基于MATLAB的异步电动机仿真
- 格式:doc
- 大小:332.50 KB
- 文档页数:11
基于MatlabSimulink的异步电机矢量控制系统仿真一、本文概述随着电力电子技术和控制理论的不断发展,异步电机矢量控制系统已成为现代电机控制领域的重要分支。
该系统通过精确控制异步电机的磁通和转矩,实现了对电机的高效、稳定和动态性能的优化。
Matlab/Simulink作为一种强大的仿真工具,为异步电机矢量控制系统的研究和设计提供了便捷的平台。
本文旨在探讨基于Matlab/Simulink的异步电机矢量控制系统仿真方法。
文章将简要介绍异步电机矢量控制的基本原理和关键技术,包括空间矢量脉宽调制(SVPWM)技术、转子磁链观测技术以及矢量控制策略等。
详细阐述如何利用Matlab/Simulink搭建异步电机矢量控制系统的仿真模型,包括电机模型、控制器模型以及系统仿真模型的构建过程。
文章还将探讨仿真模型的参数设置、仿真过程以及仿真结果的分析方法。
通过本文的研究,读者可以深入了解异步电机矢量控制系统的基本原理和仿真方法,掌握基于Matlab/Simulink的仿真技术,为异步电机矢量控制系统的实际设计和应用提供有益的参考和借鉴。
本文的研究也有助于推动异步电机矢量控制技术的发展和应用领域的拓展。
二、异步电机基本原理异步电机,又称感应电机,是一种广泛应用于工业领域的电动机。
其基本原理基于电磁感应和电磁力作用。
异步电机主要包括定子(静止部分)和转子(旋转部分)。
定子通常由铁芯和三相绕组构成,而转子则可能由实心铁芯、鼠笼型或绕线型结构组成。
当异步电机通电时,定子绕组中的三相电流会产生旋转磁场。
这个旋转磁场与转子中的导体相互作用,根据法拉第电磁感应定律,会在转子导体中产生感应电动势和感应电流。
这些感应电流在旋转磁场的作用下,受到电磁力的作用,从而使转子产生旋转力矩,驱动转子旋转。
异步电机的旋转速度与定子旋转磁场的旋转速度并不完全同步,这也是其被称为“异步”电机的原因。
异步电机的旋转速度通常略低于旋转磁场的同步速度,这是由于转子导体的电感和电阻导致的电磁延迟效应。
基于MATLAB的异步电机变频调速系统的仿真与分析1.引言随着工业自动化水平的不断提高,对电机变频调速系统的要求也越来越高。
异步电机是目前工业中最为常见的一种电机类型,其变频调速系统在工业生产中发挥着至关重要的作用。
通过变频调速系统,可以实现电机的精确控制和能耗优化,提高生产效率和降低运行成本。
对异步电机变频调速系统进行仿真与分析,对于工业生产具有重要意义。
MATLAB是一款功能强大的技术计算软件,具有丰富的工具箱和仿真功能,可以方便地进行电机系统的建模和仿真分析。
本文将基于MATLAB对异步电机变频调速系统进行仿真与分析,探讨其性能特点和优化方法。
2.异步电机变频调速系统的基本原理异步电机的变频调速系统是通过改变电机的输入频率和电压,从而控制电机的转速和转矩。
基本原理是利用变频器对电源进行调节,改变电机的供电频率和电压,以实现对电机转速的精确控制。
在变频调速系统中,一般采用闭环控制结构,通过反馈电机转速信息,控制变频器的输出频率和电压,从而实现对电机的精确控制。
还需要考虑电机的负载特性和动态响应特性,以保证系统稳定性和性能优化。
在MATLAB中,可以利用Simulink工具箱进行异步电机变频调速系统的建模。
首先需要建立电机的数学模型,包括电机的电气特性、机械特性和传感器特性等。
然后,在Simulink中建立闭环控制系统模型,包括电机模型、变频器模型和控制器模型等。
通过建立完整的系统模型,可以对异步电机变频调速系统进行仿真分析。
可以通过改变输入信号和参数,观察系统的动态响应和稳定性能,进而优化系统的控制策略和调速性能。
4.仿真与分析通过MATLAB对异步电机变频调速系统进行仿真与分析,可以得到系统的各项性能指标和特性曲线。
其中包括电机的转速-转矩特性曲线、电机的效率曲线、系统的响应时间和稳定性能等。
在仿真过程中还可以考虑不同的工况和负载情况,对系统进行多种工况的分析和评估。
通过对系统性能的综合分析,可以得到系统的优化方案和改进措施,提高系统的控制精度和能效性能。
摘要:随着电力电子技术的发展,异步电机以其在变频调速方面的优点开始显现出来了,相对于直流电机有更加广泛的应用本论文主要介绍了异步电机的工作原理以及异步电机的调速方法。
通过改变频率、改变电源电压、改变极对数等方法来改变电机的转速,我是通过改变电机频率来达到改变电机转速的目的,本文还介绍了变频器的原理和PWM(pulse width modulation)变频器的工作原理。
