高中数学必修二第三、第四章综合测试
- 格式:doc
- 大小:528.00 KB
- 文档页数:6
高二数学周测一、选择与填空题(每题6分,共60分)(请将选择和填空题答案写在以下答题卡内)A.相交B.外切C.内切D.相离2. 两圆x2+y2-4x+2y+1=0与x2+y2+4x-4y-1=0的公共切线有().A.1条B.2条C.3条D.4条3. 若圆C与圆(x+2)2+(y-1)2=1关于原点对称,则圆C的方程是()A.(x-2)2+(y+1)2=1 B.(x-2)2+(y-1)2=1C.(x-1)2+(y+2)2=1 D.(x+1)2+(y-2)2=14. 与直线l : y=2x+3平行,且与圆x2+y2-2x-4y+4=0相切的直线方程是()A.x-y±5=0 B.2x-y+5=0C.2x-y-5=0 D.2x-y±5=05. 直线x-y+4=0被圆x2+y2+4x-4y+6=0截得的弦长等于()A.2B.2 C.22D.426. 圆x2+y2-4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是()A.30 B.18 C.62D.527. 若直线3x-y+c=0,向右平移1个单位长度再向下平移1个单位,平移后与圆x2+y2=10相切,则c的值为()A.14或-6 B.12或-8 C.8或-12 D.6或-148. 若直线3x-4y+12=0与两坐标轴的交点为A,B,则以线段AB为直径的圆的一般方程为____________________9. 圆心在直线2x+y=0上,且圆与直线x+y-1=0切于点M(2,-1)的圆的标准方程为__________10. 已知P是直线3x+4y+8=0上的动点,P A,PB是圆(x-1)2+(y-1)2=1的两条切线,A,B是切点,C是圆心,则四边形P ACB面积的最小值为二、解答题(共40分)11.(15分)求与x轴相切,圆心C在直线3x-y=0上,且截直线x-y=0得的弦长为27的圆的方程.12.(25分)已知圆C :(x-1)2+(y-2)2=2,点P坐标为(2,-1),过点P作圆C的切线,切点为A,B.(1)求直线P A,PB的方程(8分);(2)求过P点的圆的切线长(8分);(3)求直线AB的方程(9分).高二数学周测答案 一、选择题 1.A 2.C 3.A 4.D 5.C 6.C 7.A二、填空题8.x 2+y 2+4x -3y =0; 9. (x -1)2+(y +2)2=2; 10.22.三、解答题11.解:因为圆心C 在直线3x -y =0上,设圆心坐标为(a ,3a ),圆心(a ,3a )到直线x -y =0的距离为d =22 - a . 又圆与x 轴相切,所以半径r =3|a |,设圆的方程为(x -a )2+(y -3a )2=9a 2,设弦AB 的中点为M ,则|AM |=7.在Rt △AMC 中,由勾股定理,得22 2 - ⎪⎪⎭⎫ ⎝⎛a +(7)2=(3|a |)2. 解得a =±1,r 2=9.故所求的圆的方程是(x -1)2+(y -3)2=9,或(x +1)2+(y +3)2=9.12.解:(1)设过P 点圆的切线方程为y +1=k (x -2),即kx ―y ―2k ―1=0. 因为圆心(1,2)到直线的距离为2,1 +3 - - 2k k =2, 解得k =7,或k =-1.故所求的切线方程为7x ―y ―15=0,或x +y -1=0.(2)在Rt △PCA 中,因为|PC |=222 - 1 -+ 1 - 2)()(=10,|CA |=2, 所以|P A |2=|PC |2-|CA |2=8.所以过点P 的圆的切线长为22.(3)容易求出k PC =-3,所以k AB =31. 如图,由CA 2=CD ·PC ,可求出CD =PC CA 2=102. 设直线AB 的方程为y =31x +b ,即x -3y +3b =0. 由102=23 + 1 3 + 6 - 1 b 解得b =1或b =37(舍). 所以直线AB 的方程为x -3y +3=0.(第12题) (第11题)(3)也可以用联立圆方程与直线方程的方法求解.。
第四章综合测评一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在等差数列{a n}中,若2a8=6+a11,则a1+a9=()A.54B.12C.10D.62.已知数列{a n}的前n项和为S n,若a1≠0,S n=an2+bn,且a7=3a2,S8=λa2,则λ的值为()A.15B.16C.17D.183.在数列{a n}中,a1=2,a n=1+1a n-1(n≥2),则a3=()A.32B.23C.53D.524.在各项均为正数的等比数列{a n}中,若a5=3,则log3a1+log3a2+log3a3+…+log3a9=()A.5B.7C.9D.115.在等差数列{a n}中,a1=-5,a3是4与49的等比中项,且a3<0,则a5=()A.-18B.-23C.-24D.-326.已知等差数列{a n}的前n项和为S n,且a2≥3,S5≤30,则a1的最小值是()A.-1B.0C.1D.27.已知在数列{a n}中,a1=1,(n+1)a n=2na n+1,则数列{a n}的通项公式是()A.a n=n2n-1B.a n=n2n-1C.a n=nD.a n=n+12n8.给出数阵:01 (9)12 (10)︙︙︙︙910 (18)其中每行、每列均为等差数列,则此数阵所有数的和为()A.495B.900C.1 000D.1 100二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9.