ,4BF FM ∴==,即:AE EF +的最小值是4,故答案:4.三、解答题(本题共8小题,共75分)16. 如图,点B 、E 、C 、F 在同一直线上,90A D ∠=∠=°,BE CF =,AC DF =.求证:B DEF ∠=∠.【答案】见解析【详解】证明:∵BE CF =,∴BE EC CF EC +=+,即BC EF =,在Rt ABC △和Rt DEF △中,AC DF BC EF = =, ∴()Rt Rt HL ABC DEF ≌△△,∴B DEF ∠=∠.17. 学习完《利用三角形全等测距离》后,数学兴趣小组同学就“测量河两岸A 、B 两点间距离”这一问题,设计了如下方案. 课题测量河两岸A 、B 两点间距离为测量工具 测量角度的仪器,皮尺等 测量方案示意图测量步骤 ①在点B 所在河岸同侧的平地上取点C 和点D ,使得点A 、B 、C 在一条直线上,且CD BC =;②测得100,65DCB ADC ∠=°∠=°;③在CD 的延长线上取点E ,使得15BEC ∠=°;④测得DE 的长度为30米.请你根据以上方案求出A 、B 两点间的距离AB .【答案】A 、B 两点间的距离AB 为30米【详解】解:100,65DCB ADC ∠=°∠=° ,18015CAD DCB ADC ∴∠=°−∠−∠=°.15E ∠=° ,CAD E ∴∠=∠.在DCA △和BCE 中,CAD E ACD ECB CD BC ∠=∠ ∠=∠ =(AAS)DCA BCE ∴△△≌,AC EC ∴=.BC CD = ,AC BC CE CD ∴−=−,30AB DE =∴=米,即A 、B 两点间的距离AB 为30米.18. 如图,ABC 三个顶点的坐标分别为()1,1A ,()4,2B ,()3,4C .(1)请写出ABC 关于x 轴对称的111A B C △的各顶点坐标;(2)请画出ABC 关于y 轴对称的222A B C △;(3)在x 轴上求作一点P ,使点P 到A 、B 两点的距离和最小,请标出P 点,并直接写出点P 的坐标______.【答案】(1)点()11,1A −,()14,2B −,()13,4C −(2)见解析 (3)()2,0【解析】【小问1详解】解:ABC 与111A B C △关于x 轴对称,∴点()11,1A −,()14,2B −,()13,4C −.【小问2详解】如图,222A B C △即为所求.【小问3详解】如图,点P 即为所求,点P 的坐标为(2,0).故答案为:(2,0).19. 图1是一个平分角的仪器,其中OD OE FD FE ==,.(1)如图2,将仪器放置在ABC 上,使点O 与顶点A 重合,D ,E 分别在边AB AC ,上,沿AF 画一条射线AP ,交BC 于点P .AP 是BAC ∠的平分线吗?请判断并说明理由.(2)如图3,在(1)的条件下,过点P 作PQ ⊥AB 于点Q ,若69PQ AC ==,,ABC 的面积是60,求AB 的长.【答案】(1)AP 是BAC ∠的平分线,理由见解析(2)11AB =【解析】【小问1详解】解:AP 是BAC ∠平分线理由如下:在ADF △和AEF △中,AD AE AF AF DF EF = = =,∴()SSS ADF AEF △△≌∴DAF EAF ∠=∠,∴AP 平分BAC ∠.【小问2详解】解: ∵AP 平分BAC ∠,PQ AB ⊥,∴APC △的高等于PQ ,∵6PQ =.∴69227APC S =×÷=△,∵33ABP ABC APC S S S =−=△△△∴2332611ABP AB S PQ =÷=×÷=△.的20. 如图,△ABC 中,∠A <60°,AB =AC ,D 是△ABC 外一点,∠ACD =∠ABD =60°,用等式表示线段BD 、CD 、AC 的数量关系,并证明.【答案】ACBD CD =+,证明见解析 【详解】ACBD CD =+. 证明:如图,延长BD 至E ,使BE AB =,连接AE ,CE .ABE ∴ 是等腰三角形.·60ABD =∠ ,ABE ∴ 是等边三角形.AE AB BE ∴==,60AEB ∠=. AB AC = ,AE BE AC =∴=.ACE AEC ∴∠=∠.60ACD =∠ ,ACD AEB ∴∠=∠.ACE ACD AEC AEB −∠=∠−∠∴∠.即ECD CED ∠=∠.CD DE ∴=.BE BD DE BD CD ∴=+=+.AC BD CD =∴+.21. 已知:如图,AC ∥BD ,请先作图再解决问题.(1)利用尺规完成以下作图,并保留作图痕迹.(不要求写作法)①作BE 平分∠ABD 交AC 于点E ;②在BA 的延长线上截取AF=BA ,连接EF ;(2)判断△BEF 的形状,并说明理由.【答案】(1)①见解析;②见解析;(2)△BEF 直角三角形;证明见解析.【详解】解:(1)①如图,点E 即为所求;②如图,AF ,EF 即为所求;(2)∵BE 平分∠ABD ,∴∠ABE=∠EBD .∵AC ∥BD ,∴∠EBD=∠AEB ,∴∠ABE =∠AEB ,∴AE=AB .∵AB=AF∴AE=AF ,∴∠AFE =∠AEF ,∵∠ABE +∠AEB+∠AFE +∠AEF=180°∴∠AEB+∠AEF=90°即∠BEF =90°∴△BEF 是直角三角形.22. 已知:在ABC 中,D 是BC 的中点.是【问题解决】(1)如图1,若6AB =,4AC =,求AD 的取值范围.小明的做法是:延长AD 至点M ,使AD MD =,连接BE ,证明ACD MBD △≌△,小明判定全等的依据为:______.【类比探究】(2)如图2,在BC 的延长线上存在点M ,BAC BCA ∠=∠,CM AB =,求证:2AM AD =.【变式迁移】(3)如图3,90BAM NAC ∠=∠=°,AB AM =,AC AN =,试探究线段AD 与MN 的关系,并证明.【答案】(1)SAS ;(2)见解析;(3)2,MN AD MN AD =⊥,证明见解析 【详解】(1)解:∵D 是BC 的中点,∴BD CD =,∵,,D BD CD ADC M M A DB D =∠==∠,∴()ADC MDB SAS ≌,其中判定全等的依据为SAS ,故答案为:SAS ;(2)解:延长AD 到E ,使AD DE =,连接BE ,∵D 是BC 的中点,CD BD ∴=,在ADC △和EDB △中DC DB ADC EDB DA DE = ∠=∠ =, (SAS)ADC EDB ∴△≌△,,BE AC BCA EBD ∴=∠=∠,,,BAC BCA ACM ABC BAC EBA EBD ABD ∠=∠∠=∠+∠∠=∠+∠ ,ACM EBA ∴∠=∠,在ACM △和EBA △中,AC EB ACM EBA CM BA = ∠=∠ =, (SAS)ACM EBA ∴ ≌,2AM AE AD ∴==.(3)解:2,MN AD MN AD =⊥, 证明如下:如图,在AD 的延长线上截取DH AD =,连接CH ,则2AH AD =,∵D 是BC 的中点,CD BD ∴=,(SAS)CDH BDA ∴ ≌,,CH AB AHC BAE ∴=∠=∠,,90AB AM BAH =∠=° ,,90CH AM AHC ∴=∠=°,90ACH CAH ∴∠+∠=°,90NAC ∠=° ,90NAM CAH ∴∠+∠=°,NAM ACH ∴∠=∠,(SAS)NAM ACH ∴ ≌,,90MN AH AMN AHC ∴=∠=∠=°, 2,MN AD MN AD ∴=⊥.23. 在学习全等三角形知识时、数学兴趣小组发现这样一个模型:它是由两个共顶点且顶角相等的等腰三角形构成.在相对位置变化的同时,始终存在一对全等三角形.通过资料查询,他们得知这种模型称为“手拉手模型”,兴趣小组进行了如下操作:【模型探究】已知,在ABC 中,AB BC =,点P 是ABC 外部一点,过点P 作射线AE .(1)如图1,若ABC 是等边三角形,AE 经过BAC ∠内部,60BPA ∠=°,求证:60APC ∠=°. 小宁的做法是:在AE 上截取BQ BP =,构造“手拉手模型”,得出结论.请你帮助小宁完成证明:【模型应用】(2)如图2,已知30BAC BPA ∠=∠=°.当AE 经过BAC ∠内,求APC ∠的度数. 【拓展提高】(3)如图3,已知30BAC BPA ∠=∠=°.当AE 在AC 下方,求APC ∠的度数.【答案】(1)证明见解析部分;(2)120°;(3)60APC ∠=°【详解】(1)证明:如图1,在AE 上取一点Q ,使BQ BP =,∵60BPA ∠=°,∴BPQ 是等边三角形,∴60QBP BPQ BQP ∠=∠=∠=°, ∵ABC 是等边三角形,∴60ABC ∠=°,∴ABC QBP ∠=∠, ∴ABC QBC PBQ QBC ∠−∠=∠−∠,即ABQ CBP ∠=∠, 在BAQ 和BCP 中,AB BC ABQ CBP BQ BP = ∠=∠ =∴()BAQ BCP SAS ≌,∴180********BPCAQB BQP ∠=∠=°−∠=°−°=°, 1206060APC BPC BPQ ∴∠=∠−∠=°−°=°; (2)解:如图2,在AE 上取一点,M BM BP =,30,BAC BPA AB BC ∠=∠=°= , 30,30BAC BCA BMP BPM ∴∠=∠=°∠=∠=°, 120ABC MBP ∴∠=∠=°,ABM CBP ∴∠=∠,在ABM 和CBP 中,BA BC ABM CBP BM BP = ∠=∠ =, ()ABM CBP SAS ∴ ≌,18030150BPC BMA ∴∠=∠=°−°=°, 15030120APC ∴∠=°−°=°;(3)解:如图3.在PA 延长线上取一点M ,使得BM BP =,30,BAC BPA AB BC ∠=∠=°= ,30,30BAC BCA BMP BPM ∴∠=∠=°∠=∠=°, 120ABC MBP ∴∠=∠=°,ABM CBP ∴∠=∠,在ABM 和CBP 中,BA BC ABM CBP BM BP = ∠=∠ =, ()ABM CBP SAS ∴ ≌,30BPC M ∴∠=∠=°,303060APC BPM BPC ∴∠=∠+∠=°+°=°.。
八年级数学期中考试试卷一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2.718B. 3.14159C. √2D. 0.33333...2. 已知一个三角形的两边长分别为3cm和4cm,第三边长x满足的条件是:A. x > 1cmB. 1cm ≤ x < 7cmC. 7cm < x < 10cmD. x = 7cm3. 函数y = 2x - 3的图象不经过第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 如果一个数的平方根是另一个数的立方根,那么这个数是:A. 1B. 0C. -1D. 85. 一个圆的直径是14cm,那么它的半径是:A. 7cmB. 14cmC. 28cmD. 21cm6. 已知一个正数的平方是16,那么这个数是:A. 4B. ±4C. -4D. 167. 一个长方体的长、宽、高分别是2cm、3cm和4cm,那么它的体积是:A. 24cm³B. 12cm³C. 6cm³D. 9cm³8. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 109. 一个角的余角是它的补角的一半,那么这个角的度数是:A. 30°B. 45°C. 60°D. 90°10. 一个数的绝对值是它本身,那么这个数是:A. 正数B. 负数C. 0D. 正数或0二、填空题(每题2分,共20分)11. 如果一个三角形的两边长分别是5cm和12cm,那么第三边长x的取值范围是______。
12. 函数y = 3x + 2的斜率是______。
13. 一个圆的半径是7cm,那么它的直径是______。
14. 一个数的立方根是2,那么这个数是______。
