(3.2.2-2函数最值和函数拟合)
- 格式:ppt
- 大小:166.50 KB
- 文档页数:15
三角函数最优拟合三角函数是数学中的一类基本函数,包括正弦函数、余弦函数和正切函数等。
三角函数最优拟合是指通过拟合方法,将已知的数据点与三角函数模型进行匹配,进而找到最符合数据的三角函数曲线。
一、线性最小二乘法线性最小二乘法是最常见和最基础的拟合方法。
它主要用于拟合简单的线性模型。
对于三角函数最优拟合,可以将其转化为线性最小二乘问题。
具体步骤如下:1. 建立三角函数最优拟合的数学模型,如 y = a*sin(b*x+c) + d。
2.根据给定的数据点(x,y),将模型中的未知参数a、b、c、d视为待求解的变量。
3. 将模型代入数据点,得到误差函数 E = Σ(y - (a*sin(b*x+c) +d))^24.对误差函数求偏导数,得到关于a、b、c、d的连立方程组。
5.解得方程组的参数值,即得到最优拟合的三角函数曲线。
线性最小二乘法适用于数据点分布较为均匀、模型比较简单的情况。
它在实际应用中广泛用于信号处理、回归分析和图像处理等领域。
二、非线性最小二乘法非线性最小二乘法是对线性最小二乘法的扩展,用于拟合复杂的非线性模型。
对于三角函数最优拟合,提供更大的拟合灵活性。
具体步骤如下:1. 建立三角函数最优拟合的数学模型,如 y = a*sin(b*x+c) + d。
2.根据给定的数据点(x,y),将模型中的未知参数a、b、c、d视为待求解的变量。
3. 将模型代入数据点,得到误差函数 E = Σ(y - (a*sin(b*x+c) +d))^24.对误差函数求对未知参数的偏导数,得到关于a、b、c、d的连立方程组。
5. 利用数值优化算法,如 Levenberg-Marquardt 算法等,求解非线性方程组,找到最优拟合的参数值。
非线性最小二乘法适用于数据点分布不均匀、模型比较复杂的情况。
它在实际应用中常用于信号处理、金融建模和生物医学等领域。
三、最小二乘谱估计法最小二乘谱估计法是一种基于频域的拟合方法,广泛应用于信号分析与处理,如声音处理、图像处理和通信等领域。
3.2.2 函数模型的应用实例自主学习1.掌握几种初等函数的应用.2.理解用拟合函数的方法解决实际问题的方法. 3.了解应用实例的三个方面和数学建模的步骤.1.函数模型的应用实例主要包括三个方面:(1)________________________________________________; (2)________________________________________________; (3)________________________________________________. 2.面临实际问题,自己建立函数模型的步骤:(1)________________;(2)________;(3)______________; (4)______________; (5)________;(6)______________.对点讲练已知函数模型的应用问题【例1】 某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R (x )=⎩⎪⎨⎪⎧400x -12x 2 (0≤x ≤400)80 000 (x >400).其中x 是仪器的月产量.(1)将利润表示为月产量的函数f (x );(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)变式迁移1 为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t的函数关系式为y =(116)t -a (a 为常数)如图所示.根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为__________________;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室.自建函数模型的应用问题【例2】某公司每年需购买某种元件8 000个用于组装生产,每年分n次等量进货,每进一次货(不分进货量大小)费用500元,为了持续生产,需有每次进货的一半库存备用,每件每年库存费2元,问分几次进货可使得每年购买和贮存总费用最低?变式迁移2 某工厂拟建一座平面图为矩形且面积为200 m2的三级污水处理池(平面图如图所示),由于地形限制,长、宽都不能超过16 m,如果池外周壁建造单价为每米400元,中间墙建造单价为每米248元,池底建造单价为每平方米80元(池壁的厚度忽略不计,且池无盖).(1)写出总造价y(元)与污水处理池长x(m)的函数关系式,并指出其定义域.(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求出最低总造价.函数模型的选择【例3】某工厂今年1月、2月、3月生产某种产品的数量分别是1万件、1.2万件、1.3万件,为了估测以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量y与月份x的关系,模拟函数可以选用二次函数或函数y=ab x+c(其中a,b,c为常数,a≠0),已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.