已知等比数列{a n}的公比q=-2,等差数列{b n}的首项b1=12,若a9>b9且a10>b10,则下列结论正确的有3()A.a9a10<0B.a9>a10C.b10>0D.b9>b1010.已知等差数列{a n}的前n项和为S n(n∈N*),公差d≠0,S6=90,a7是a3与a9的等比中项,则下列结论正确的是()A.a1=22B.d=-2C.当n=10或n=11时,S n取得最大值D.当S n>0时,n的最大值为2011.已知数列{a n}为等差数列,其前n项和为S n,且2a1+3a3=S6,则下列结论正确的是()A.a10=0B.S10最小C.S7=S12D.S19=0=k(k为常数),则称{a n}为“等差比数列”,下列对“等差比数列”12.在数列{a n}中,n∈N*,若a n+2-a n+1a n+1-a n的判断正确的为()A.k不可能为0B.等差数列一定是“等差比数列”C.等比数列一定是“等差比数列”D.“等差比数列”中可以有无数项为0三、填空题(本题共4小题,每小题5分,共20分)13.在等差数列{a n }中,前m (m 为奇数)项和为135,其中偶数项之和为63,且a m -a 1=14,则a 100的值为 .14.已知两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,且S n T n =7n+14n+27(n ∈N *),则a11b 11= .15.设f (x )=4x4x +2,可求得f12015+f22015+f32015+…+f20142015的值为 .16.已知数列{a n }满足a n +a n+2=2a n+1,a 2=8,a 5=20,b n =2n +1+1,设数列{b n -a n }的前n 项和为S n ,则a 1= ,S n = .四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知数列{a n }的前n 项和为S n ,且满足a n +2S n S n-1=0(n ≥2),a 1=12. (1)求证:{1S n}是等差数列;(2)求数列{a n }的通项公式..18.(本小题满分12分)已知数列{a n}的通项公式为a n=3n-23n+1(1)求a10.是否为该数列中的项.若是,它为第几项?若不是,请说明理由.(2)判断710(3)求证:0<a n<1.19.(本小题满分12分)甲、乙两物体分别从相距70米的两处同时相向运动.甲第1分钟走2米,以后每分钟比前1分钟多走1米,乙每分钟走5米.(1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1米,乙继续每分钟走5米,那么甲、乙开始运动后几分钟第二次相遇?20.(本小题满分12分)(2021云南玉溪月考)已知数列{a n+3}为等比数列,且a2=6,a3=24.(1)求a n;(2)若3(b n+1-b n)=a n,且b1=1,求b n.221.(本小题满分12分)已知数列{a n}的各项均为正数,前n项和为S n,且满足2S n=a n2+n-4(n∈N*).(1)求证:数列{a n}为等差数列;(2)求数列{a n}的前n项和S n.22.(本小题满分12分)若数列{a n }是公差为2的等差数列,数列{b n }满足b 1=1,b 2=2,且a n b n +b n =nb n+1. (1)求数列{a n },{b n }的通项公式; (2)设数列{c n }满足c n =a n +1b n+1,数列{c n }的前n 项和为T n ,若不等式(-1)nλ<T n +n2n -1对一切n ∈N *恒成立,求实数λ的取值范围.参考答案 第四章综合测评1.B 设等差数列{a n }的公差为d ,∵在等差数列{a n }中,2a 8=6+a 11, ∴2(a 1+7d )=6+a 1+10d ,解得a 1+4d=6. ∴a 1+a 9=a 1+a 1+8d=2×6=12.故选B .2.B ∵数列{a n }的前n 项和为S n ,且S n =an 2+bn , ∴数列{a n }是等差数列.∵a 7=3a 2,∴a 1+6d=3(a 1+d ),解得a 1=32d.∵S 8=λa 2,∴8a 1+8×72d=λ(a 1+d ),∴40d=λ×52d ,又d ≠0,解得λ=16. 3.C ∵a n =1+1a n -1(n ≥2),a 1=2,∴a 2=1+1a 1=1+12=32,∴a 3=1+1a 2=1+132=53.故选C .4.C ∵在各项均为正数的等比数列{a n }中,a 5=3,∴log 3a 1+log 3a 2+log 3a 3+…+log 3a 9=log 3(a 1a 2…a 9)=log 3a 59=9log 3a 5=9log 33=9.故选C .5.B 根据题意,a 3是4与49的等比中项, 则(a 3)2=4×49,解得a 3=±14. 又因为a 3<0,所以a 3=-14. 又a 1=-5,则a 5=2a 3-a 1=-23.故选B . 6.B 设等差数列{a n }的公差为d , 由{a 2≥3,S 5=52(a 1+a 5)≤30,可得{a 1+d ≥3,a 1+2d ≤6,即{2a 1+2d ≥6,-a 1-2d ≥-6,解得a 1≥0,则a 1的最小值是0.故选B .7.B 在数列{a n }中,a 1=1,(n+1)a n =2na n+1, 整理得a n+1a n=n+12n ,所以a n a n -1=n 2(n -1),a n -1a n -2=n -12(n -2),…,a 2a1=22×1, 所有的式子相乘得到a n a n -1·a n -1a n -2·…·a 2a 1=n 2(n -1)·n -12(n -2)·…·22×1,整理得a n a 1=n2n -1,所以a n =n 2n -1(a 1也符合该式).