15. 一个长方体的体积是60cm³,长是5cm,宽是4cm,那么它的高是______。
2023北京通州初二(上)期中数 学考生须知:1.本试卷共6页,共三道大题,28个小题,满分为100分,考试时间为120分钟.2.请在试卷和答题卡上准确填写学校名称、班级、姓名.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束后,请将答题卡交回.一、选择题(本题共8个小题,每小题2分,共16分)每题均有四个选项,符合题意的选项只有一个.1. 要使分式12x x +−有意义,x 的取值应满足( ) A. 2x ≠ B. 2x ≠且1x ≠− C. 1x ≠− D. 2x = 2. 如图所示,AD 是ACE 中CE 边上的高,延长EC 至点B ,使BC CE =,连接AB .设ABC 的面积为1S ,ACE △的面积为2S ,那么下列判断正确的是( )A. 12S S >B. 12S SC. 12S S <D. 不能确定 3. 如果把分式xy x y +中的x 和y 都扩大3倍,那么分式的值( ) A. 不变 B. 扩大3倍 C. 扩大6倍 D. 扩大9倍 4. 已知三条线段的长分别是3,8,a ,如果这三条线段首尾顺次相接能构成一个三角形,那么整数a 的最大值是( )A. 11B. 10C. 9D. 75. 计算2112x m m x−⋅+的结果正确的是( ) A. 12m − B. 12+m C. 12m x − D. 122m m −+ 6. 如果113x y +=,那么分式6xy x y +的值是( ) A. 6 B. 3 C. 2 D. 127. 如图,AC 与BD 相交于点O ,AB DC =,要使ABO DCO △≌△,则需添加的一个条件可以是( )A. OB OC =B. A D ∠=∠C. OA OD =D. AOB DOC ∠=∠ 8. 如图,测量河两岸相对的两点A ,B 的距离时,先在AB 的垂线BF 上取两点C ,D ,使CD =BC ,再过点D 画出BF 的垂线DE ,当点A ,C ,E 在同一直线上时,可证明△EDC ≌△ABC ,从而得到ED =AB ,则测得ED 的长就是两点A ,B 的距离.判定△EDC ≌△ABC 的依据是( )A. “边边边”B. “角边角”C. “全等三角形定义”D. “边角边”二、填空题(本题共8个小题,每小题2分,共16分)9. 如图,ABC DEF ≅△△,7BC =,4EC =,则CF 的长为_____.10. 计算a b a b b a+−−22的结果是______. 11. 如图,已知AC 平分BAD ∠.请添加一个条件:______,使ABC ADC △△≌.12. 分式方程123x x =+的解为________. 13. 如图,在ABC 中,AB AC =,AD 是BC 边上的中线,BE AC ⊥,垂足为E ,已知25CBE ∠=︒.那么BAC ∠的度数为______.14. 分式216x y 和234xy 的最简公分母为______. 15. 定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰三角形ABC 是是“倍长三角形”,底边BC 长为5,则等腰三角形ABC 的周长为______.16. 定义:如果一个分式能化成一个整数与一个分子为常数的分式的和的形式,则称这个分式为“赋整分式”. 例如:112122323(1)53(1)551;31111111111x x x x x x x x x x x x x x x x +−+−−+−+−−==+=+==+=+−−−−−+++++;将“赋整分式”4121x x +−化为一个整数与一个分子为常数的分式的利的形式是______. 三、解答题(本题共68分,第17-24题每小题5分,第25、26题每小题6分,第27、28题每小题8分)解答应写出文字说明、演算步骤或证明过程.17. 计算:2221a a b a b−−+. 18.解分式方程:22111x x x −=+−. 19. 如图,在ABC 中,延长AC 到点E ,使EA AB =,过点E 作ED AB ∥且ED AC =,连接AD . 求证:AD BC =.20. 如图,在ABC 中,AB AC =,点D ,E 在BC 边上,且AD AE =.求证:BAD CAE ∠=∠.21.先化简,再求值:2231b a a b a b⎛⎫−÷ ⎪+−⎝⎭,其中6a b −=. 22. 如图,在ABC 中,AD 平分BAC ∠交BC 于点D ,CE AB ⊥于点E ,如果50B ∠=︒,30ACE ∠=︒,求ADC ∠的度数.23. 下面是学习了分式混合运算后,甲,乙两名同学解答一道题目中第一步的做法,选择其中一名同学的做法,完成解答过程.24. 如图,在ABC 中,点E 是BC 边上一点,且AB EB =,点D 在AC 上,连接BD ,DE ,如果AD ED =,80A ∠=︒,40CDE ∠=︒,求C ∠的度数.25. 列分式方程解应用题:2022年10月16日,习总书记在中国共产党第二十次全国代表大会上的报告中提出:“积极稳妥推进碳达峰碳中和”.某公司积极响应节能减排号召,决定采购新能源A 型和B 型两款汽车,已知每辆A 型汽车的进价是每辆B 型汽车的进价的1.5倍,若用1500万元购进A 型汽车的数量比1200万元购进B 型汽车的数量少10辆.求A 型和B 型汽车的进价分别为每辆多少万元?26. 如图,在ABC 中,点 E 在边AB 上,点 D 在边BC 上,且BD BE =,连接AD 、CE ,AD 与CE 相交于点 F ,BAD BCE ∠=∠.求证:(1)BA BC =;(2)AF CF =.27. 如果两个分式M 与N 的差为整数a ,那么称M 为N 的“汇整分式”,整数a 称为“汇整值”,如分式2222222(1),,2111111x x x x M N M N x x x x x x −−==−=−===−−−−−−,则M 为N 的“汇整分式”,“汇整值”2a =.(1)已知分式22692,93x x x A B x x −+==−+,判断A 是否为B 的“汇整分式”,若不是,说明理由;若是,请求出“汇整值”a ;(2)已知分式22,442E x C D x x x −==+++,其中E 为多项式,且C 为D 的“汇整分式”且“汇整值1a =,求E 所表示的多项式.28. 如图,在ABC 中,AD 为BC 边上的中线,任DA 延长线上报一点F ,使得CF AB =.(1)求证:F BAD ∠=∠;完成下面的证明过程:证明:过点C 作CG AB ∥,交AD 的延长线于点G .如图1,G BAD ∴∠=∠∵AD 为BC 边上的中线,∴BD =CD .在ADB 和GDC 中,BAD G ADB GDC BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADB GDC ≌△△.∴______.又∵CF =AB ,∴______.∴______.∵G BAD ∠=∠∴F BAD ∠=∠.(2)过点C 作CE AD ⊥于点E ,如图2.用等式表示线段AF DE 、之间的数量关系,并证明.参考答案一、选择题(本题共8个小题,每小题2分,共16分)每题均有四个选项,符合题意的选项只有一个.1. 【答案】A【分析】根据分式的分母不为0可得关于x 的不等式,解不等式即得答案,熟练掌握分式有意义的条件是解题关键. 【详解】解:要使分式12x x +−有意义,则20x −≠,所以2x ≠. 故选:A .2. 【答案】B【分析】因为BC CE =,AD 是ABC 的高,也是ACE △的高,根据三角形的面积公式即可得出结果,确定两个三角形等底同高是解决本题的关键.【详解】解:根据等底同高,可得:12S S . 故选B .3. 【答案】B【分析】根据已知列出算式,再根据分式的基本性质进行化简即可. 【详解】解:()3393333x y xy xy x y x y x y⨯==+++ 即如果把分式xy x y+中的x 和y 都扩大3倍,那么分式的值扩大3倍, 故选:B .【点睛】本题考查了分式的基本性质,能正确根据分式的基本性质进行化简是解此题的关键. 4. 【答案】B【分析】本题主要考查了三角形的三边关系.根据“三角形两边之和大于第三边,两边之差小于第三边”,即可求解.【详解】解:根据题意得:8383a −<<+,即511a <<,∴整数a 的最大值是10.故选:B5. 【答案】A【分析】本题考查了分式的乘法,把分子分解因式约分即可. 【详解】解:()()2211112121m m x m x m m x m x +−−⋅⋅=+−=+. 故选A .6. 【答案】C 【分析】本题主要考查了分式化简求值,解题的关键根据113x y+=得出3x y xy +=. 【详解】解:∵113x y+=, ∴3x y xy+=, 即3x y xy +=, ∴6623xy xy x y xy==+, 故选:C .7. 【答案】B【分析】根据全等三角形的判定方法,进行判断即可.【详解】解:AB DC =(已知),AOB DOC ∠=∠(对顶角相等),A 、当OB OC =时,SSA 无法证明ABO DCO △≌△,不符合题意;B 、当A D ∠=∠时,AAS ,可以证明ABO DCO △≌△,符合题意;C 、当OA OD =时,SSA 无法证明ABO DCO △≌△,不符合题意;D 、AOB DOC ∠=∠,两个条件无法证明ABO DCO △≌△,不符合题意;故选B .【点睛】本题考查全等三角形的判定.熟练掌握全等三角形的判定方法,是解题的关键.8. 【答案】B【分析】由“ASA ”可证△EDC ≌△ABC .【详解】解:由题意可得∠ABC =∠CDE =90°,在△EDC 和△ABC 中ACB DCE CD BC ABC CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EDC ≌△ABC (ASA ),故选:B .【点睛】本题考查三角形全等的判定,掌握判定方法正确推理论证是解题关键.二、填空题(本题共8个小题,每小题2分,共16分)9. 【答案】3【分析】利用全等三角形的性质可得7EF BC ==,再解即可.【详解】解:∵ABC DFE ≅,∴7EF BC ==,∵4EC =,∴3CF =,故答案为:3.【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应边相等.10. 【答案】a b +【分析】根据分式的加减运算进行计算即可求解. 【详解】解:a b a b b a+−−22 22a b a b−=− ()()a b a b a b+−=− a b =+,故答案为:a b +.【点睛】本题考查了分式的加减运算,掌握分式的加减运算法则是解题的关键.11. 【答案】AB AD =(答案不唯一)【分析】由角平分线的性质可得BAC DAC ∠=∠,要使ABC ADC △△≌,由于AC 是公共边,即已知一组边和一组角分别对应相等,根据全等三角形的判定并结合条件的特点,可补充一组对应边相等或补充一组对应角相等.【详解】解:∵AC 平分BAD ∠,∴BAC DAC ∠=∠,添加AB AD =时,证明ABC ADC △△≌的理由如下:在ABC 与ADC △中,AB AD BAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABC ADC △△≌;添加B D ∠=∠时,证明ABC ADC △△≌的理由如下:在ABC 与ADC △中,B D BAC DAC AC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ABC ADC ≌;添加ACB ACD ∠=∠时,证明ABC ADC △△≌的理由如下:在ABC 与ADC △中,BAC DAC AC ACACB ACD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA ABC ADC ≌;∴添加一个条件是:AB AD =或B D ∠=∠或ACB ACD ∠=∠.