变式迁移3 某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/102kg)(1)Q 与上市时间t 的变化关系;Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t ;(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.1.解答应用题的基本步骤: (1)设:合理、恰当地设出变量;(2)写:根据题意,抽象概括数量关系,并能用数学语言表示,得到数学问题; (3)算:对所得数学问题进行分析、运算、求解;(4)答:将数学问题的解还原到实际生活问题中,给出最终的答案. 2.在中学阶段,用函数拟合解决实际问题的基本过程是:课时作业一、选择题1现准备用下列函数中的一个近似地表示这些数满足的规律,其中最接近的一个是( )A .V =log 2tB .V =log 12t C .V =t 2-12D .V =2t -22.计算机成本不断降低,若每隔3年计算机价格降低13,则现在价格为8 100元的计算机,9年后的价格可降为( )A .2 400元B .900元C .300元D .3 600元3. 一个高为H ,盛水量为V 0的水瓶的轴截面如图所示,现以均匀速度往水瓶中灌水,直到灌满为止,如果水深h 时水的体积为V ,则函数V =f (h )的图象大致是( )4.某种电热水器的水箱盛满水是200升,加热到一定温度可浴用.浴用时,已知每分钟放水34升,在放水的同时注水,t分钟注水2t2升,当水箱内水量达到最小值时,放水自动停止.现假定每人洗浴用水65升,则该热水器一次至多可供几人洗澡() A.3人B.4人C.5人D.6人二、填空题5.60年国庆,举国欢腾,某旅游胜地的客流量急速增加.某家客运公司为招揽游客,推出了客运定票的优惠政策:如果行程不超过100 km,票价是0.4元/km;如果超过100 km,则超过100 km的部分按0.3元/km定价.则客运票价y元与行程公里x km之间的函数关系是______________________________.6. 右图表示一位骑自行车和一位骑摩托车者在相距为80 km的两城镇间旅行的函数图象,由图可知:骑自行车者用6 h(含途中休息的1 h),骑摩托车者用了2 h.有人根据这个函数图象,提出了关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发3 h,晚到1 h;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发1.5 h后追上骑自行车者.其中正确的序号是__________________________________________________.三、解答题7.某产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3 000+20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25万元,则生产者不赔本时(销售收入不小于总成本)的最低产量是多少.8.某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,凡多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式;(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1 000个,利润又是多少元?3.2.2函数模型的应用实例答案自学导引1.(1)利用给定的函数模型解决实际问题 (2)建立确定性的函数模型解决问题 (3)建立拟合函数模型解决实际问题2.(1)收集数据 (2)描点 (3)选择函数模型 (4)求函数模型 (5)检验 (6)用函数模型解决实际问题对点讲练【例1】 解 (1)设每月产量为x 台,则总成本为20 000+100x ,从而f (x )=⎩⎪⎨⎪⎧-12x 2+300x -20 000 (0≤x ≤400)60 000-100x (x >400).(2)当0≤x ≤400时,f (x )=-12(x -300)2+25 000,∴当x =300时,有最大值25 000;当x >400时,f (x )=60 000-100x 是减函数, f (x )<60 000-100×400<25 000. ∴当x =300时,f (x )取最大值.∴每月生产300台仪器时,利润最大, 最大利润为25 000元.变式迁移1 (1) y =⎩⎨⎧10t , 0≤t ≤110,⎝⎛⎭⎫116t -110, t >110(2)0.6解析 (1)设y =kt (k ≠0),由图象知y =kt 过点(0.1,1),则1=k ×0.1,k =10, ∴y =10t (0≤t ≤0.1);由y =⎝⎛⎭⎫116t -a过点(0.1,1)得1=⎝⎛⎭⎫1160.1-a , a =0.1,∴y =⎝⎛⎭⎫116t -0.1(t >0.1).