故a n =n2n -1.故选B .8.B 设b 1=0+1+2+…+9,b 2=1+2+3+…+10,…,b 10=9+10+…+18,则{b n }是首项b 1=45,公差d=10的等差数列,所以S 10=45×10+10×92×10=900.9.AD ∵等比数列{a n }的公比q=-23,∴a 9和a 10异号,即a 9a 10<0,但不能确定a 9和a 10的大小关系,故A 正确,B 不正确; ∵a 9和a 10异号,a 9>b 9且a 10>b 10, ∴b 9和b 10中至少有一个数是负数,又b 1=12>0,∴d<0,∴b 9>b 10,b 10一定是负数,即b 10<0,故C 不正确,D 正确.故选AD . 10.BCD 因为S 6=90, 所以6a 1+6×52d=90,即2a 1+5d=30, ①又因为a 7是a 3与a 9的等比中项,所以a 72=a 3a 9,所以(a 1+6d )2=(a 1+2d )(a 1+8d ),整理得a 1=-10d , ②由①②解得a 1=20,d=-2,故A 错误,B 正确; 所以S n =20n+n(n -1)2×(-2)=-n 2+21n=-n-2122+4414,又n ∈N *,所以当n=10或n=11时,S n 取得最大值,故C 正确;令S n =-n 2+21n>0,解得0<n<21,又n ∈N *, 所以n 的最大值为20,故D 正确.故选BCD .11.ACD 因为数列{a n }为等差数列,2a 1+3a 3=S 6,即5a 1+6d=6a 1+15d ,即a 1+9d=a 10=0,故A 正确;因为a 10=0,所以S 9=S 10,但是无法确定数列{a n }的公差d 的大小,故无法确定S 10是最大值还是最小值,故B错误;因为a 8+a 9+a 10+a 11+a 12=5a 10=0,所以S 12=S 7+a 8+a 9+a 10+a 11+a 12=S 7+0=S 7,故C 正确;S 19=a 1+a 192×19=19a 10=0,故D 正确.故选ACD .12.AD 由题意,a n+1≠a n ,则a n 不为常数列,故A 正确,B,C 错误;数列0,1,0,1,0,1,…,0,1是等差比数列,且有无数项为0,故D 正确.故选AD . 13.101 ∵在前m 项中偶数项之和为S 偶=63,∴奇数项之和为S 奇=135-63=72,设等差数列{a n }的公差为d ,则S 奇-S 偶=2a 1+(m -1)d2=72-63=9.又a m =a 1+d (m-1),∴a 1+a m2=9.∵a m -a 1=14,∴a 1=2,a m =16. ∵m(a 1+a m )2=135,∴m=15,∴d=14m -1=1,∴a 100=a 1+99d=101.14.148111 因为在等差数列{a n },{b n }中,S n T n =7n+14n+27(n ∈N *),所以a 11b 11=2a112b 11=a 1+a 21b 1+b 21=S 21T 21=21×7+14×21+27=148111.15.1007 ∵f (x )=4x4x +2,∴f (x )+f (1-x )=4x 4x +2+41-x 41-x +2=4x 4x +2+41-x ·4x (41-x +2)·4x=4x4x +2+44+2·4x=4x4x +2+22+4x =4x +24x +2=1.故可得f12015+f22015+f32015+…+f20142015=f12015+f20142015+f22015+f20132015+…+f10072015+f10082015=1007×1=1007.16.4 2n+2-2n 2-n-4 ∵数列{a n }满足a n +a n+2=2a n+1,∴{a n }为等差数列. 设{a n }的公差为d ,则{a 5=a 2+3d,a 2=a 1+d,即{20=8+3d,8=a 1+d,解得{d =4,a 1=4,故a n =4n.∴b n -a n =2n +1+1-4n , ∴S n =4(1-2n )1-2+n-4·n(n+1)2=2n+2-2n 2-n-4.17.(1)证明当n ≥2时,由a n +2S n S n-1=0得S n -S n-1=-2S n S n-1,所以1S n−1S n -1=2.又1S 1=1a 1=2,所以{1S n}是首项为2,公差为2的等差数列.(2)解由(1)可得1S n=2n ,所以S n =12n .当n ≥2时,a n =S n -S n-1=12n −12(n -1)=-12n(n -1); 当n=1时,a 1=12,不符合a n =-12n(n -1).故a n ={12,n =1,-12n(n -1),n ≥2且n ∈N *.18.(1)解根据题意可得a 10=3×10-23×10+1=2831. (2)解是.令a n =710,即3n -23n+1=710,解得n=3, 故710为数列{a n }中的项,为第3项.(3)证明由题意可得a n =3n -23n+1=1-33n+1, ∵n ∈N *,∴3n+1>3,∴0<33n+1<1,∴0<1-33n+1<1,即0<a n <1.19.解(1)设开始运动n 分钟后相遇,依题意,有2n+n(n -1)2+5n=70,整理,得n 2+13n-140=0, 解得n=7,n=-20(舍去).故甲、乙两物体开始运动后7分钟相遇.(2)设开始运动m 分钟后第2次相遇,依题意,有2m+m(m -1)2+5m=3×70,整理,得m 2+13m-420=0,解得m=15,m=-28(舍去).