故答案为:AB AD =或B D ∠=∠或ACB ACD ∠=∠.【点睛】本题考查三角形全等的判定方法,判定两个一般三角形全等的方法有:SSS 、SAS 、ASA 、AAS ,判定两个直角三角形全等的方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.理解和掌握全等三角形的判定方法是解题的关键.12. 【答案】3x =【分析】先去分母化为整式方程,解整式方程,检验即可. 【详解】解:123x x =+, 方程两边都乘以()3x x +约去分母得:32x x +=,解这个整式方程得3x =,检验:当3x =时,()30x x +≠,∴3x =是原分式方程的解.故答案为:3x =.【点睛】本题考查分式方程的解法,掌握分式方程的解法与步骤是解题关键.13. 【答案】50︒【分析】根据三角形三线合一的性质可得CAD BAD ∠=∠,根据同角的余角相等可得:CBE CAD ∠=∠,再根据等量关系即可求解,熟练掌握等腰三角形的性质是解题关键.【详解】解:AB AC =,AD 是BC 边上的中线,CAD BAD ∴∠=∠,AD BC ⊥,BE AC ⊥,90CBE C CAD C ∴∠+∠=∠+∠=︒,25CBE CAD ∴∠=∠=︒,250BAC CAD ∴∠=∠=︒.故答案为:50︒.14. 【答案】2212x y【分析】根据确定最简公分母的方法:取各分母系数的最小公倍数;凡单独出现的字母连同它的指数作为最简公分母的一个因式;同底数幂取次数最高的,得到的因式的积就是最简公分母.即可求解,熟练掌握最简公分母的相关知识是解题的关键.【详解】解:分式216x y ,234xy的最简公分母为2212x y , 故答案为:2212x y .15. 【答案】25【分析】由等腰ABC 是“倍长三角形”,可知2AB BC =或2BC AB =,若210AB BC ==,可得AB 的长为10;若25BC AB ==,因2.5 2.55+=,故此时不能构成三角形,这种情况不存在;即可得答案.【详解】解:∵等腰ABC 是“倍长三角形”,∴2AB BC =或2BC AB =,若210AB BC ==,则ABC 三边分别是10、10、5,符合题意,等腰三角形ABC 的周长为1010525++=;若25BC AB ==,则 2.5AB =,ABC 三边分别是2.5、2.5、5,∵2.5 2.55+=,∴此时不能构成三角形,这种情况不存在;综上所述,等腰三角形ABC 的周长为25,故答案为:25.【点睛】本题考查了等腰三角形的定义以及三角形三边关系,读懂题意,理解“倍长三角形”是解本题的关键.16. 【答案】3221x +− 【分析】根据分式的加减法及提公因式法整理计算即可,理解题意是解题关键. 【详解】解:4121x x +− 2(21)321x x −+=− 2(21)32121x x x −=+−− 3221x =+−, 故答案为:3221x +−. 三、解答题(本题共68分,第17-24题每小题5分,第25、26题每小题6分,第27、28题每小题8分)解答应写出文字说明、演算步骤或证明过程.17. 【答案】1a b− 【分析】先通分,化成同分母分式,再根据同分母分式加减法法则计算即可.【详解】原式2=()()()()a ab a b a b a b a b −−+−+− 2=()()a a b a b a b −++− =()()a b a b a b ++− 1=a b −. 【点睛】本题主要考查了异分母分式加减法,掌握运算法则是解题的关键.18.【答案】无解【分析】本题主要考查了解分式方程,先去分母,把分式方程化为整式方程,再解出整式方程,然后检验,即可求解. 【详解】解:22111x x x −=+−, 去分母得:()2121x x x −−=−,解得:=1x −,检验:当=1x −时,210x ,∴原方程无解.19. 【答案】见解析【分析】根据平行线的性质得到E EAB ∠=∠,再证明()SAS AED BAC △≌△,可得结论,熟练掌握全等三角形的判定和性质是解题关键.【详解】解:∵ED AB ∥,∴E EAB ∠=∠,在AED △和BAC 中, ED AC E EAB EA AB =⎧⎪∠=∠⎨⎪=⎩,∴()SAS AED BAC △≌△,∴AD BC =.20. 【答案】见解析【分析】先根据等边对等角得出B C ∠=∠,ADE AED ∠=∠,再由三角形外角的性质即可得出结果,熟练掌握等腰三角形及三角形外角的性质是解题关键.【详解】证明:∵AB AC =,∴B C ∠=∠,又∵AD AE =,∴ADE AED ∠=∠,∴BAD CAE ∠=∠.21. 【答案】3a b −,2 【分析】本题主要考查了分式的化简求值.先计算括号内的,再计算除法,然后把6a b −=代入化简后的结果,即可. 【详解】解:2231b a a b a b ⎛⎫−÷ ⎪+−⎝⎭ ()()3a b a b a b b a b a+−+−=⨯+ ()()3a b a b a a b a+−=⨯+ 3a b −=, 当6a b −=时,原式623==. 22. 【答案】80︒【分析】本题考查了三角形内角和定理,直角三角形的性质,根据三角形内角和定理可得60BAC ∠=︒,从而得到1432DAE BAC ∠=∠=︒,再由直角三角形两锐角互余,即可求解. 【详解】解:∵50B ∠=︒,CE AB ⊥,∴9040BCE B ∠∠=︒−=︒,∴403070ACB BCE ACE ∠∠∠=+=︒+︒=︒,∴18060BAC B ACB ∠=︒−∠−∠=︒.∵AD 平分BAC ∠, ∴1302DAC BAC ∠=∠=︒. ∴18080ADC DAC ACB ∠=︒−∠−∠=︒.23. 【答案】甲或乙,过程见解析【分析】题目主要考查分式的混和运算,熟练掌握分式的四则混和运算法则是解题关键.【详解】解:选择甲同学:231112x x x x x x−⎛⎫−⋅ ⎪−+⎝⎭ 23(1)(1)1(1)(1)(1)(1)2x x x x x x x x x x ⎡⎤+−−=−⋅⎢⎥−+−+⎣⎦3(1)(1)(1)(1)(1)(1)2x x x x x x x x x ⎡⎤+−−+−=⋅⎢⎥−+⎣⎦ 2(2)(1)(1)(1)(1)2x x x x x x x++−=⋅−+ 2x =+;选择乙同学:231112x x x x x x −⎛⎫−⋅ ⎪−+⎝⎭ 3(1)(1)112x x x x x x x +−⎡⎤=−⋅⎢⎥−+⎣⎦ 3(1)(1)(1)(1)1212x x x x x x x x x x+−+−=⋅−⋅−+ 3(1)(1)22x x +−=− 2x =+.24. 【答案】40︒【分析】本题考查的是三角形的外角的性质,全等三角形的判定与性质,先证明ABD EBD △≌△,可得80BED ∠=︒,再利用三角形的外角和的性质可得答案,证明80BED ∠=︒是解本题的关键.全等三角形的性质:对应边相等,对应角相等.全等三角形的判定:SSS ,SAS ,AAS ,ASA ,HL .【详解】解:∵AB EB =,AD ED =,BD BD =,∴()SSS ABD EBD △≌△,∵80A ∠=︒,∴80BED A ∠=∠=︒,∵40CDE ∠=︒,∴40C BED CDE ∠=∠−∠=︒.25. 【答案】B 型汽车的进价为每辆20万元,A 型汽车的进价为每辆30万元.【分析】本题考查了分式方程的应用.设B 型汽车的进价为每辆x 万元,则A 型汽车的进价为每辆1.5x 万元,列出分式方程,解方程即可;正确列出方程是解决本题的关键.【详解】解:设B 型汽车的进价为每辆x 万元,则A 型汽车的进价为每辆1.5x 万元, 依题意得:12001500101.5x x −=, 解得:20x, 经检验,20x 是方程的解且符合实际意义,∴1.530x =,答: B 型汽车的进价为每辆20万元,A 型汽车的进价为每辆30万元.26. 【答案】(1)见解析 (2)见解析【分析】本题考查了全等三角形的判定和性质、等腰三角形的判定和性质;(1)根据“AAS ”证明ABD △≌CBE △,再根据全等三角形的性质得出答案;(2)先根据(1)的结论得BAC BCA ∠=∠,再根据BAD BCE ∠=∠,即可得出FAC FCA ∠=∠,进而证明;【小问1详解】证明:在ABD △和CBE △中,BAD BCE B BBD BE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴ABD △≌CBE △,∴BA BC =;【小问2详解】∵ABD △≌CBE △,∴BAD BCE ∠=∠.∵BA BC =,∴BAC BCA ∠=∠,∴BAC BAD BCA BCE ∠−∠=∠−∠,即FAC FCA ∠=∠,∴FA FC =.27. 【答案】(1)是,1a =−(2)48E x =+【分析】题目主要考查分式的加减混和运算,(1)根据题意,直接计算A B −,根据结果判断即可;(2)先求2(2)(2)1(2)E x x C D x −−+−==+,结合新定义可得2(2)(2)(2)E x x x −−+=+,化简可得E 所代表的多项式,熟练掌握分式的运算法则是解题关键.【小问1详解】 解:2269293x x x A B x x −+−=−−+ 2(3)2(3)(3)3x x x x x −=−+−+ 3233x x x x −=−++323x x x −−=+ 33x x +=−+ 1=−,∴1a =−;【小问2详解】根据题意得:22222(2)(2)(2)(2)1442(2)(2)(2)E x E x x E x x C D x x x x x x −−+−−+−=−=−==++++++ ∴2(2)(2)(2)E x x x −−+=+,∴48E x =+.28. 【答案】(1)见解析 (2)2AF DE =,证明见解析【分析】本题考查了全等三角形的判定和性质,等腰三角形的性质.(1)根据题意中全等三角形的性质得出AB CG =,再由等量代换确定CF GC =,利用等边对等角及等量代换即可证明;(2)同(1)方法类似,过点C 作CG AB ∥,交AD 的延长线于点G ,根据等腰三角形的性质及全等三角形的性质,结合图形对相应线段进行等量代换即可得出结果.【小问1详解】证明:过点C 作CG AB ∥,交AD 的延长线于点G .如图1,G BAD ∴∠=∠∵AD 为BC 边上的中线,∴BD CD =.在ADB 和GDC 中,BAD G ADB GDC BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADB GDC ≌△△.∴AB CG =.又∵CF AB =,∴CF GC =.∴G F ∠=∠.∵G BAD ∠=∠∴F BAD ∠=∠.【小问2详解】过点C 作CG AB ∥,交AD 的延长线于点G .由(1)得FC GC =,∴FCG ∆是等腰三角形,∵CE FG ⊥,∴CE 平分FG ,∴EF GE =,由(1)得ADB GDC ≌△△,∴AD GD =,∵EG DE DG =+,∴EG AD DE =+,∵EF AF AE =+,∴AD DE AF AE +=+,∴AE DE DE AE AF ++=+,∴2DE AF =,∴2AF DE =.。
八年级数学期中考试试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 18cmC. 26cmD. 28cm2. 下列哪个数是有理数?A. √3B. -√5C. 1.1010010001D. 0.3333. 已知函数f(x) = 2x + 3,那么f(-1)的值为多少?A. -1B. 1C. -5D. 54. 在直角坐标系中,点P(2, -3)关于x轴的对称点坐标是什么?A. (2, 3)B. (-2, -3)C. (2, 3)D. (-2, 3)5. 下列哪个图形不是正多边形?A. 等边三角形B. 等腰梯形C. 正方形D. 正五边形二、判断题(每题1分,共5分)6. 任何两个奇数之和都是偶数。