∴y =⎩⎨⎧10t , 0≤t ≤110,⎝⎛⎭⎫116t -110,t >110.(2)由⎝⎛⎭⎫116t -0.1≤0.25=14,得t ≥0.6, 故至少需经过0.6小时.【例2】 解 设每年购买和贮存元件总费用为y 元,其中购买成本费为固定投入, 设为c 元,则y =500n +2×8 000n ×12+c=500n +8 000n +c =500(n +16n )+c=500(n -4n )2+4 000+c ,当且仅当n =4n,即n =4时,y 取得最小值且y min =4 000+c .所以分4次进货可使得每年购买和贮存元件总费用最低.变式迁移2 解 (1)设污水处理池的长为x m ,则宽为200xm ,总造价为y .∴y =400(2x +2×200x )+248×200x ×2+80×200=800(x +324x )+16 000.∵⎩⎪⎨⎪⎧0<x ≤160<200x≤16,∴12.5≤x ≤16.故其定义域为[12.5,16].(2)先讨论y =800(x +324x)+16 000在[12.5,16]上的单调性.设x 1,x 2∈[12.5,16]且x 1<x 2,则y 1-y 2=800[(x 1-x 2)+324(1x 1-1x 2)]=800(x 1-x 2)(1-324x 1x 2).∵x 1,x 2∈[12.5,16],x 1<x 2, ∴x 1·x 2<162<324.∴1-324x 1x 2<0,x 1-x 2<0.∴y 1-y 2>0.∴此函数在[12.5,16]上单调递减. ∴当x =16时,y min =45 000(元),此时,宽为20016m =12.5 m.∴当池长为16 m ,宽为12.5 m 时, 总造价最低为45 000元.【例3】 解 设f (x )=px 2+qx +r (p ≠0),则有 ⎩⎪⎨⎪⎧f (1)=p +q +r =1,f (2)=4p +2q +r =1.2,f (3)=9p +3q +r =1.3.解得p =-0.05,q =0.35,r =0.7. ∴f (x )=-0.05x 2+0.35x +0.7,∴f (4)=-0.05×42+0.35×4+0.7=1.3. 设g (x )=ab x +c (a ≠0),则有 ⎩⎪⎨⎪⎧g (1)=ab +c =1,g (2)=ab 2+c =1.2,g (3)=ab 3+c =1.3.解得a =-0.8,b =0.5,c =1.4. ∴g (x )=-0.8×0.5x +1.4,∴g (4)=-0.8×0.54+1.4=1.35.经比较可知,用g (x )=-0.8×0.5x +1.4作为模拟函数较好. 变式迁移3 解 (1)由表中数据知,当时间t 变化时,种植成本并不是单调的, 故只能选取Q =at 2+bt +c .即⎩⎪⎨⎪⎧150=a ×502+b ×50+c 108=a ×1102+b ×110+c 150=a ×2502+b ×250+c, 解得Q =1200t 2-32t +4252. (2)Q =1200(t -150)2+4252-2252=1200(t -150)2+100, ∴当t =150天时,西红柿的种植成本最低,为100元/102 kg. 课时作业 1.C 2.A3.D [考察相同的Δh 内ΔV 的大小比较.] 4.B [设最多用t 分钟,则水箱内水量y =200+2t 2-34t ,当t =172时,y 有最小值,此时共放水34×172=289(升),可供4人洗澡.]5.y =⎩⎪⎨⎪⎧0.4x ,0<x ≤100,40+0.3(x -100),x >1006.①②解析 ③错,骑摩托车者出发1.5 h 时走了60 km ,而从图中可看出骑自行车者走的距离大于60 km.7.解 由题意得⎩⎪⎨⎪⎧3 000+20x -0.1x 2≤25x 0<x <240解得150≤x <240,x ∈N *∴生产者不赔本时的最低产量是150台.8.解 (1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x 0个,则x 0=100+60-510.02=550(个).∴当一次订购量为550个时,每个零件的实际出厂价恰好降为51元. (2)当0<x ≤100时,P =60; 当100<x <550时,P =60-0.02(x -100)=62-0.02x ; 当x ≥550时,P =51.∴P =f (x )=⎩⎪⎨⎪⎧60, 0<x ≤100,62-0.02x , 100<x <550,51, x ≥550(x ∈N +).(3)设销售商一次订购量为x 个时,工厂获得的利润为S 元,则 S =(P -40)x =⎩⎪⎨⎪⎧20x , 0<x ≤100,22x -0.02x 2, 100<x <550,11x , x ≥550(x ∈N +)当x =500时,S =22×500-0.02×5002=6 000(元);当x =1 000时,S =11×1 000=11 000(元).∴当销售商一次订购500个零件时,该厂获得的利润是6 000元;如果一次订购1 000个零件时,利润是11 000元.。
函数拟合原理
函数拟合原理是指根据已知的一组数据点,通过选择适当的数学函数,求解出函数的未知参数,从而使得该函数能够最好地拟合数据点。