故甲、乙两物体开始运动后15分钟第二次相遇.20.解(1)因为a 3+3a 2+3=24+36+3=3,所以数列{a n +3}的公比为3,所以a n +3=(a 2+3)·3n-2=9·3n-2=3n,故a n =3n -3.(2)因为3(b n+1-b n )=a n ,所以b n+1-b n =13(3n -3)=3n-1-1, 所以b 2-b 1=30-1,b 3-b 2=31-1,…,b n -b n-1=3n-2-1,所以b n -b 1=(30+31+…+3n-2)-(n-1)=1-3n -11-3-(n-1)=3n -12-n+12,所以b n =3n -12-n+1.21.(1)证明当n=1时,有2a 1=a 12+1-4,即a 12-2a 1-3=0,解得a 1=3(a 1=-1舍去).当n ≥2时,有2S n-1=a n -12+n-5,又2S n =a n 2+n-4,两式相减得2a n =a n 2−a n -12+1,即a n 2-2a n +1=a n -12,即(a n -1)2=a n -12, 因此a n -1=a n-1或a n -1=-a n-1.若a n -1=-a n-1,即a n +a n-1=1.则有当a 1=3时,a 2=-2,这与数列{a n }的各项均为正数相矛盾,所以a n -1=a n-1,即a n -a n-1=1,因此数列{a n }为等差数列.(2)解由(1)知a 1=3,d=1,所以数列{a n }的通项公式为a n =3+(n-1)×1=n+2,故S n =n 2+5n 2. 22.解(1)∵数列{b n }满足b 1=1,b 2=2,且a n b n +b n =nb n+1,∴a 1+1=2,解得a 1=1.又∵数列{a n }是公差为2的等差数列,∴a n =1+2(n-1)=2n-1.∴2nb n =nb n+1,即2b n =b n+1,∴数列{b n }是以1为首项,2为公比的等比数列,故b n =2n-1.(2)数列{c n }满足c n =a n+1b n+1=2n 2n =n 2n -1,数列{c n }的前n 项和T n =1+22+322+…+n 2n -1, ∴12T n =12+222+…+n -12n -1+n 2n , 两式相减得12T n =1+12+122+…+12n -1−n 2n =1-12n1-12−n 2n =2-n+22n , ∴T n =4-n+22n -1,不等式(-1)n λ<T n +n 2n -1,即(-1)n λ<4-22n -1恒成立,当n=2k (k ∈N *)时,λ<4-22n -1,∴λ<3; 当n=2k-1(k ∈N *)时,-λ<4-22n -1,∴λ>-2.综上可得,实数λ的取值范围是(-2,3).。
第二章单元测试1.下列命题正确的是………………………………………………( ) A .三点确定一个平面 B .经过一条直线和一个点确定一个平面 C .四边形确定一个平面 D .两条相交直线确定一个平面2.若直线a 不平行于平面α,且α⊄a ,则下列结论成立的是( ) A .α内的所有直线与a 异面 B .α内不存在与a 平行的直线 C .α内存在唯一的直线与a 平行 D .α内的直线与a 都相交 3.平行于同一平面的两条直线的位置关系………………………( ) A .平行 B .相交 C .异面 D .平行、相交或异面 4.平面α与平面β平行的条件可以是…………………………( ) A .α内有无穷多条直线都与β平行B .直线βα//,//a a 且直线a 不在α内,也不在β内C .直线α⊂a ,直线β⊂b 且β//a ,α//bD .α内的任何直线都与β平行5.下列命题中,错误的是…………………………………………( ) A .平行于同一条直线的两个平面平行 B .平行于同一个平面的两个平面平行 C .一个平面与两个平行平面相交,交线平行D .一条直线与两个平行平面中的一个相交,则必与另一个相交 6.已知两个平面垂直,下列命题①一个平面内已知直线必垂直于另一个平面内的任意一条直线 ②一个平面内的已知直线必垂直于另一个平面的无数条直线 ③一个平面内的任一条直线必垂直于另一个平面④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面 其中正确的个数是…………………………………………( ) A .3 B .2 C .1 D .07.下列命题中错误的是……………………………………( ) A .如果平面βα⊥,那么平面α内所有直线都垂直于平面βB .如果平面βα⊥,那么平面α一定存在直线平行于平面βC .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .如果平面τα⊥,τβ⊥,l =⋂βα,那么τ⊥l 8.如图是正方体的平面展开图,则在这个正方体中 ①BM 与ED 平行 ②CN 与BE 异面 ③CN 与BM 成 60 ④DM 与BN 垂直 以上四个命题中,正确命题的序号是( ) A .①②③ B .②④ C .③④ D .②③④9.不共面的四点可以确定平面的个数为 ( ) A . 2个 B . 3个 C . 4个 D .无法确定 10.已知直线a 、b 与平面α、β、γ,下列条件中能推出α∥β的是 ( ) A .a ⊥α且a ⊥β B .α⊥γ且β⊥γ C .a ⊂α,b ⊂β,a ∥b D .a ⊂α,b ⊂α,a ∥β,b ∥β 11.下列四个说法 ①a //α,b ⊂α,则a // b ②a ∩α=P ,b ⊂α,则a 与b 不平行 ③a ⊄α,则a //α ④a //α,b //α,则a // b 其中错误的说法的个数是 ( ) A .1个 B .2个 C .3个 D .4个 12.