同时通过运用Matlab/simulink系统对异步电机转速调节进行了开环闭环的仿真。
本论文对电机转矩转速观察为开环系统,但是在闭环系统中通过使用Matlab/simulink对系统闭环进行设计仿真,实现了调速,并观察到了电机转速、转矩改变的图像,并且分析了解了异步电机转速改变的原因和仿真过程中的条件等。
关键词Matlab 异步电机变频调速仿真Abstract:With the development of power electronics, the advantage of the variable frequency speed in asynchronous machine is compared with the DC motor , it is more widely used.The principle of asynchronous machine and its way of speed governing is main discussed in this paper. The speed of electrical motor is changed by changing frequency voltage, and numbers of pole-p[airs. This paper is based on changing frequency of the electrical motor, the principle of frequency converter and working theory about PWM(pulse width modulation)is also presented. The open-loop and closed-loop simulation of speed governing with asynchronous machine is achieved through the use of Matlab/simulink system.The observation to electrical motor speed and torque in this paper is the open-loop system, in a closed-loop system, Matlab/simulink is used to design and similated the closed-loop system speed changing is realized, the changing plot of speed and torque about the electrical motor and observed the changing image of torque and the speed about the electrical motor, is observed. the reason why asynchronous machine speed changes and parameters a selection of call the component during the simulation are analyzed.Understanding of the principle of the induction motor and speed control methods, there are three main methods Speed: (1) changing the frequency, (2) change to slip (3) changes the very few. This paper has taken to change the frequency of the ways to achieve the purpose of speed. At the same time also understand the principle of the inverter, and its scope of application.Key words Matlab asynchronous machine Frequency Control Simulation目录第一章绪论 (1)第一节电气传动技术的发展概况 (1)第二节普通交流异步电动机变频调速调速范围的问题 (2)第三节交流异步电动机的调速方式 (3)一、转子回路串电阻或阻抗调速 (3)二、定子调压调速 (3)三、串级调速 (4)四、变极调速 (4)五、变频调速 (4)第四节关于matlab仿真的相关内容 (5)第二章异步电机运行基本原理及其调速方法以及变量控制 (6)第一节异步电机运行基本原理 (6)第二节异步电机的电压方程和等效电路 (6)第三节异步电机的功率方程和转矩方程 (8)第四节异步电机的调速方法 (10)一、变极调速 (10)二、变频变压调速 (11)三、改变转差率来调速 (12)第三章逆变器工作原理和控制及其应用 (14)第一节变频器的工作原理 (14)第二节变频器控制方式 (14)一、正弦脉宽调制(SPWM)控制方式 (15)二、电压空间矢量(SVPWM)控制方式 (15)三、矢量控制(VC)方式 (16)四、直接转矩控制(DTC)方式 (16)五、矩阵式交—交控制方式 (16)第三节简单的三种变频器控制方式 (17)第四节变频器的实际应用 (18)第五节正弦波脉宽调制(SPWM)变频器 (19)一、 SPWM变频器的工作原理 (20)二、 SPWM变频器的同步调制和异步调制 (21)第四章 MATLAB基于VVVF对异步电机的调速仿真实现 (24)第一节关于Matlab软件的应用与操作 (25)一、 PWM模块的组成与仿真 (25)二、电机模块的仿真 (27)三、输出观察模块的仿真 (29)第二节开环调速系统仿真 (30)第三节闭环调速系统仿真 (35)一、闭环调速Matlab仿真主模块 (36)二、控制环节模块 (37)三、仿真结果 (41)总结和展望 (46)参考文献 (48)第一章绪论异步电机的工作原理?异步电机调速又是怎么样的呢?目前主要引用在那几个领域呢?以及异步电机的仿真又是什么呢?又是怎么去仿真的呢?对这些问题的初步说明将是这篇论文所要叙述的。
基于Matlab/Simulink 的异步电机矢量控制系统仿真摘要在异步电机的数学模型分析中以及矢量控制系统的基础之上,利用Matlab/Simulink运用建立模块的思想分别组建了坐标变换模块、PI调节模块、转子磁链个观测模块、SVPWM等模块,然后将这些模块有机的结合,最后构成了异步电动机矢量控制的仿真模块,并且进行了仿真验证。
仿真结果分别显示了电机空载与负载情况下转矩、转速的动态变化曲线,验证了该方法的有效性、实用性,为电机在实际使用中打下了坚实的基础。
本文主要研究异步电机在矢量控制下的仿真。
使用Matlab/Simulink中的电气系统模块(PowerSystem Blocksets)将其重组得到新的模型并对其仿真,最后分析仿真结果得出结论。
关键词: 异步电机矢量控制 MATLAB/SIMULINK 变频调速目录摘要 (I)Abstract......................................................................................... 错误!未定义书签。
1 绪论 (1)1.1 电机及电力拖动技术的发展概况 (1)1.2 异步电动机的控制技术现状................................................. 错误!未定义书签。
1.3 仿真软件的简介及其选择..................................................... 错误!未定义书签。
1.4 论文的主要内容及结构安排................................................. 错误!未定义书签。
2 异步电动机的数学模型 (4)2.1 异步电动机的稳态数学模型 (4)2.2 异步电动机的动态数学模型 (5)2.3 本章小结 (7)3 矢量控制系统基本思路 (8)3.1 矢量控制的基本原理 (8)3.2 坐标变换 (9)3.3SVPWM调制 (21)3.3本章小结 (11)4 异步电机矢量控制系统仿真 (14)4.1矢量控制系统模型 (14)4.2仿真结果与分析 (15)4.5本章小结 (17)5结论与展望 (18)5.1结论 (18)5.2后续研究工作的展望 (19)参考文献 ....................................................................................... 错误!未定义书签。
基于MATLAB的异步电机变频调速系统的仿真与分析摘要:本文利用MATLAB软件对异步电机变频调速系统进行仿真与分析,通过建立模型、设计控制策略和进行性能评估,探讨了异步电机的调速系统在不同工况下的动态特性。
通过仿真分析,可以更好地理解异步电机的变频调速系统的工作原理和特性,并为实际应用提供理论参考。
一、引言异步电机是工业生产中常见的电动机之一,其主要应用在风机、水泵、输送带等设备中。