()7. 在一个等差数列中,如果公差为0,则这个数列中的所有数都相等。
()8. 两个锐角互余。
()9. 任何一个正整数都可以表示为2的幂的乘积。
()10. 一元二次方程的解可以是两个相等的实数根。
()三、填空题(每题1分,共5分)11. 若一个等差数列的首项为3,公差为2,那么第10项为______。
12. 若一个正方形的边长为a,那么它的对角线长度为______。
13. 若一个圆的半径为r,那么它的面积公式为______。
14. 若一个三角形的三个内角分别为45°、45°和90°,那么这个三角形是______三角形。
15. 若一个函数f(x) = x^2 4x + 4,那么它的顶点坐标为______。
四、简答题(每题2分,共10分)16. 请简述勾股定理的内容。
17. 请简述一元二次方程的求根公式。
18. 请简述等差数列的通项公式。
19. 请简述圆的标准方程。
20. 请简述直角坐标系中两点之间的距离公式。
五、应用题(每题2分,共10分)21. 一个长方形的长是宽的两倍,且它的周长为30cm,求长方形的长和宽。
2024年人教版数学初二上学期期中复习试题(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、题目:已知一个长方形的长为8cm,宽为5cm,求该长方形的对角线长度。
A. 6cmB. 10cmC. 12cmD. 13cm2、题目:一个班级有学生40人,其中男生人数是女生人数的1.5倍,求该班级男生和女生的人数。
A. 男生30人,女生10人B. 男生25人,女生15人C. 男生35人,女生5人D. 男生20人,女生20人3、若一个矩形的长是宽的3倍,且其周长为48厘米,则该矩形的面积是多少平方厘米?A. 64B. 108C. 128D. 1444、已知直角三角形的两个锐角之比为1∶2,那么这两个锐角分别是多少度?A. 30°, 60°B. 45°, 45°C. 60°, 30°D. 以上都不正确5、一个长方形的长是10厘米,宽是5厘米,它的面积是()A. 25平方厘米B. 50平方厘米C. 100平方厘米D. 200平方厘米6、一个正方形的周长是24厘米,那么它的边长是()A. 2厘米B. 4厘米C. 6厘米D. 8厘米7、已知一个正方形的边长为(a),如果它的边长增加到原来的1.5倍,则新正方形的面积与原正方形面积之比是多少?A.(1.5:1)B.(2.25:1)C.(3:1)D.(1.52:1)8、若一个等腰三角形的底角为(70∘),则顶角的度数是多少?A.(40∘)B.(50∘)C.(60∘)D.(70∘)9、若直角三角形的两条直角边长分别为3和4,则斜边的长度是()A. 5B. 7C. 8D. 10 10、一个长方形的长是10厘米,宽是8厘米,那么它的面积是()A. 80平方厘米B. 90平方厘米C. 100平方厘米D. 120平方厘米二、填空题(本大题有5小题,每小题3分,共15分)1、若(x−3=7),则(x=)______ 。
北京一零一中2024-2025学年度第一学期期中练习初二数学2024.11一、选择题:本大题共8小题,共24分。
1.巴黎奥运会项目的每个图标都融合了对称美学与运动元素,将运动项目描绘成独一无二的徽章.下列巴黎奥运会体育项目的图标中,是轴对称图形的是( )A. B. C. D.2.如图,在中,边上的高是( )A.线段B.线段C.线段D.线段3.下列计算正确的是( )A. B. C. D.4.若正多边形的一个外角是36°,则该正多边形的边数为( )A.5B.6C.8D.105.下列运算正确的是( )A. B.C. D.6.设a ,b 是实数,定义*的一种运算如下:,则下列结论错误的是( )A.,则 B.C. D.7.如图,正五边形的五个内角都相等,五条边都相等,连接对角线,,,线段分别与和相交于点F ,G ,下列结论:①;②;③;④.其中正确结论的个数是()ABC △BC EC BG CD AF222()a b a b-=-632a a a÷=()326aa -=()235a aa⋅-=-()232(4)2318124x x x x x x -+-=---()2233()x y x yxy ++=+2(41)(41)116a a a---=-222(2)24x y x xy y-=-+2*()a b a b =-*0a b =a b =**a b b a =*()**a b c a b a c+=+*()*()a b a b =--AD BE CE AD BE CE 108AGC ∠=︒AG AE =2EBC BEC ∠=∠BF DE =A.1个B.2个C.3个D.4个8.如图,两直线m 与n 相交于点A ,它们相交所成的锐角等于15°,若点B 是直线m 上一定点,,点C 、D 分别是直线m 、n 上的动点,则的最小值为( )A.3B. C. D.6二、填空题:本大题共8小题,共24分。
可编辑修改精选全文完整版初二数学期中考试试卷(含答案)初二数学期中考试试卷(含答案)一、选择题:共40分1. 下列哪一个选项是正确的?()A. 三角形的内角和为90度B. 直角三角形的两条直角边的边长之和大于斜边的边长C. 平行四边形的对边垂直D. 两条相互垂直的直线一定相交于一点答案:B2. 若一个数的个位数和十位数相加等于十位数,百位数的值为3,则该数是()A. 210B. 123C. 132D. 102答案:C3. 当x取什么值时,方程2x - 5 = -7的解唯一?()A. 1B. -1C. 4D. -4答案:A4. 在一个比赛中,小明以每小时40公里的速度骑自行车行驶,他经过3小时后,还剩下120公里的路程未行驶。
这个比赛的总路程是()A. 240公里B. 320公里C. 400公里D. 480公里答案:C5. 若a:b = 3:5,b:c = 2:7,则a:c =()A. 3:5B. 6:7C. 3:35D. 6:35答案:B二、填空题:共30分1. 一个角度的补角是135°,那么这个角度的度数是_______。
答案:452. 单价为40元的商品,现在打7折,最终的价格是_______元。
答案:283. 把一个正方形的边长增加1cm,它的面积增加_________平方厘米。
答案:24. 若一个数的3/5是80,那个数是_______。
答案:1205. 若x的值满足x ÷ 2 = 5,那么x是_______。
答案:10三、解答题:共30分1. 一个三位数,个位数字是它的和的2倍,十位数字比个位数字大2,百位数字比十位数字大2,求这个三位数是多少。
答案:假设这个三位数为abc,根据题意得到以下等式:个位数字: a = 2(b + c)十位数字: b = c + 2百位数字: c = b + 2代入第二个等式得:b = (c + 2)再代入第三个等式得:c = ((c + 2) + 2),化简得:c = c + 4显然,上述等式没有解,因此这个三位数不存在。
2024年下学期八年级期中检测试卷数学科目一、单项选择题(本大题共10个小题,每小题3分,共30分)1. “致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光. 下面四幅图是我国传统文化与艺术中的几个经典图案,其中不是轴对称图形的是 ( )2.已知一个三角形的两边长分别为3和4,则第三边长不可能是 ( )A. 1B. 2C. 3D. 43.下列各式运算正确的是 ( )A.x²⋅x³=x⁶B.(x²)³=x⁶C.x²+x³=x⁵D.x⁶÷x³=x²4.如图, 在△ABC中, ∠A=35°, ∠B=60° , 则∠C的度数为( )A. 65°B. 75°C. 85°D. 95°5.如图, AC、BD相交于O, ∠1=∠2, 若直接用“SAS”说明△ABC≌△BAD, 则还需加上条件 ( )A. AD=BCB. ∠D=∠CC. OA=ABD. AC=BD6.若点M(a, -3) 与点N(2, -3) 关于y轴对称, 则a=( )A. 2B. -2C. 3D. -37.已知等腰三角形的两边长分别为6和3,则此等腰三角形的周长为 ( )A. 9B. 12C. 15D. 12或158.如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在 ( )A.三边高线的交点处B.三边中线的交点处C.三内角平分线的交点处D.三边垂直平分线的交点处9.已知(x+m)(x+3)的展开式中不含 x的一次项, 则m的值为 ( )A. -3B. 3C. 0D. 110.如图, AD是等腰Rt△ABC的角平分线, ∠ACB=90°,AC=BC,过点B作BE//AC, 且BE=CD, 连接CE交AD于点F, 交AB于点P,点M是线段AF上的动点,点N是线段AP 上的动点,连接PM、MN,下列五个结论: ① AD=CE;②AD⊥CE;③BE=BP;④CD+AC=AB;AB,其中正确的有 ( ).circle5PM+MN≥12A.2个B.3个C.4个D.5个1二、填空题(本大题共6个小题,每小题3分,共18分)11.如图, 在△ABC中, ∠A=80°, 点D在BC的延长线上, ∠ACD=135°, 则∠B的度数为 .12.如图, △ABE ≌△ACD, ∠A=60° , ∠B=20°, 则∠DOE的度数为 .,则 xm+n = .13.已知: x m=6,x n=1214.已知等腰三角形的一个内角为100°,则它的底角的度数是 .15.如图, 在△ABC中, ∠C =90° , AD平分∠BAC交BC于点 D, 若CD=9, 则点D到斜边AB的距离为 .16.如图①所示的是校门口的双翼闸门,当它的双翼展开时,如图②所示,双翼边缘的端点A与B之间的距离为10厘米,双翼的边缘AC=BD=50 厘米, 且与闸机箱侧立面的夹角∠ACP=∠BDQ=30°,则当双翼收起时,可以通过闸机的最大宽度为厘米.三、解答题(本大题共9个小题, 第17、18、19题每小题6分, 第20、21题每小题8分, 第22、23题每小题9分, 第24、25题每小题10分, 共72分)3−|√2−2|+(3.14−π)017.计算: (−1)2024+√818.化简求值: (x﹣2)(x﹣3)﹣(x﹣2)(x+1),其中x=1.19. 如图所示,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在线段BC上,且AE=CF.求证: Rt△ABE≌Rt△CBF.220.如图, △ABC的三个顶点的坐标分别是A(-2,3)、B(-2,1)、C(1,-2).(1) 点A、B、C关于x轴对称的点分别为A₁、B₁、C₁, 在图中作出△ABC 关于x轴对称的. △A₁B₁C₁;(2) 直接写出点C关于直线l(直线l上各点的横坐标都为2) 对称的点( C₂的坐标;(3) 求△ABC 的面积.21. 在计算 (2x+a)(x+b) 时, 甲错把 a 看成了-a, 得到结果是: 2x²−10x+12;乙由于漏抄了第一个多项式中x的系数,得到结果:x²+x−12.(1) 求出a, b的值;(2) 在 (1) 的条件下, 计算 (2x+a)(x+b) 的结果.22.如图所示, AB=AC, ∠ABD=∠ACE, ∠BAC=∠DAE,(1) 求证: △ABD≌△ACE;(2) 若∠CAE=20° , ∠ACE=25° , 求∠ADE的度数;(3) 在 (2) 的条件下判断△ADE的形状, 并证明.23.已知: 如图, 在△ABC中, AB=BC, ∠B=120° .(1)用直尺和圆规作出AB的垂直平分线,分别交AC、AB于点M、N(保留作图痕迹,不写作法);(2) 猜想CM与AM之间有何数量关系,并证明你的猜想;(3) 在直线MN上找一点P,使PB+PC之和最小, 若AM=2, 求I PB+PC的最小值.324.已知: 在△ABC中, ∠ACB=90° , AC=BC=4.(1) 如图1, BD是△ABC的中线.①△BCD 的面积是 ;②已知: CF⊥BD, 交AB于点E, AF⊥AC,连接DE, 求证: ∠BDC=∠EDA;(2)如图2, 点 M为线段CA 延长线上一点, 过点 A作AQ⊥AB,过点M作BM的垂线交 AQ于点P,线SΔAMN,若存在,求CM的段PA的延长线与线段BC的延长线交于点N,是否存在点M,使SΔAMP=32长;若不存在,请说明理由.25. 平面直角坐标系中,如果一个点到两坐标轴距离相等,则该点称为“雅点”,例如(1,1)、(2,-2)、(-3, -3)、 (4, -4) 都称为“雅点”.(1)如图1,点A(6,0),则线段OA的垂直平分线l上的第一象限的“雅点”D的坐标为 .(2) 若n为正整数, 点M(x⁴n, 4)是“雅点”,求(x³ⁿ)²−4(x²)5n的值;(3) 如图2,△AOM和△OFT都是等边三角形, 点M、O、F在一条直线上, 点A (4, 0), 连接AF交y轴于点K,连接MT交AF于点H,点Q为y轴上一点,连接AQ,MQ,AQ与OM交于点P,当H为第四象限的“雅点”时, ∠QPO=∠OKF, 求点Q的坐标。