如图,A —BCDE 是一个四棱锥,AB ⊥平面BCDE ,且四边形BCDE 为矩形,则图中互相垂直的平面共有( )A .4组B .5组C .6组D .7组13.(12分)已知正方方体111'D C B A ABCD -,求:(1)异面直线11CC BA 和的夹角是多少? (2)B A 1和平面11B CDA 所成的角?(3)平面11B CDA 和平面ABCD 所成二面角的大小?AB CDEFMN C A 1B 11P A BCDCABPMN14.(12分)如图,在三棱锥P —ABC 中,PA 垂直于平面ABC ,AC ⊥BC . 求证:BC ⊥平面PAC .15.(10分)如图:AB 是⊙O 的直径,PA 垂直于⊙O 所在的平面,C 是圆周上不同于B A ,的任意一点,求证: PAC BC 平面⊥16.(12分)如图,在四棱锥P —ABCD 中,M ,N 分别是AB ,PC 的中点,若ABCD 是平行四边形.求证:MN ∥平面PAD .,M N 分别是17. 如图:S 是平行四边形ABCD 平面外一点,,SA BD 上的点,且SM AM =NDBN, 求证://MN 平面SCDA BCP O17.(14分)如图正方形ABCD 中,O 为中心,P O ⊥面ABCD ,E 是PC 中点, 求证:(1)PA ||平面BDE ; (2)面PAC ⊥面BDE.18.(14分)如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =2,D 是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面 C 1DF ?并证明你的结论.19.在正方体ABCD A B C D E F BB CD -11111中,、分别是、的中点 (1)证明:AD D F ⊥1; (2)求AE D F 与1所成的角; (3)证明:面面AED A FD ⊥11.必修2第三章《直线与方程》单元测试题一、选择题(本大题共10小题,每小题5分,共50分)1.若直线过点(1,2),(4,2+3),则此直线的倾斜角是( ) A 30° B 45° C 60° D 90°2. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a=A 、 -3B 、-6C 、23- D 、323.点P (-1,2)到直线8x-6y+15=0的距离为( )(A )2 (B )21 (C )1 (D )274. 点M(4,m )关于点N(n, - 3)的对称点为P(6,-9),则( ) A m =-3,n =10 B m =3,n =10 C m =-3,n =5 D m =3,n =55.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是( )A 3x-y-8=0 B 3x+y+4=0 C 3x-y+6=0 D 3x+y+2=06.过点M(2,1)的直线与X轴,Y轴分别交于P,Q两点,且|MP|=|MQ|, 则L的方程是( )A x-2y+3=0 B 2x-y-3=0 C 2x+y-5=0 D x+2y-4=0 7. 直线mx-y+2m+1=0经过一定点,则该点的坐标是 A (-2,1) B (2,1) C (1,-2) D (1,2)8. 直线0202=++=++n y x m y x 和的位置关系是(A )平行 (B )垂直 (C )相交但不垂直 (D )不能确定 9. 如图1,直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则必有 A. k 1<k 3<k 2 B. k 3<k 1<k 2C. k 1<k 2<k 3D. k 3<k 2<k 110.已知A (1,2)、B (-1,4)、C (5,2),则ΔABC 的边AB 上的中线所在的直线方程为( )(A )x+5y-15=0 (B)x=3 (C) x-y+1=0 (D)y-3=0二、填空题(本大题共4小题,每小题5分,共20分)11.已知点)4,5(-A 和),2,3(B 则过点)2,1(-C 且与B A ,的距离相等的直线方程为 . 12.过点P(1,2)且在X轴,Y轴上截距相等的直线方程是 . 13.直线5x+12y+3=0与直线10x+24y+5=0的距离是 . 14.原点O在直线L上的射影为点H(-2,1),则直线L的方程为 . 三、解答题(本大题共3小题,每小题10分,共30分)15. ①求平行于直线3x+4y-12=0,且与它的 16.直线x+m 2y+6=0与直线(m-2)x+3my+2m=0距离是7的直线的方程; 没有公共点,求实数m 的值. ②求垂直于直线x+3y-5=0, 且与点P(-1,0)的距离是1053的直线的方程.*17.已知直线l 被两平行直线063=-+y x 033=++y x 和所截得的线段长为3,且直线过点(1,0),求直线l 的方程.参考答案:1.A ;2.B ;3.B ;4.D ;5.B ;6.D ;7.A ;8.C ;9.A ;10.A. 11.x+4y-7=0或x=-1;12.x+y-3=0或2x-y=0;13.261;14.2x-y+5=0; 15. (1)3x+4y+23=0或3x+4y-47=0;(2)3x-y+9=0或3x-y-3=0. 16.m=0或m=-1;17.x=1或3x-4y-3=0.必修2第四章《圆与方程》单元测试题一、 选择题(本大题共10小题,每小题5分,共50分) 1.