拟合函数可以用于揭示数据中的潜在规律,进行数据预测和模型构建等应用。
在函数拟合过程中,常用的方法包括最小二乘法和最大似然估计。
最小二乘法的基本思想是通过最小化垂直方向上的总误差来确定函数的参数。
最大似然估计是通过选择使得数据出现的概率最大的参数值来进行拟合。
具体而言,拟合过程可以通过以下步骤进行:
1. 确定拟合函数的形式:根据已知数据的特征和要求,选择适当的函数形式。
常见的函数形式包括线性函数、多项式函数、指数函数、对数函数、正弦函数等。
2. 确定拟合函数的参数:根据函数的形式,确定参数的个数和范围。
参数的个数取决于函数的复杂程度,通过试验和验证可以得到合理的范围。
3. 构建拟合模型:将拟合函数的形式和参数带入到拟合模型中,建立拟合方程。
4. 求解参数:通过最小二乘法或最大似然估计等方法,求解使得拟合方程误差最小的参数值。
5. 拟合评估:计算拟合方程与已知数据之间的误差,常用的评估指标包括均方误差、相关系数等。
评估结果可以用于判断拟合效果的优劣。
需要注意的是,拟合函数只是对已知数据的近似表示,并不能保证对未知数据的准确预测。
因此,在进行函数拟合时,应该根据实际需求和数据特点,选择合适的拟合函数和评估指标,进行合理的拟合分析和结果验证。
第三章函数的应用3.2 函数模型及其应用§3.2.2 函数模型的应用举例【学习目标】1.能够运用函数性质,解决某些简单的实际问题。
2.能够根据实际问题构建适当的函数模型,体会函数模型的广泛应用。
【预习提纲】1.函数模型的分类及其建立与应用根据实际应用问题提供的两个变量的数量关系是否确定,可把构建的函数模型分为两大类:第一类是确定函数模型,这类应用题提供的变量关系是确定的,是以现实生活为原型设计的;第二类是近似函数模型,或称拟合函数模型,这类应用题提供的变量关系是不确定的,只是给出了两个变量的几组对应值(是搜集或用实验方法测定的).根据函数自身的种类,常见函数模型可分为一次函数模型、、、、、等.2.解答应用问题的程序概括为以下几点:(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符合语言,利用数学知识,建立相应的数学模型;(3)求模:求解数学模型,得出数学结论;(4)还原:将数学结论还原为实际问题的意义.【例题精讲】例1.如图表示一位骑自行车者和一位骑摩托车者在相距80 km的两城镇间旅行的函数图象,由图可知:骑自行车者用了6小时,沿途休息了1小时,骑摩托车者用了2小时,根据这个函数图象,推出关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发了1.5小时后,追上了骑自行车者.其中正确信息的序号是( )A.①②③B.①③C.②③D.①②例2. 一辆汽车在某段路程中的行驶速率与时间的关系如图所示。
(1)求图中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004 km,试建立行驶这段路程时汽车里程表读数s km与时间t h的函数关系式,并作出相应的图象。
h例3.一种药在病人血液中得量保持在1500 mg 以上,才有疗效;而低于500mg ,病人就有危险。
拟合函数导言拟合函数是数学领域中的一个重要概念,它用于通过一组已知数据点的集合来寻找与数据点最接近的数学函数。
拟合函数的目标是尽量使该函数与数据点之间的误差最小化,从而能够更好地描述数据的特征和趋势。
在本文中,我们将介绍拟合函数的原理和常见的拟合方法,并讨论其在实际应用中的重要性和局限性。
一、拟合函数的原理拟合函数的原理是基于最小二乘法的思想。
最小二乘法是一种用于优化函数的方法,其目标是寻找一组参数,使得函数的预测值与实际观测值之间的平方误差最小化。
在拟合函数中,我们通常假设数据点之间的关系可以由一个特定类型的函数来描述,而拟合函数的目的就是找到最优的函数参数,使得该函数能够最好地拟合数据点。
二、常见的拟合方法1. 线性拟合线性拟合是拟合函数中最简单和最常见的方法之一。
线性拟合假设数据的关系可以由一个线性方程来表示,即 y = mx + b,其中 y表示因变量,x 表示自变量,而 m 和 b 是线性方程的参数。
通过最小二乘法,我们可以求解出最优的参数值,从而得到最佳的线性拟合函数。
2. 多项式拟合多项式拟合是另一种常见的拟合方法,它假设数据之间的关系可以由一个多项式函数来描述。
多项式函数的一般形式为 y = a0 + a1x + a2x^2 + ... + anx^n,其中 a0, a1, ..., an 是多项式的系数。
通过最小二乘法,我们可以求解出最优的系数值,从而得到最佳的多项式拟合函数。
3. 曲线拟合曲线拟合是一种更灵活和复杂的拟合方法,它假设数据之间的关系可以由一个非线性方程来描述。
曲线拟合函数可以有各种形式,如指数函数、对数函数、幂函数等。
通过最小二乘法或其他优化算法,我们可以求解出最优的参数值,从而得到最佳的曲线拟合函数。
三、拟合函数的应用拟合函数在工程、科学和统计学等领域中广泛应用。
以下是一些常见的应用示例:1. 经济预测:通过拟合历史经济数据点的函数,可以预测未来的经济趋势,帮助政府和企业做出决策。