传统的异步电机是由交流电源直接供电,转速固定。
为了满足不同工况下的需求,提高系统的控制性能,现在常常采用变频调速技术来实现异步电机的调速。
变频调速系统可以通过改变电机的输入频率,来调节电机的转速和输出功率,实现对系统的精准控制。
二、异步电机变频调速系统的建模1. 异步电机的数学模型异步电机可以理解为一个轴对称的旋转电机,其运动方程可以简化为以下形式:\[T_{\text {电 }}=T_{\text {m机 }}-T_{\text {负载 }}-T_{\text {摩擦阻力 }}=J \cdot \frac{d \omega}{d t}\]T电表示电机的电磁转矩,Tm机表示电机的机械转矩,T负载表示负载转矩,T摩擦阻力表示摩擦转矩,J表示转动惯量,ω表示电机的角速度。
2. 变频调速系统的控制策略变频调速系统的控制策略一般包括速度闭环控制和电流矢量控制两部分。
速度闭环控制采用PID控制器,通过测量电机转速与给定转速进行比较,调节输出电压的频率和幅值,使电机实现闭环控制。
电流矢量控制则是根据电机的电流矢量和磁链方向,控制电机的输出电压和频率,实现对电机的精准控制。
3. 系统的建模与仿真为了进行仿真分析,需要建立异步电机变频调速系统的数学模型。
在MATLAB中,可以使用Simulink工具箱来进行建模。
通过搭建电机模型、控制算法和运动方程,可以建立完整的系统模型,并进行仿真实验。
三、仿真与分析1. 建立异步电机的模型需要建立异步电机的数学模型,并在Simulink中进行搭建。
基于MATLAB的三相鼠笼式交流异步电动机制动仿真
三相鼠笼式交流异步电动机是一种常见的工业电动机,具有结构简单、运行可靠、接线便捷等特点。
为了更好地了解鼠笼式交流异步电动机的制
动过程,可以使用MATLAB软件进行仿真研究。
首先,我们需要建立鼠笼式交流异步电动机的数学模型。
这个模型是
基于电动机的物理特性和电路等参数建立的,可以描述电动机的运行情况。
通常,鼠笼式交流异步电动机的数学模型可以分为电磁部分和机械部分两
部分。
在电磁部分,我们可以利用磁动势方程描述电动机的电磁特性。
首先,我们可以根据电动机的电路参数计算出定子电压、电流和电动势等相关参数。
然后,根据电动势方程,我们可以计算出电动机的磁链和电磁转矩。
在机械部分,我们可以利用转矩方程描述电动机的机械特性。
根据载
荷特性和电动机的转速、转矩、惯性等参数,我们可以计算出电动机的机
械转矩和转速。
在建立了鼠笼式交流异步电动机的数学模型之后,我们可以使用MATLAB软件进行仿真研究。
根据实际需求,我们可以设置不同的仿真条
件和参数,如电机参数、工作状态、负载特性等。
然后,我们可以运行仿
真程序,得到电动机在不同工况下的运行情况和性能指标。
通过仿真研究,我们可以得到电动机的速度-转矩特性曲线、电流-转
矩特性曲线、功率-转矩特性曲线等数据,从而更好地理解电动机的工作
原理和性能。
总之,基于MATLAB的三相鼠笼式交流异步电动机制动仿真可以帮助研究人员深入了解电动机的运行特性和性能,提供了一种快捷有效的研究方法。
同时,这种仿真方法也可以用于电动机的设计优化和性能改进。
基于MATLAB的异步电机变频调速系统的仿真与分析1. 引言1.1 研究背景异步电机是一种常见的电动机类型,在工业和家用电器中广泛应用。
随着电力系统的发展和电动机技术的进步,对异步电机的变频调速系统进行研究已成为一个热门领域。
变频调速系统可以根据实际需要调整电机转速,实现节能、精准控制和适应不同工况需求的目的。
随着现代工业的自动化程度不断提高,对电机的调速要求也越来越高。
传统的电压调速和机械调速方式已经无法满足实际需求,因此异步电机变频调速系统逐渐成为工业界的主流选择。
在此背景下,研究基于MATLAB的异步电机变频调速系统的仿真与分析具有重要意义。
通过对异步电机原理、变频调速系统设计和MATLAB仿真模型搭建等方面的研究,可以更好地了解和掌握这一技术,为实际应用提供理论支持和指导。
本文将对异步电机变频调速系统进行深入探讨,旨在为相关领域的研究和应用提供有益的参考和借鉴。
1.2 研究意义异步电机是工业中常用的电动机之一,其性能直接影响到生产效率和能源消耗。
变频调速系统能够实现电机转速控制,提高电机的运行稳定性和效率,减少能耗,降低维护成本。
基于MATLAB的异步电机变频调速系统的仿真与分析具有重要的研究意义。
通过仿真可以快速、灵活地模拟电机的工作情况,预测电机在不同工况下的性能表现,为设计和优化电机调速系统提供有力的依据。
通过仿真分析可以深入了解变频调速系统在不同参数和工况下的工作特性,为实际应用中的系统调试和优化提供指导。