方程x 2+y 2+2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值 依次为(A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-4 2.直线3x-4y-4=0被圆(x-3)2+y 2=9截得的弦长为( ) (A)22 (B)4 (C)24 (D)23.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( )(A) 11<<-a (B) 10<<a (C) 11>-<a a 或 (D)1±=a4.自点 1)3()2()4,1(22=-+--y x A 作圆的切线,则切线长为( )(A)5 (B) 3 (C)10 (D) 55.已知M (-2,0), N (2,0), 则以MN 为斜边的直角三角形直角顶点P 的轨迹方程是( )(A) 222=+y x (B) 422=+y x (C) )2(222±≠=+x y x (D) )2(422±≠=+x y x6.若直线(1+a)x+y+1=0与圆x 2+y 2-2x=0相切,则a 的值为A 、1,-1B 、2,-2C 、1D 、-17.过原点的直线与圆x 2+y 2+4x+3=0相切,若切点在第三象限,则该直线的方程是A 、x y 3=B 、x y 3-=C 、x y 33=D 、x y 33-= 8.过点A (1,-1)、B (-1,1)且圆心在直线x+y-2=0上的圆的方程是A 、(x-3)2+(y+1)2=4B 、(x+3)2+(y-1)2=4C 、(x-1)2+(y-1)2=4D 、(x+1)2+(y+1)2=4 9.直线0323=-+y x 截圆x 2+y 2=4得的劣弧所对的圆心角是A 、6π B 、4π C 、3π D 、2π 10.M (x 0,y 0)为圆x 2+y 2=a 2(a>0)内异于圆心的一点,则直线x 0x+y 0y=a 2与 该圆的位置关系是( )A 、相切B 、相交C 、相离D 、相切或相交二、填空题(本大题共4小题,每小题5分,共20分)11.以点A(1,4)、B(3,-2)为直径的两个端点的圆的方程为 .12.设A 为圆1)2()2(22=-+-y x 上一动点,则A 到直线05=--y x 的最大距离为______. 13.过点P(-1,6)且与圆4)2()3(22=-++y x 相切的直线方程是________________. 14.过圆x 2+y 2-x+y-2=0和x 2+y 2=5的交点,且圆心在直线3x+4y-1=0上的圆的方程为 . 2+y 2-8x=0的弦OA 。
第四章检测(A)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.圆心为(1,-7),半径为2的圆的方程是( )A.(x-1)2+(y+7)2=4B.(x+1)2+(y-7)2=4C.(x+1)2+(y-7)2=2D.(x-1)2+(y+7)2=2解析:由已知条件得圆的标准方程为(x-1)2+(y+7)2=4.答案:A2.已知空间两点P1(-1,3,5),P2(2,4,-3),则|P1P2|等于( )A解析:|P1P2|答案:A3.直线l:x-y=1与圆C:x2+y2-4x=0的位置关系是( )A.相离B.相切C.相交D.无法确定解析:圆C的圆心为C(2,0),半径为2,圆心C到直线l的距离d.答案:C4.圆x2+y2=1与圆x2+y2=4的位置关系是( )A.外离B.内含C.相交D.相切解析:圆x2+y2=1的圆心为(0,0),半径为1,圆x2+y2=4的圆心为(0,0),半径为2,则圆心距0<|2-1|=1,所以两圆内含.答案:B5.圆(x-1)2+(y-1)2=1上的点到直线x+2y+2=0的最短距离为( )A解析:由已知得圆心坐标为(1,1),半径r为1,圆心到直线的距离d.所以最短距离为d-r答案:C6.已知圆C:(x-a)2+(y-b)2=1过点A(1,0),则圆C的圆心的轨迹是( )A.点B.直线C.线段D.圆解析:∵圆C:(x-a)2+(y-b)2=1过点A(1,0),∴(1-a)2+(0-b)2=1,即(a-1)2+b2=1.故圆C的圆心的轨迹是以(1,0)为圆心,1为半径的圆.答案:D7.已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为( )A.(x+1)2+(y-1)2=2B.(x-1)2+(y-1)2=2C.(x-1)2+(y+1)2=2D.(x+1)2+(y+1)2=2解析:由题意设圆心坐标为(a,-a),因为圆心到直线x-y-4=0与x-y=0的距离相等,所a=1.所以圆心坐标为(1,-1),半径r故所求圆的方程为(x-1)2+(y+1)2=2.答案:C8.已知圆x2+y2+2x-2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是( )A.-2B.-4C.-6D.-8解析:圆的方程可化为(x+1)2+(y-1)2=2-a,因此圆心为(-1,1),半径r圆心到直线x+y+2=0的距离d4,因此由勾股定理可a=-4.故选B.答案:B9.圆x2+y2+2x+4y-3=0上到直线x+y+2=0的距离A.1个B.2个C.3个D.4个解析:圆的标准方程为(x+1)2+(y+2)2=((-1,-2)到直线x+y+2=0的距离4个.答案:D10.若过定点M(-1,0)且斜率为k的直线与圆x2+4x+y2-5=0在第一象限内的部分有交点,则k的取值范围是( )A.0<kC.0<k解析:圆x2+4x+y2-5=0可变形为(x+2)2+y2=9,如图所示.当x=0时,y=A(0k AM∈(0答案:A二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.