初二年级调研试卷数学2024.04本卷由选择题、填空题和解答题组成,共27题,满分130分,调研时间120分钟. 注意事项:1.答题前,考生务必将学校、班级、姓名、调研号等信息填写在答题卡相应的位置上.2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效;如需作图,先用2B 铅笔画出图形,再用0.5毫米,黑色墨水签字笔描黑,不得用其他笔答题.3.考生答题必须答在答题卡相应的位置上,答在试卷和草稿纸上一律无效;一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将答案填涂在答题卡相应位置上)1.下面四个图形分别是苏州博物馆、苏州轨道交通、苏州银行和苏州电视台的标志,在这四个图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.从装有红球、白球、黑球的不透明袋子中任意摸出一个球,该球是红球,这个事件是( )A .必然事件B .随机事件C .不可能事件D .都有可能 3.若分式221x x ++有意义,则x 的取值范围是( ) A .2x >− B .12x >− C .2x ≠− D .12x ≠− 4.国际奥委会于2001年7月13日在莫斯科举行会议,通过投票确定2008年奥运会举办城市.在第二轮投票中,北京获得总计105张选票中的56票,得票率超过50%,取得了2008年奥运会举办权.在第二轮投票中,北京得票的频数是( )A .50%B .56105C .56D .105 5.1x =是关于x 的一元二次方程220x ax b ++=的解,则24a b +的值是( )A .1−B .1C .2−D .26.“孔子周游列国”是流传很广的故事.相传有一次他和学生到离他们住的驿站30里的书院参观,学生步行出发1小时后,孔子坐牛车出发,牛车的速度是步行的1.5倍,孔子和学生们同时到达书院.设学生步行的速度为每小时x 里,则可列方程为( )A .303011.5x x =+ B .30301.51x x =+ C .303011.5x x =− D .30301.51x x =−7.如果关于x 的一元二次方程210kx x −+=有实数根,则k 的取值范围是( ) A .14k >且0k ≠ B .14k <且0k ≠ C .14k ≤且0k ≠ D .14k < 8.如图,在矩形ABCD 中,点E 是CD 的中点,点F 在BD 上,3BF DF =,若4,3AB BC ==,则EF 的长为( )(第8题)A .1B .54C .32D .52二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上........) 9.根据市生态环境局发布的数据,2023年上半年,全市环境空气质量优良天数比率为80.7%.要调查市区环境空气质量状况,适合的调查方式是___________(填“普查”或“抽样调查”)。
2023北京十三中初二(上)期中数 学考生须知:1.本试卷分为第Ⅰ卷和第Ⅱ卷,第Ⅰ卷共2页,第Ⅱ卷共4页.2.本试卷满分100分,考试时间100分钟.3.在试卷(包括第Ⅰ卷和第Ⅱ卷)密封线内准确填写学校、班级、姓名、学号.4.考试结束,将试卷及答题纸一并交回监考老师.第Ⅰ卷一、选择题:(本大题共8小题,每小题2分,共16分)1. 在刚过去的10月份中,同学们以饱满的精神状态参加了北京市中学生体育过程性考核.在下列常见的体测项目图标中,是轴对称图形的是( )A. 坐位体前屈B. 立定跳远C. 仰卧起坐D. 引体向上2. 下列计算正确的是( )A. 236a a a ⋅=B. ()326a aC. 33()ab a b =D.()2222a a b a ab −+=−+3. 下列四个图形中,线段BE 是ABC 的高的是( )A.B. C. D.4. 在生物实验课上,老师布置了“测量雉形瓶内部底面内径”的任务.小亮同学想到了以下这个方案:如图,用螺丝钉将两根小棒AD ,BC 的中点O 固定,利用全等三角形的性质,只要测得C ,D 之间的距离,就可知道内径AB 的长度.此方案中,判定AOB 和DOC △是全等三角形的依据是( )A. SSSB. SASC. ASAD. AAS5. 一副三角板拼成如图所示的图形,那么DAC ∠的度数为( )A. 60︒B. 75︒C. 90︒D. 105︒6. 若2x my +与2x y −的乘积结果中不含xy 项,则m 的值为( )A. 4B. 4−C. 2D. 2−7. 如图1,某温室屋顶结构外框为ABC ,其中30B C ∠=∠=︒,立柱2m AD =,且与横梁BC 垂直.冬季将至,为了增大向阳面面积,将立柱增高并改变位置,使屋顶结构外框变为EBC (点E 在BA 的延长线上),立柱EFBC ⊥,如图2所示.若此时立柱3m EF =,则向阳面斜梁增加部分AE 的长度为( )A. 0.5mB. 1mC. 1.5mD. 2m8. 在平面直角坐标系中,点()0,2A ,点(),0B a ,点(),(0)C m n n >.若ABC 是等腰直角三角形且AB BC =,当12a <<时,点C 的横坐标m 的取值范围是( )A. 12m <<B. 23m <<C. 34m <<D. 4m >第Ⅱ卷二、填空题(本大题共8小题,每题2分,共16分)9. 在平面直角坐标系xOy 中,点()3,1−关于x 轴对称的点的坐标为________.10. 计算:()328124x x x −÷=________.11. 学校在举办了“叩问苍穹,征途永志”主题活动后,邀请同学们参与设计航天纪念章.小明以正八边形为边框,设计了如图所示的作品,则此正八边形徽章一个内角的大小为________°.12. 如图,AD BC =,AD BC ∥,点E 、F 在AC 上,且要使AFD CEB △≌△,还需添加一个条件为:________.13. 在校运动会举办前夕,李老师想设计一款等腰三角形彩旗幡悬挂于赛场上,为同学们加油助威.已知每面彩旗的腰长6AC BC ==,若其底边AB 长度为整数,则底边AB 长度的最大值为________.14. 如图,点O 是ABC 内一点,BO 平分ABC ∠,OD BC ⊥于点D ,连接OA .若3OD =,10AB =,则AOB 的面积是 ________ .15. 如图是一个可折叠式的餐桌,其桌面由一个大正方形和四个全等的小正方形构成.当桌角全部打开时(如图①,桌面的最大长度为a ;当桌角全部收起时(如图②,桌面未被桌角覆盖部分的长度为b .那么,当桌角全部收起时(图②中),桌面未被桌角覆盖的阴影部分面积是________(用含a 、b 的代数式表示).16. 如图1,在ABC 中,AB AC =,点D 是边BC 的中点,连接AD ,边AC 的垂直平分线MN 交AD于点P ,连接BP .(1)当60BAC ∠=︒时,如图2,则PBD ∠的度数为________°;(2)当BAC α∠=时,PBD ∠的度数为________(用含α的式子表示).三、解答题:(本大题共8小题,共68分.其中17题10分,18-21、26题6分,22-25题7分)17. 计算:(1)()()2132x x x −+− (2)()2(2)3x x x −+− 18. 先化简,再求值:()()2324141(2)63x x x x x +−−+÷,其中=1x −. 19. 已知,如图,点A 、E 、F 、B 在同一条直线上,CA AB ⊥,DB AB ⊥,AE FB =,CF DE =.求证:AFC DEB ∠=∠.甲同学很快给出了自己的解答,请你阅读他的解法,并补全相应的证明过程及推理依据.Rt DBERt Rt CAF DBE≌20. 如图,点A 、C 、B 、D 在同一条直线上,BE DF ∥,A F ∠=∠,AB FD =.(1)求证:AE FC =.(2)若25FCD ∠=︒,110A ∠=︒,求EBD ∠的度数.21. 如图,在平面直角坐标系xOy 中,ABC 的三个顶点的坐标分别是()2,3A ,()10B ,,()1,2C .(1)在图中作出ABC 关于y 轴对称的111A B C △.(2)如果要使以B ,C ,D 为顶点的三角形与ABC 全等,写出所有符合条件的点D 坐标.22. 我们在学习整式乘法时发现,通过计算几何图形的面积可以得到一些代数恒等式.如图1可以得到222()2a b a ab b +=++,基于此想法,请回答下列问题:(1)根据图2,写出一个代数恒等式: .(2)利用图3中若干张边长为a 的正方形,边长为b 的正方形和长、宽分别为b 和a 的长方形,可以拼出一个面积为()()22a b a b ++的长方形,请你仿照图2画出拼图方式并标注上对应字母.利用这个长方形面积我们可以得到()()22a b a b ++= .(3)实际上,通过计算立体图形的体积也可以得到一些代数恒等式.如图4表示的是一个棱长为x 的正方体挖去一个小长方体后重新拼出的一个新长方体,根据此图的变化关系,写出一个代数恒等式: . 23. 在十一作业中同学们参与了“自制角分仪”的活动,下图是一个同学的作品,他将四根木条顺次钉在一起,其中AB AD =,BC DC =,两根木条的连接处是可以转动的.同学们在一起讨论这个工具的用途.(1)小羽说用这个工具可以快速作出角平分线.在下面的几种用法中,能作出MON ∠的平分线的有 .(写出所有正确的序号)①OC 是MON ∠的平分线②OB MON ∠的平分线③OA 是MON ∠的平分线(2)对于这个工具的其它用途,小泽发现可以用它作线段的垂直平分线.请结合右图补全求证,并给出证明.如图,已知:AB AD =,BC DC =求证: 垂直平分 .证明:(3)对于这个工具的其它用途,小高认为通过两次操作可以用它作平行线.右图为第1次操作角分仪的摆放方式,请你在此基础上画出第2次操作的摆放方式(角分仪的对应顶点依次标记为A ',B ',C ',D ),并指明图中的一组平行线.24. 如图,已知点M 是AB 的中点,DC 是过点M 的一条直线,且ACM BDM AE CD BF CD ∠=∠⊥⊥,,,垂足分别为点E ,F .(1)试说明:AME BMF ≅;(2)猜想MF 与CD 之间的数量关系,并说明理由.25. 如图,已知等边ABC ,点P 在BC 边上,()030PAB αα︒∠=<<︒,点Q 是点P 关于直线AB 的对称点,点D 在AP 上满足120ADQ ∠=︒,延长QD 交AC 于点E .(1)直接写出DAE ∠和AED ∠的度数(用含α的式子表示);(2)探究线段AE 、BP 、PC 满足的等量关系,并证明;(3)若4AB =,M 为AB 中点,连接MQ .当MQ 最短时,直接写出此时BP 的值.26. 