对异步电机变频调速系统的研究可以推动电机控制技术的发展,促进工业生产的智能化和节能化,具有重要的社会和经济意义。
基于MATLAB的异步电机变频调速系统的仿真与分析不仅具有理论研究意义,还具有实际应用价值,对推动电机控制技术的发展和提高工业生产效率具有重要意义。
1.3 研究目的研究目的是为了探讨基于MATLAB的异步电机变频调速系统的仿真与分析,从而更深入地了解异步电机的工作原理和变频调速系统的设计方法。
基于Matlab的异步电动机矢量控制系统的仿真研究交流调速系统、仿真建模、矢量控制1 引言交流调速技术在工业领域的各个方面应用很广,对于提高电力传动系统的性能有着重要的意义,由于电力传动系统的复杂性和被控对象的特殊性,使得对它的建模与仿真一直是研究的热点。
对其仿真研究不能像控制系统那样可用各环节简化传递函数来表示,这样会有很多重要环节被忽略,完全体现不了交流调速系统的整体结构和各个环节点上的信号状态。
对电气传动系统的建模仿真力求达到与实际系统相一致,MATLAB提供的SIMULINK中的电力系统工具箱(Powerlib)能很好地满足这一要求。
以往对电气传动系统的仿真研究主要集中在电机的建模和仿真[4][5],最近,许多对复杂电力传动系统的建模仿真方法已提出,主要有运用仿真工具箱对电力传动系统建模仿真[7]和将电力传动系统的功能单元模块化的仿真建模[3]。
这些方法都是在Matlab/Simulink环境下,结合电力系统工具箱对复杂电力传动系统建模仿真,但是没有分析Powerlib运行原理。
状态空间分析方法对于电力传动系统的建模仿真是一种方便有效的方法,它被成功地应用到Powerlib中,能够完成复杂电力传动系统的建模仿真,并且能够方便的进行波形分析和控制参数的调节。
本文基于文献[6][8],用状态空间方法分析Powerlib中各主要元件的建模原理,给出了Powerlib 模块的仿真原理和使用方法,并且基于异步电动机矢量控制系统实例描述了复杂电力传动系统建模仿真的过程,分析了仿真中的实际问题,通过改进仿真方法,提高了仿真效率。
2 电力传动系统的建模和状态空间描述电力传动系统的建模包括以下几个主要部分:电力逆变器、电力半导体开关、电动机以及控制系统。
对于一个含有非线性元素的电路(例如电力电子电路)不能直接用状态空间描述,然而可以把电力电子电路分成非线性和线性两部分,线性部分用状态空间描述,非线性部分用非线性模型描述。
台南山学院烟台烟电机与拖动课程设计题目基于Matlab的双闭环三相异步电动机的串级调速仿真姓名:庞超所在学院:计算机与电气自动化学院所学专业:自动化班级:09自动化02班学号: 200902010210指导教师:刘丽丽完成时间: 2012-9-23任务书电机与拖动是自动化专业的一门重要专业基础课。
它主要是研究电机与电力拖动的基本原理,以及它与科学实验、生产实际之间的联系。
通过学习使学生掌握常用交、直流电机、变压器及控制电机的基本结构和工作原理;掌握电力拖动系统的运行性能、分析计算,电动机选择及实验方法等。
电机与拖动课程设计是理论教学之后的一个实践环节,通过完成一定的工程设计任务,学会运用本课程所学的基本理论解决工程技术问题,为学习后续有关课程打好必要的基础。
一、设计课题基于Matlab的异步电动机调压调速系统的仿真二、课程设计的基本要求1.使学生具有自主设计电路原理读图、查阅参考书籍和手册及资料文献的能力。
2.设计、计算、文件选取、画出设计电路图3.撰写严谨的、有理论根据的、实事求是的、文理通顺的字迹端正的电机与拖动课程设计报告。
三、电机与拖动课程设计时间1.设计电路原理读图、查阅参考书籍和手册及资料文献(1.5天)。
2.设计、计算、文件选取、画出设计电路图(1.5天)。
3.验收及校验(0.5天)4.完成课程设计报告(1.5天)四、课程设计报告要求课程设计报告要求字迹工整、文字通顺;其撰写内容包括:1.目录2.课程设计所用的基本知识3.参数计算、电路设计等。
4.总结5.参考文献摘要本文所讨论的是双闭环三相异步电动机的串级调速的基本原理与实现方法。
对于一般交流电动机的调速,我们都是从电动机的定子侧引入控制变量(改变定子供电电压、频率)来实现的,这对于转子处于短路状态的交流鼠笼型转子异步电动机是唯一途径。
但是,对于绕线式异步电动机来说,由于改变其转子绕组控制变量以实现调速,转子侧的控制变量有电流、电动势、电阻等。
基于MATlab异步电机故障诊断仿真分析异步电机是工业中常用的一种电机,其故障诊断对于提高设备可靠性和延长使用寿命非常重要。
MATLAB是一种功能强大的数学计算软件,可以用于电机故障仿真分析。
本文将基于MATLAB对异步电机的故障诊断进行仿真分析。