点P(3,4,5)关于原点的对称点的坐标是.解析:因为点P(3,4,5)与P'(x,y,z)的中点为坐标原点,所以点P'的坐标为(-3,-4,-5).答案:(-3,-4,-5)12.已知圆C1:(x+1)2+(y-1)2=1与圆C2:(x+5)2+(y+2)2=m2(m>0)外切,则m的值为.解析:由已知得C1(-1,1),半径r1=1;C2(-5,-2),半径r2=m,所以圆心距d=|C1C2|又因为两圆外切,所以d=r1+r2.所以5=1+m,即m=4.答案:413.已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程是.解析:由题意可知点P在以MN为直径的圆上,且除去M,N两点,所以圆心坐标为(0,0),半径为2.所以轨迹方程是x2+y2=4(x≠±2).答案:x2+y2=4(x≠±2)14.若圆x2+y2=4与圆x2+y2-2ax+a2-1=0内切,则a=.解析:两圆的圆心分别为O1(0,0),O2(a,0),半径分别为r1=2,r2=1.由两圆内切可得|O1O2|=r1-r2,即|a|=1,所以a=±1.答案:±115.在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为.解析:因为直线mx-y-2m-1=0(m∈R)恒过点(2,-1),所以当点(2,-1)为切点时,半径最大,此时半径r(x-1)2+y2=2.答案:(x-1)2+y2=2三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16.(8分)已知圆M:(x-1)2+(y-1)2=4,直线l经过点P(2,3)且与圆M交于A,B两点,且|AB|=解:当直线l的斜率存在时,设直线l的方程为y-3=k(x-2),即kx-y+3-2k=0.如图,作MC⊥AB于点C,连接BM.在Rt△MBC中,|BC||MC|由点到直线的距离公式解得k l的方程为3x-4y+6=0.当直线l的斜率不存在时,其方程为x=2,且|AB|=.综上所述,直线l的方程为3x-4y+6=0或x=2.17.(8分)求与直线y=x相切,圆心在直线y=3x上且截y轴所得的弦长为解:设圆心坐标为O1(x0,3x0),半径为r,解得r y轴被圆截得的弦长∴即圆的方程为(x(x18.(9分)已知一个圆的圆心为A(2,1),且与圆x2+y2-3x=0相交于P1,P2两点.若|P1P2|=2,求这个圆的方程. 解:设圆的方程为(x-2)2+(y-1)2=r2,即x2+y2-4x-2y+5-r2=0.所以直线P1P2的方程为x+2y-5+r2=0.则点A(2,1)到直线P1P2的距离又因为|P1P2|=2,所以当r=1时,易知符合题意,此时所求圆的方程为(x-2)2+(y-1)2=1.当r≠1时,r2=6或r2=1(舍去).此时所求圆的方程为(x-2)2+(y-1)2=6.故所求圆的方程是(x-2)2+(y-1)2=6或(x-2)2+(y-1)2=1.19.(10分)在棱长为2的正方体OABC-O1A1B1C1中,P是对角线O1B上任意一点,Q为棱B1C1的中点.求|PQ|的最小值.解:分别以OA,OC,OO1所在的直线为x轴、y轴、z轴建立如图所示的空间直角坐标系.由于Q是B1C1的中点,所以Q(1,2,2).点P在xOy平面上的射影在OB上,在yOz平面上的射影在O1C上 ,所以点P的坐标(x,y,z)满则|PQ|当x=1时,即P(1,1,1)时,|PQ|取得最小20.(10分)已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O 为坐标原点.(1)求点M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.解:(1)当C,M,P三点均不重合时,∠CMP=90°,所以点M的轨迹是以线段PC为直径的圆(除去点P,C),即(x-1)2+(y-3)2=2(x≠2,且y≠2或x≠0,且y≠4).当C,M,P三点中有重合的情形时,易求得点M的坐标为(2,2)或(0,4).综上可知,点M的轨迹是一个圆,轨迹方程为(x-1)2+(y-3)2=2.(2)由(1)可知点M的轨迹是以点N(1,3)为圆.由于|OP|=|OM|,故O在线段PM的垂直平分线上.又P在圆N上,从而ON⊥PM.因为ON的斜率为3,所以l的斜率l的方程为y=又易得|OM|=|OP|=O到l的距离△POM的面积第四章检测(B)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.点A(3,-2,4)关于点(0,1,-3)的对称点的坐标为( )A.(-3,4,-10)B.(-3,2,-4)C解析:由中点坐标公式得A(3,-2,4)关于点(0,1,-3)对称的点为(-3,4,-10).答案:A2.若方程x2+y2-4x+4y+10-k=0表示圆,则k的取值范围是( )A.k<2B.k>2C.k≥2D.k≤2解析:若方程表示圆,则(-4)2+42-4(10-k)>0,解得k>2.答案:B3.圆心为(1,1),且与直线x+y=4相切的圆的方程是( )A.(x-1)2+(y-1)2=4B.(x+1)2+(y+1)2=4C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2解析:根据题意得r故圆的方程是(x-1)2+(y-1)2=2.答案:D4.