在平面直角坐标系xOy 中,已知点(),M a b ,我们将经过点(),0a 且垂直于x 轴的直线记为直线x a =,将经过点()0,b 且垂直于y 轴的直线记为直线y b =.对于点P 给出如下定义,将点P 关于直线x a =对称得到点P ',再将点P '关于直线y b =对称得到点Q ,称点Q 为点P 关于M 的“对应点”.对于图形G 给出如下定义,将图形G 关于直线x a =对称得到图形G ',再将图形G '关于直线y b =对称得到图形W ,称图形W 为图形G 关于M 的“对应图形”.已知ABC 的顶点坐标为()2,0A ,()4,0B ,()3,3C −(1)如图1,若点()1,1M①由定义知,将点A 关于直线1x =对称得到点()0,0,再将点()0,0关于直线1y =对称,得到点()0,2,则点A 关于M 的对应点为()0,2.那么,点()4,0B 关于M 的对应点为 ,点C 关于M 的对应点为 . ②已知点()11,P n −和点()21,1P n −+,若线段12PP 关于M 的对应线段12Q Q 位于ABC 的内部(不含三角形的边),求n 的取值范围.(2)若y 轴上存在点D ,使得点D 关于M 的对应点恰好落在ABC 的边上,直接写出M 点横坐标a 的取值范围.参考答案第Ⅰ卷一、选择题:(本大题共8小题,每小题2分,共16分)1. 【答案】D【分析】本题考查了轴对称图形的概念,根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】解:选项A 、B 、C 均不能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以不是轴对称图形;选项D 能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以是轴对称图形; 故选:D .2. 【答案】B【分析】本题考查了同底数幂的乘法,积的乘方,幂的乘方以及单项式乘以多项式,熟练掌握各个运算法则逐项计算判断即可.【详解】解:A 、2356a a a a ⋅=≠,本选项错误,不符合题意;B 、()326a a =,本选项正确,符合题意;C 、3333()ab a b a b =≠,本选项错误,不符合题意;D 、()2222222a a b a ab a ab −+=−−≠−+,本选项错误,不符合题意, 故选:B .3. 【答案】C【分析】根据三角形高的画法知,过点B 作AC 边上的高,垂足为E ,其中线段BE 是ABC 的高,再结合图形进行判断.【详解】解:根据三角形高的画法知,过点B 作AC 边上的高,垂足为E ,则线段BE 是ABC 的高,观察四个选项,所以线段BE 是ABC 的高的图是选项C .故选:C .【点睛】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.熟记定义是解题的关键.4. 【答案】B【分析】本题考查了全等三角形的判定.根据题意确定全等三角形的判定条件是解题的关键. 由题意可证()SAS AOB DOC △≌△,然后作答即可.【详解】解:由题意知,OB OC =,AOB DOC ∠=∠,OA OD =,∴()SAS AOB DOC △≌△,故选:B .5. 【答案】D【分析】本题考查了三角形外角性质,三角板中的角度计算,找准题目中的角度准确计算,利用外角性质求解即可.【详解】解:由题意可知:=45ABC ∠︒,60ACB ∠=︒,4560105DAC ABC ACB ∴∠=∠+∠=︒+︒=︒.故选:D .6. 【答案】A【分析】本题考查多项式乘多项式,利用多项式乘多项式运算法则将原式展开,然后合并同类项,使xy 项系数为零即可解答.【详解】(2)(2)x y x my −+22242x mxy xy my =+−−()22242x m xy my =+−−,∵2x my +与2x y −的乘积结果中不含xy 项,∴40m −=,解得:4m =,故选:A .7. 【答案】D【分析】本题主要考查30︒角的直角三角形的性质,掌握30︒角所对的直角边等于斜边的一半是解题的关键.【详解】解:∵立柱AD 垂直平分横梁BC ,30B C ∠=∠=︒,∴24m AB AC AD ===,∵30B ∠=︒,∴26m BE EF ==,∴642m AE EB AB =−=−=.故选D .8. 【答案】C【分析】本题考查了等腰三角形的性质及全等三角形的判定及性质,过点C 作CD BO ⊥,根据等腰三角形的性质及全等三角形的判定及性质可得2AOBD OD OB m a ,熟练掌握三角形的判定及性质是解题的关键.【详解】解:过点C 作CD BO ⊥于点D ,如图:AB BC =,90CDB BOA ABC ∠∠∠,90CBD ABO BAO ∠∠∠,在CBD △和BAO 中,CBD BAO CDB BOA CB BA ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)CBD BAO ≌,AO BD ∴=,()0,2A ,(),0B a ,(),(0)C m n n >,2AO BD OD OB m a ,12a <<,34m ∴<<,故选C .第Ⅱ卷二、填空题(本大题共8小题,每题2分,共16分)9. 【答案】()3,1【分析】本题考查了关于x 轴对称的点的坐标特点,根据关于x 轴对称的点的坐标特点,横坐标相同,纵坐标互为相反数,据此即可得到答案.【详解】解:点()3,1−关于x 轴对称的点的坐标为()3,1,故答案为:()3,1.10. 【答案】223x x −【分析】本题考查了多项式除以单项式,运用相应的运算法则作答即可.【详解】()328124x x x −÷3284124x x x x =÷−÷223x x =−,故答案为:223x x −.11. 【答案】135【分析】本题考查正多边形的外角和以及内角与外角之间的关系,利用多边形的外角和求出一个外角的大小,然后再用180度减去外角度数即可.【详解】解:∵正八边形的外角和为360︒,∴每个外角为360845︒÷=︒,∴每个内角为18045135︒−︒=︒,故答案为:135.12. 【答案】D B ∠=∠(答案不唯一)【分析】本题考查了全等三角形的判定,判定方法有SAS 、ASA 、AAS 、SSS 、HL .由AD BC ∥,可得A C ∠=∠,结合AD BC =,添加一组角相等,可判定AFD CEB △≌△.结合已知在图形上的位置进行选取是解决问题的关键.【详解】解:∵AD BC ∥,∴A C ∠=∠,∵AD BC =,∴可添加D B ∠=∠,在AFD △和CEB 中,A C AD BC D B ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA AFD CEB ≌,故答案为:D B ∠=∠(答案不唯一).13. 【答案】11【分析】本题考查了三角形三边关系,根据三角形三边关系可得012AB ,进而可求解,熟记:“三角形的任意两边之和大于第三边,任意两边之差小于第三边”是解题的关键.【详解】解:依题意得:06612AB ,底边AB 长度为整数,∴底边AB 长度的最大值为11,故答案为:11.14. 【答案】15【分析】过O 作OE AB ⊥于点E ,根据角平分线的性质求出OE ,最后用三角形的面积公式即可解答,熟练掌握角平分线的性质是解题关键.【详解】解:过O 作OE AB ⊥于点E ,∵BO 平分ABC OD BC ∠⊥,于点D ,∴3OE OD ==,∴AOB 的面积为:111031522AB OE ⋅=⨯⨯=, 故答案为:15.15. 【答案】ab【分析】本题考查了整式混合运算的应用,根据图形求出小正方形的边长,再计算出大正方形的边长,然后根据阴影部分面积等于大正方形的面积减去4个小正方形的面积列式计算即可. 【详解】解:由题意得,小正方形的边长为4a b −, ∴大正方形的边长为2422a b a b b −+⨯=+, ∴桌面未被桌角覆盖的阴影部分面积是22222222422444a b a b a ab b a ab b ab −++−+⎛⎫⎛⎫+−⨯=−= ⎪ ⎪⎝⎭⎝⎭, 故答案为:ab .16. 【答案】 ①. 30 ②. 90α︒−##90α−+︒【分析】本题考查了三角形内角和定理,线段垂直平分线的性质,等腰三角形的性质.(1)根据等腰三角形的性质及点D 是边BC 的中点,边AC 的垂直平分线MN 交AD 于点P ,得到AP BP =,30BAP ABP ∠=∠=︒,再由60ABC ∠=︒,即可得出结果;(2)根据等腰三角形的性质及点D 是边BC 的中点,边AC 的垂直平分线MN 交AD 于点P ,得到AP BP =,2BAP ABP α∠=∠=,再由1802ABC α∠=︒−,即可得出结果. 【详解】解:(1)AB AC =,∴ABC 是等腰三角形,点D 是边BC 的中点,边AC 的垂直平分线MN 交AD 于点P ,∴AP BP =,60BAC ∠=︒,∴18060602ABC ︒−︒∠==︒, 30BAP ABP ∠=∠=︒,∴30PBD ABC ABP ∠=∠−∠=︒,故答案为:30;(2)AB AC =,∴ABC 是等腰三角形,点D 是边BC 的中点,边AC 的垂直平分线MN 交AD 于点P ,∴AP BP =,BAC α∠=,∴1809022ABC αα︒−∠==︒−,2BAP ABP α∠=∠=,∴90PBD ABC ABP α∠=∠−∠=︒−,故答案为:90α︒−.三、解答题:(本大题共8小题,共68分.其中17题10分,18-21、26题6分,22-25题7分)17. 【答案】(1)223x x −+−(2)2274x x −+【分析】本题考查了整式混合运算,重点是多项式乘多项式法则以及完全平方公式的运用;(1)先算乘法,再合并同类项;(2)先用完全平方公式()2222a b a ab b ±=±+去括号,再算加减; 【小问1详解】原式22332x x x x =+−−−223x x =−+− ;【小问2详解】原式22443x x x x =−++−2274x x .18. 【答案】21221x x +−,9【分析】此题主要考查了整式化简求值,先利用整式的乘法和除法运算法则运算,再合并同类项,再把已知数据代入得出答案.【详解】解:原式2216142x x x =−−+21221x x =+−将=1x −代入,原式()212(1)2119=⨯−+⨯−−=. 19. 【答案】AF ;BE ;AF BE =;CE DF =;HL ;全等三角形对应角相等【分析】本题考查了三角形全等的判定与性质,灵活运用垂直的性质根据三角形全等的判定方法证明()Rt Rt HL CAF DBE ≌,即可得出结论.【详解】证明:∵AE FB =,∴AE EF FB EF +=+,即AF BE =.∵CA AB ⊥,DB AB ⊥,∴90A B ∠=∠=︒,在Rt CAF △与Rt DBE 中,AF BE CE DF=⎧⎨−⎩, ∴()Rt Rt HL CAF DBE ≌ ,∴AFC DEB ∠=∠(全等三角形的对应角相等).20. 【答案】(1)见解析 (2)135︒【分析】(1)根据BE DF ∥,可得ABE D ∠=∠,再证ABE 和FDC △全等即可;(2)利用全等三角形的性质,求出E ∠,根据EBD E A ∠=∠+∠即可解决问题.【小问1详解】证明:∵BE DF ∥,∴ABE D ∠=∠,在ABE 和FDC △中,ABE D AB FD A F ∠=∠=∠=∠,,∴ABE FDC ≌,∴AE FC =;【小问2详解】解:∵ABE FDC ≌, ∴25E FCD ∠=∠=︒,∴25110135EBD E A ∠=∠+∠=︒+︒=︒.【点睛】本题考查全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定和性质,属于中考常考题型.21. 【答案】(1)见解析;(2)()0,3、()0,1−、2,1.