首先,我们需要建立一个异步电机的数学模型。
异步电机的数学模型可以用于对电机进行仿真和分析。
在MATLAB中,我们可以使用方程组来表示电机的动态行为,包括转子转速、转矩输出和电流等。
通过建立数学模型,我们可以为不同故障情况下的电机建立仿真模型。
接下来,我们需要考虑不同的电机故障情况。
常见的异步电机故障包括定子绕组故障、转子故障和轴承故障等。
针对不同的故障情况,我们需要修改之前建立的电机数学模型,并进行相应的仿真分析。
例如,对于定子绕组故障,我们可以通过增加定子绕组的电阻和电感等参数来模拟故障情况,并分析电机转速和电流的变化。
在进行仿真分析时,我们可以使用MATLAB的仿真工具箱来进行参数调整和数据分析。
例如,我们可以调整电机的工作条件,如负载、电压和频率等,观察不同故障情况下电机的响应。
同时,我们可以通过添加噪声和干扰来模拟实际工况下的情况,测试故障诊断算法的鲁棒性和准确性。
最后,我们需要对仿真结果进行分析和评估。
通过对电机的转速、电流和振动等参数进行分析,我们可以判断电机是否存在故障,并确定故障的类型和程度。
我们可以基于实验数据和经验知识,开发故障诊断算法来自动识别和判断电机故障。
通过对仿真结果的评估和比较,我们可以进一步优化算法,并提高故障诊断的准确性和可靠性。
综上所述,基于MATLAB的异步电机故障诊断仿真分析可以帮助我们理解电机的动态行为和故障机制,并优化故障诊断算法。
通过建立电机数学模型、模拟不同故障情况并进行仿真分析,我们可以准确、快速地诊断电机故障,提高设备可靠性和工作效率。
课程报告COURSE REPORT课程名称: ——课程号: ——授课教师: ——学号:——姓名:西木小卒所属:上大桂树林基于MATLAB的异步电动机仿真1.电机仿真模型一台三相六机鼠笼式异步电动机,定子绕组为Y型连接,额定电压为U N=380V,额定转速n N=975r/min,电源频率f1=50Hz,定子电阻R1=2.08Ω,定子漏电抗X1=3.12Ω,转子电阻折合值=1.53Ω,转子漏电抗折合值=4.25Ω。
要求:绘制以上参数电动机的固有机械特性曲线、定子串电阻人为特性曲线、电子串电抗人为特性曲线、转子串电阻人为特性曲线、降电压人为特性曲线;给出仿真源代码。
2. 仿真代码实现clcclearm1=3;%%电机相数U1=220;%%额定定子相电压n1=[-1000,1000];%%两个相的同步转速,+为规定正相,-为反相p=3;%%电机极对数f1=50;%%输入电流频率r1=2.08;%%定子侧电阻r2=1.53;%%转子侧电阻折合值w1=2*pi*f1/p;%%电机同步角速度x1=3.12;%%定子侧电抗x2=4.25;%%转子侧折合电抗s=-1:0.001:1;%%设定转差率,是画图的关键自变量ns=[-1,1];%用来标定转矩的方向,规定ns=1为正,-1为反%%绘制定子串电阻前的固有机械特性曲线figure(1);for i=1:length(n1);n=n1(i)*(1-s);%%计算转速T=ns(i)*(m1*p*U1^2*r2)./s./(w1.*((r1+r2./s).^2+(x1+x2)^2));%%计算转矩plot(T,n,'--');if i==1text(max(T),800,strcat('r1=',num2str(r1),'\Omega'),'FontSize',9,'Color','black');%%曲线标注位置设置,每条曲线的标注横轴上对齐其Tm以便于区分,纵坐标无严格限制endhold on;endxlabel('电磁转矩{\itT}/(N\cdotm)');ylabel('转速{\itn}/(r/min)');title('定子串电阻的机械特性曲线')grid on;hold on;%%绘制定子串电阻人为机械特性曲线r1p=r1;str_y=800;for i=1:length(n1);%%绘制正反相序的波形图,n=n1(i).*(1-s);for coef=1:3%%三条人为曲线r1p=r1p+1;%%串电阻的步进值T1=ns(i)*(m1*p*U1^2*r2)./s./(w1.*((r1p+r2./s).^2+(x1+x2)^2));plot(T1,n,'k-');hold on;if i==1str=strcat('r1=',num2str(int16(r1p)),'\Omega');str_y=str_y-150;text(max(T1),str_y,strcat('r1=',num2str(r1p),'\Omega'),'FontSize',9,'Color','black' );endendend%%绘制降电压前的固有机械特性曲线figure(2);for i=1:length(n1);n=n1(i)*(1-s);T=ns(i)*(m1*p*U1^2*r2)./s./(w1.*((r1+r2./s).^2+(x1+x2)^2));plot(T,n,'--');if i==1text(max(T),800,strcat('U1=',num2str(int16(U1)),'V'),'FontSize',9,'Color','black');endhold on;endxlabel('电磁转矩{\itT}/(N\cdotm)');ylabel('转速{\itn}/(r/min)');title('降低定子电压的机械特性曲线')grid on;hold on;%%绘制降电压人为机械特性曲线str_y=800;for i=1:length(n1);n=n1(i).*(1-s);for coef=0.75:-0.25:0.25;U1p=U1*coef;T1=ns(i)*(m1*p*U1p^2*r2)./s./(w1.*((r1+r2./s).^2+(x1+x2)^2));plot(T1,n,'k-');if i==1str=strcat('U1=',num2str(int16(U1p)),'V');str_y=str_y-150;text(max(T1),str_y,str,'FontSize',9,'Color','black');endhold on;endend%%绘制定子串电抗前的固有机械特性曲线figure(3);for i=1:length(n1);n=n1(i)*(1-s);T=ns(i)*(m1*p*U1^2*r2)./s./(w1.*((r1+r2./s).^2+(x1+x2)^2));plot(T,n,'--');if i==1text(max(T),800,strcat('x1=',num2str(x1),'\Omega'),'FontSize',9,'Color','black');endhold on;endxlabel('电磁转矩{\itT}/(N\cdotm)');ylabel('转速{\itn}/(r/min)');title('定子串电抗的机械特性曲线')grid on;hold on;%%绘制定子串电抗的人为机械特性曲线x1p=x1;str_y=800;for i=1:length(n1);n=n1(i).*(1-s);for coef=1:3x1p=x1p+1.0;T1=ns(i)*(m1*p*U1^2*r2)./s./(w1.*((r1+r2./s).^2+(x1p+x2)^2));plot(T1,n,'k-');if i==1str=strcat('x1=',num2str(x1p),'\Omega');str_y=str_y-150;text(max(T1),str_y,strcat('x1=',num2str(x1p),'\Omega'),'FontSize',9,'Color','black' );endhold on;endend%%绘制转子串电阻前的固有机械特性曲线figure(4);for i=1:length(n1);n=n1(i)*(1-s);T=ns(i)*(m1*p*U1^2*r2)./s./(w1.*((r1+r2./s).^2+(x1+x2)^2));plot(T,n,'--');if i==1text(max(T),800,strcat('r2=',num2str(r2),'\Omega'),'FontSize',9,'Color','black');endhold on;endxlabel('电磁转矩{\itT}/(N\cdotm)');ylabel('转速{\itn}/(r/min)');title('转子串电阻的机械特性曲线')grid on;hold on;%%绘制转子串电阻的人为机械特性曲线r2p=r2;str_y=800;for i=1:length(n1);n=n1(i).*(1-s);for coef=1:3r2p=r2p+0.75;T1=ns(i)*(m1*p*U1^2*r2p)./s./(w1.*((r1+r2p./s).^2+(x1+x2)^2));plot(T1,n,'k-');if i==1str=strcat('r2=',num2str(r2p),'\Omega');str_y=str_y-150;text(max(T),str_y,str,'FontSize',9,'Color','black');endhold on;endend3.仿真波形.. . .. ...。