【分析】(1)由关于y 轴对称的点的坐标的特征先确定A 1,B 1,C 1三点的坐标,再描点,连线即可; (2)根据全等三角形的判定可画出图形,根据图形可直接写出符合条件的点D 坐标.【小问1详解】解:如图1,111A B C △即为所求;【小问2详解】解:如图2所示,点D 的坐标为()0,3或()0,1−或2,1;【点睛】本题考查了轴对称的性质,全等三角形的判定等,解题关键是牢固掌握关于坐标轴对称的点的坐标的特征并能灵活运用.22. 【答案】(1)2222()222a b c a b c ab bc ac ++=+++++(2)拼图见解析,22252a ab b ++(3)()()311x x x x x −=+− 【分析】本题考查了整式的混合运算:(1)依据大正方形的面积等于小图形的面积之和即可求解;(2)根据新长方形的边长画出图形,再根据图形得出等式即可求解;(3)依据原几何体的体积与新几何体的体积相等建立等式即可;利用直接法或间接法分别求出几何图形的面积或体积,然后根据他们的面积或体积相等列出等式是解题的关键.【小问1详解】解:由图可得,正方形的面积()2a b c =++,正方形的面积222222a b c ab ac bc =+++++,2222()222a b c a b c ab bc ac ∴++=+++++,故答案为:2222()222a b c a b c ab bc ac ++=+++++.【小问2详解】如图:()()2222252a b a b a ab b ∴++=++.【小问3详解】由图4得:原几何体的体积3311x x x x , 新几何体的体积11x x x ,()()311x x x x x ∴−=+−,故答案为:()()311x x x x x −=+−. 23. 【答案】(1)①③ (2)AC ,BD ,证明见解析(3)见解析【分析】本题考查了角平分线的性质,线段垂直平分线的判定及平行线的性质,三角形全等的判定与性质. (1)根据全等三角形的判定SSS 判断即可;(2)根据垂直平分线的判定解答即可;(3)根据线段垂直平分线的性质及平行线的性质解答即可.【小问1详解】解:①如图所示;在ABC 和ADC △中,AD AB CD CB AC AC =⎧⎪=⎨⎪=⎩,()SSS ABC ADC ∴≌,DAC BAC ∴∠=∠,即MOC NOC ∠=∠,∴OC 是MON ∠的平分线,故①正确;②中AOB 和COM 不全等,不能得出AOB COB ∠=∠,故②错误;类比①的证法,可得出③中BAC DAC ≌,MOA NOA ∴∠=∠,即OC 是MON ∠的平分线,故③正确;故答案为:①③;【小问2详解】结论:AC 垂直平分BD ,证明:∵AD AB =,∴点A 在BD 的垂直平分线上,∵BC DC =,∴点C 在BD 的垂直平分线上,∴AC 垂直平分BD ;【小问3详解】解:同意;理由如下,如图所示:第1次操作为,作BAD ∠的角平分线AC ,连接BD ;第2次操作为,将角分仪点A 与,AC BD 交点的重合,作B A D ∠'''的角平分线A C ''且与A B '重合,由(2)可知、AC 垂直平分BD ,BD 垂直平分B D '',AC BD ∴⊥,BD B D ''⊥,AC B D '∴∥.24. 【答案】(1)见解析 (2)猜想:2MF CD =,理由见解析.【分析】(1)由题意可得AM BM =、90AEM BFM ∠=∠=︒,再结合ACM BDM ∠=∠运用AAS 即可证明结论;(2)由题意可得90AEM BFM ∠=∠=︒,再根据AME BMF ≅可得EM FM AE BF ==,,进而证明()AAS ACE BDF ≅可得DF CE =,然后根据线段的和差以及等量代换即可解答.【小问1详解】解:∵点M 是AB 的中点,∴AM BM =,∵AE CD BF CD ⊥⊥,,∴90AEM BFM ∠=∠=︒.在AME △和BMF 中,90AEM BFM AME BMFAM AM ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴()AAS AME BMF ≅.【小问2详解】解:猜想:2MF CD =.理由如下:∵AE CD BF CD ⊥⊥,,∴90AEM BFM ∠=∠=︒.∵AME BMF ≅,∴EM FM AE BF ==,.在ACE △和BDF 中,90AEC BFD ACM BDMAE BF ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴()AAS ACE BDF ≅.∴DF CE =.∵DF CD CF CE EF CF =+=+,,∴CD EF =.∵EF EM FM EM FM =+=,.∴2MF CD =.【点睛】本题主要考查了全等三角形的判定与性质、全等三角形的判定等知识点,灵活运用全等三角形的判定与性质定理是解答本题的关键.25. 【答案】(1)60DAE α∠︒=−,60AED α∠︒=+(2)PC AE BP =+,证明见解析(3)1【分析】(1)利用等边三角形的性质可得60BAC ∠=︒,结合角的和差运算可得60DAE α∠︒=−,再利用三角形的外角的性质可得60AED α∠︒=+;(2)连接AQ ,在BC 上截取CF BP =,连接AF .证明AQ QE =, 再证明ABP ACF ≌,可得AP AF =,FAC PAB α∠=∠=,可得AQ AP QE AF ===.再证明AQE PAF △≌△,可得AE PF =,再结合线段的和差可得结论;(3)如图,过M 作MS BC ⊥于S ,连接MQ ,MP ,则90MSB ∠=︒,证明122BM AB ==,MQ MP =,求解112BS BM ==,MS =S ,P 重合时,MP 最小,则MQ 最小,从而可得答案.【小问1详解】解:∵ABC 为等边三角形,∴60BAC ∠=︒,而()030PAB αα︒∠=<<︒, ∴60DAE α∠︒=−,∵120ADQ ∠=︒,∴()1206060AED αα∠=︒−︒−=︒+;【小问2详解】PC AE BP =+;证:连接AQ ,在BC 上截取CF BP =,连接AF .∵点Q 是点P 关于直线AB 的对称点,∴AQ AP =,QAB PAB α∠=∠=.∵60BAC ∠=︒,∴60QAC QAB BAC AEQ α︒∠=∠+∠=+=∠,∴AQ QE =,180602Q QAC AEQ α∠=−∠−=︒∠−︒.∵ABC 为等边三角形,∴AB AC =,60B C ∠=∠=︒.在ABP 与ACF △中∵AB AC =,60B C ∠=∠=︒,BP CF =,∴()SAS ABP ACF △≌△,∴AP AF =,FAC PAB α∠=∠=,∴602PAF BAC PAB FAC α∠=∠−∠−∠=−︒. ∵AQ AP =,AQ QE =,AP AF =,∴AQ AP QE AF ===.又∵602Q PAF α∠=∠=−︒,∴()SAS AQE PAF △≌△∴AE PF =,∴PC PF FC AE BP =+=+.【小问3详解】如图,过M 作MS BC ⊥于S ,连接MQ ,MP ,则90MSB ∠=︒,∵M 为AB 的中点,4AB =, ∴122BM AB ==, ∵点Q 是点P 关于直线AB 的对称点,∴MQ MP =,∵=60B ∠︒,则906030BMS ∠=︒−︒=︒, ∴112BS BM ==, 当S ,P 重合时,MP 最小,则MQ 最小,∴1BP BS ==.【点睛】本题考查的是三角形的外角的性质,三角形的内角和定理的应用,轴对称的性质,含30︒的直角三角形的性质,全等三角形的判定与性质,等腰三角形的判定与性质,等边三角形的性质,作出合适的辅助线是解本题的关键.26. 【答案】(1)①()2,2−,()1,5−;②24n <<(2)12a ≤≤【分析】(1)①根据题目的新定义求解即可;②根据新定义表达出2Q 和1Q ,结合图形即可作答; (2)设点()0,D d ,则点D 关于M 的对应点()2,2D a b d '−,根据点D 关于M 的对应点恰好落在ABC 的边上,可得224a ≤≤,问题得解.【小问1详解】①将点()4,0B 关于直线1x =对称得到点()2,0−,再将点()2,0−关于直线1y =对称得到点()2,2−,则点()4,0B 关于M 的“对应点”为()2,2−,将点()3,3C −关于直线1x =对称得到点()1,3−−,再将点()1,3−−关于直线1y =对称得到点()1,5−,则点()3,3C −关于M 的“对应点”为()1,5−,故答案为:()2,2−,()1,5−;②解:由上述可得点()11,P n −关于M 的“对应点”1Q 为()3,2n −,点()21,1P n −+关于M 的“对应点”2Q 为()3,1n −.如图,线段12Q Q 在ABC 内部,此时只需1Q 在x 轴下方,2Q 在()3,3C −轴上方,即2013n n −<⎧⎨−>−⎩, 解得24n <<;∴n 的取值范围是:24n <<.【小问2详解】设点()0,D d ,∵(),M a b ,∴点D 关于M 的对应点()2,2D a b d '−,∵点D 关于M 的对应点恰好落在ABC 的边上,结合图形有:224a ≤≤,∴12a ≤≤,即a 的取值范围:12a ≤≤.【点睛】本题考查了平面直角坐标系的新定义,轴对称的性质,坐标与图形等知识,解决本题的关键是掌握“对应点”的定义,结合轴对称表示出对应点的坐标,是解答本题的关键.。
初二数学期中试题一.选择题(每小题3分)请正确选项填入下面表格中。
题号 1 2 3 4 5 6 7 8 9 10 答案 1.已知三角形的两边分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( )A.13cmB.6cmC.5cmD.4cm2.在△ABC 和△A 1B 1C 1中,AB=A 1B 1, ∠B=∠B 1,补充条件后仍不一定能保证△ABC ≌△A 1B 1C 1.则补充的条件是( )A.BC=B 1C 1B.∠A=∠A 1C.AC=A 1C 1D.∠C=∠C 13.能把任意一个三角形分成面积相等的两个三角形的线段是三角形的( ) A.角平分线 B.中线 C.高线 D.两边中点的连线4.等腰三角形的一个内角为80º,则它的底角为( ) A.80º B.50º C.100º D.50º或80º 5、如图,要测量河两岸相对的两点A 、B 间的距离,先在过B 点的AB 的垂线L 上取两点C 、D ,使CD=BC ,再在过D 点的垂线上取点E ,使A 、C 、E 在一条直线上,这时,△ACB ≌△ECD ,ED=AB ,测ED 的长就得AB 得长,判定△ACB ≌△ECD 的理由是( ) A SAS B ASA C SSS D AAS6.在长方形ABCD 中,AB=3cm,AD=9cm,将此长方形折叠,使点B 与点D 重合,折痕为EF.则△ABE 的面积为( )A.3cm 2B.4cm 2C.6cm 2D.12cm 27、满足下列条件的三角形中,不是直角三角形的是( ) A.三内角之比为1:2:3 B.三边长的平方比为1:2:3 C.三边之比为3:4:5 D.三内角之比为3:4:58.如图,点P 是∠AOB 内一点,点P1,P2分别是 点P 关于OA,OB 的对称点,P1P2与OA 相交于点M ,与OB 相交于点N ,若P1P2=15,则△PMN 的周长为( )A.3B.4C.5D.6二.填空题(每小题3分)1、如果一个等腰三角形的周长为15cm ,一边长为3cm ,那么腰长为2、如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =6㎝,则△DEB 的周长为A 、4㎝B 、6㎝C 、10㎝D 、不能确定_3.AD 是等腰三角形ABC 底边中线,且AD=3cm,∠BAC=120º,则AB 的长为______cm.4.在直线上依次摆放着三个正方形如图,已知斜放的正方形的面积是1,正放着的两个正方形的面积分别是S 1,S 2,则S 1+S 2=_________。
14.如图,在△ABC 中,∠ACB=90º,PH 垂直平分AB,∠B=40º,则∠PAC=________。
5、如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的边长分别是3,5,2,3,则最大的正方形E 的面积是________。
6、如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带 去玻璃店.O BP2P 1P A学校:_____________ 班级:__________ 姓名:______________13题图S 2S 1114题图PC B H A初二数学第1页(共4页)7.直角三角形的两条直角边为3和4,三角形内有一点到各边的距离相等,那么这个距离为______________。
8、直角三角形的两条边为3和4,则第三边的平方为______________。
三、尺规作图有特大城市A及两个小城市B、C,这三个城市共建一个污水处理厂,使得该厂到B、C两城市的距离相等,且使A市到厂的管线最短,试确定污水处理厂的位置。
四.解答题1.如右图,△ABC中,AB=AC=16cm,AB的垂直平分线ED交AC于D点.(1)当AE=13cm时,BE=cm ;(2)当△BEC的周长为26cm时,则BC=cm;(3)当BC=15cm,则△BEC的周长是cm.2、如图11.3—4,在△ABC中∠C=900,AC=BC,AD 平分.交BC于点D,DE⊥BE求证:(1)DE+BD=AC(2)若AB=6cm,求△DBE的周长3、如图,已知AC平分∠BAD,∠1=∠2,求证:AB=AD.4、已知:AB=AC,BD=CD ,求证:DE=DF5、如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.(1)求DC的长;(2)求AB的长.6、如图,有一块地ACBD,已知AD=24m,BD=26m,AC⊥BC,且AC=6m,BC=8m. 求这块地的面积;1.一个等腰三角形两边的长分别为4和9,那么这个三角形的周长是( )(A)13(B)17(C)22(D)17或222.下列长度的三条线段能组成三角形的是( )(A)1,2,3.5(B)4,5,9(C)20,15,8(D)5,15,83.以下判断正确的是( )(A)在△ABC中,射线AD平分∠ABC,则AD是△ABC的角平分线(B)在△ABC中,点M是BC边上的中点,那么直线AM是△ABC的一条中线(C)在Rt△ABC中,∠C=90°,则直角边AC,BC是直角三角形的两条高线(D)任何三角形的高线的交点不可能在这个三角形的外部4.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交BC的延长线于点F,若∠F=30°,DE=1,则EF的长是( )(A)3(B)2(C)(D)15.如图,把等腰直角△ABC沿BD折叠,使点A落在边BC上的点E处.下面结论错误的是( ) (A)AB=BE(B)AD=DC(C)AD=DE(D)AD=EC6.如图,在△ABC中,AB=AC,AB+BC=8,将△ABC折叠,使得点A落在点B处,折痕DF分别与AB,AC交于点D,F,连接BF,则△BCF的周长是( )(A)8(B)16(C)4(D)107.如图,△ABP和△DCP是两个全等的等边三角形,且PA⊥PD,有以下4个结论:①∠PBC=15°;②AD∥BC;③直线PC⊥AB;④四边形ABCD是轴对称图形.其中正确的结论有()(A)1个(B)2个(C)3个(D)4个8.在△ABC中,AB=13,AC=15,高AD=12,则BC的长为( )(A)14(B)14或4(C)8(D)4或89.“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边分别为a,b,那么(a+b)2的值是( )(A)12(B)16(C)20(D)25二、填空题11.如图,在△ABC中,∠ACB=90°,CD是AB上的高,∠BAC的平分线为AF,AF与CD交于点E,则△CEF是________三角形.12.如图,AD是△ABC中∠BAC的平分线,DE⊥AB交AB于点E,DF⊥AC交AC于点F,S△ABC=7,DE=2,AB=4,则AC长是________15.已知:如图,在四边形中ABCD中,AB=4,BC=3,CD=13,AD=12,且AB⊥BC,则四边形ABCD的面积为________. 16、如图,在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分AC,交AC于点E,交AB于点D,连接CD.若AD=4cm,则DB的长是_________三、简答题17、绘图题18. “中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)19.两块完全相同的三角形纸板ABC和DEF ,按如图所示的方式叠放,阴影部分为重叠部分,点O为边AC和DF的交点,不重叠的两部分△AOF与△DOC是否全等?为什么?20.如图,将长方形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F点处,已知CE=3cm,AB=8cm,求图中阴影部分的面积.21.如图,已知长方体的长AC=2cm,宽BC=1cm,高AA′=4cm.一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近?最短路程是多少?22.如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E,F,连接CE,BF.添加一个条件,使得△BDF≌△CDE,并说明理由.你添加的条件是______.(不添加辅助线)§1.1探索勾股定理(1)基础训练1.为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小刚搬来一架高为2.5米的木梯,准备把拉花挂到2.4米的墙上,则梯脚与墙角的距离应为米.2.如图1-1-1,小张为测量校园内池塘A,B两点的距离,他在池塘边选定一点C,使∠ABC=90°,并测得AC长26m,BC长24m,则A,B两点间的距离为m.3.如图1-1-2,阴影部分是一个半圆,则阴影部分的面积为.(不取近似值)4.底边长为16cm,底边上的高为6cm的等腰三角形的腰长为cm.5.一艘轮船以16km/h的速度离开港口向东北方向航行,另一艘轮船同时离开港口以12km/h 的速度向东南方向航行,它们离开港口半小时后相距km.提高训练6.一个长为10m为梯子斜靠在墙上,梯子的顶端距地面的垂直高度为8m,梯子的顶端下滑2m后,底端滑动m.7.如图1-1-3所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积的和是cm2.8.已知Rt△ABC中,∠C=90°,若cm ,cm,则Rt△ABC的面积为().(A)24cm2(B)36cm2(C)48cm2(D)60cm29.如图1-1-4,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是().(A )(B )(C )(D)无法确定10.暑假中,小明和同学们到某海岛去探宝旅游,按照如图所示的路线探宝.他们登陆后先往东走8km,又往北走2km,遇到障碍后又往西走3km,再折向北走6km处往东一拐,仅走1km就找到了宝藏,则登陆点到埋宝藏点的直线距离为km.知识拓展11.如图1-1-6,已知直角△ABC的两直角边分别为6,8,分别以其三边为直径作半圆,求图中阴影部分的面积.12.如图1-1-7,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它恰好落在斜边AB上,且与AE重合,求CD的长.§1.1探索勾股定理(2)基础训练1.斜边为,一条直角边长为的直角三角形的面积是()(A) 60 (B) 30 (C) 90 (D) 1202. 等腰三角形的腰长为10,底长为12,则其底边上的高为( )(A)13 (B)8 (C)25 (D)643.已知一个Rt△的两边长分别为3和4,则第三边长的平方是()(A)25(B)14(C)7(D)7或254.在直角三角形中,斜边=2,则=______.5. 直角三角形的三边长为连续偶数,则其周长为.6.如图1-1-8为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.提高训练7.如图1-1-9,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米.8.如图1-1-10,小李准备建一个蔬菜大棚,棚宽4米,高3米,长20米,棚的斜面用塑料布遮盖,不计墙的厚度,请计算阳光透过的最大面积.图1-1-119.伽菲尔德(,1881年任美国第20届总统)利用两个全等的三角形拼成如图图形,,,且三点共线,证明了勾股定理(1876年4月1日,发表在《新英格兰教育日志》上),现请你尝试该证明过程.知识拓展10.如图,已知长方形ABCD中AB=8 cm,BC=10 cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.§1.1探索勾股定理(3)基础训练1.长方形的一条对角线的长为10cm,一边长为6cm,它的面积是().图1-1-6图1-1-7 图1-1-8 图1-1-9图1-1-10图1-1-12ABC图1-1-20(A )60cm 2 (B )64 cm 2 (C )24 cm 2 (D )48 cm 22.如图1-1-3,把矩形纸条沿同时折叠,两点恰好落在边的点处,若,,,则矩形的边长为( )A.B.C.D.3.如图1-1-14,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(取3)是( ).(A )20cm (B )10cm (C )14cm (D )无法确定 4.如图1-1-15是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分....的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( ) A .B .C .D .提高训练5.一个直角三角形的三边长的平方和为200,则斜边长为6.我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图1-1-16所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为,那么的值是.7.如图,直线上有三个正方形,若的面积分别为5和11,则的面积为()A.4B.6C.16D.558.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:),计算两圆孔中心和的距离为______.9.如图1-1-19,已知中,,cm ,cm .现将进行折叠,使顶点重合,则折痕c m .10.图1-1-20是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若,,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图-2所示的“数学风车”,则这个风车的外围周长是.11. 如图1-1-21,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?a bc1-1-17C ABED125D EBC图1-1-13 图1-1-14 图1-1-15图1-1-16图1-1-18图1-1-19图1-1-2112. 已知,如图1-1-22,四边形ABCD 中,AB=3cm ,AD=4cm ,BC=13cm ,CD=12cm ,且∠A=90°,求四边形ABCD 的面积。