对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是( )A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心解析:直线y=kx+1恒过定点(0,1),定点到圆心的距离d=1,所以直线y=kx+1与圆相交但直线不过圆心. 答案:C5.若圆C1:(x-a)2+y2=12与圆C2:x2+y2=4相切,则a的值为( )A.±3B.±1C.±1或±3D.1或3解析:圆C1的圆心坐标为(a,0),半径为1,圆C2的圆心坐标为(0,0),半径为2.当两圆外切时,|a|=3,则a=±3.当两圆内切时,|a|=1,则a=±1.答案:C6.已知半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程是( )A.(x-4)2+(y-6)2=6B.(x+4)2+(y-6)2=6或(x-4)2+(y-6)2=6C.(x-4)2+(y-6)2=36D.(x+4)2+(y-6)2=36或(x-4)2+(y-6)2=36解析:由题意可设圆的方程为(x-a)2+(y-6)2=36.由两圆内切,a2=16,所以a=±4,故所求圆的方程是(x+4)2+(y-6)2=36或(x-4)2+(y-6)2=36.答案:D7.已知一条光线从点(-2,-3)射出,经y轴反射后与圆C:(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为( )A.C.解析:圆(x+3)2+(y-2)2=1的圆心为C(-3,2),半径r=1.如图,作出点A(-2,-3)关于y轴的对称点B(2,-3).由题意可知,反射光线的反向延长线一定经过点 B.设反射光线的斜率为k,则反射光线所在直线的方程为y-(-3)=k(x-2),即kx-y-2k-3=0.由反射光线与圆相切可|5k+5|12k2+25k+12=0,即(3k+4)(4k+3)=0,解得k=k=答案:D8.过点A(3,1)和圆(x-2)2+y2=1相切的直线方程是( )A.y=1B.x=3C.x=3或y=1D.不确定解析:由题意知,点A在圆外,故过点A的切线应有两条.当所求直线的斜率存在时,设其为k,则直线方程为y-1=k(x-3),即kx-y+1-3k=0.因为直线与圆相切,所以d k=0,所以切线方程为y=1.当所求直线的斜率不存在时,x=3也符合条件.综上所述,所求切线方程为x=3或y=1.答案:C9.已知圆C1:x2+y2+4x-4y-3=0,动点P在圆C2:x2+y2-4x-12=0上,则△PC1C2面积的最大值为( )A.解析:圆C1:x2+y2+4x-4y-3=0,即(x+2)2+(y-2)2=11,圆心为C1(-2,2),半径圆C2:x2+y2-4x-12=0,即(x-2)2+y2=16,圆心为C2(2,0),半径为4,则|C1C2|故△PC1C2的面积最大值 B.答案:B10.若两圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆圆心距|C1C2|等于( )A.4B.解析:由题意知两圆的圆心在直线y=x上.设C1(a,a),C2(b,b),可得(a-4)2+(a-1)2=a2,(b-4)2+(b-1)2=b2,即a,b是方程x2-10x+17=0的两根,a+b=10,ab=17,|C1C2|答案:C二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11. 如图,在空间直角坐标系中,正方体ABCD-A1B1C1D1的棱长为1,若|B1E|A1B1答案:12.已知点M是圆x2+y2=1上的任意一点,点N是圆(x-3)2+(y-4)2=4上的任意一点,则|MN|的最小值为.解析:由已知可得两圆圆心分别为(0,0),(3,4),半径分别为1,2,所以圆心距为5>1+2.所以两圆外离,所以当M,N在圆心连线上时,|MN|取最小值,且最小值为5-3=2.答案:213.已知点A(1,2,-1),点C与点A关于平面xOy对称,点B与点A关于x轴对称,则|BC|的值为.解析:由已知可求得点C的坐标为(1,2,1),点B的坐标为(1,-2,1),所以|BC|答案:414.若直线y=kx+1与圆x2+y2=1相交于P,Q两点,且∠POQ=120°(其中O为原点),则k的值为.解析:由题意知点O到直线y=kx+1的距离答案:15.若☉O:x2+y2=5与☉O1:(x-m)2+y2=20(m∈R)相交于A,B两点,且两圆在点A处的切线互相垂直,则线段AB 的长度是.解析:由题意知点A处的切线分别过两圆的圆心,所以OA⊥O1A.所以m2=m=±5.由等面积法得|AB|=2答案:4三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16.(8分)已知圆x2+y2+x-6y+3=0与直线x+2y-3=0的两个交点为P,Q,求以PQ为直径的圆的方程.解:设点P(x1,y1),Q(x2,y2),则点P,Q的坐标满足方程组,即点P(1,1),Q(-3,3),所以线段PQ的中点坐标为(-1,2),|PQ|故以PQ为直径的圆的方程是(x+1)2+(y-2)2=5.17.(8分)已知圆C:x2+y2-2x+4my+4m2=0,圆C1:x2+y2=25,直线l:3x-4y-15=0.(1)求圆C1:x2+y2=25被直线l截得的弦长;(2)当m为何值时,圆C与圆C1的公共弦平行于直线l?解:(1)因为圆C1:x2+y2=25的圆心为O(0,0),半径r=5,所以圆心O到直线l:3x-4y-15=0的距离d由勾股定理可知,圆C1:x2+y2=25被直线l截得的弦长(2)圆C与圆C1的公共弦的方程为2x-4my-4m2-25=0.因为该公共弦平行于直线3x-4y-15=0,m18.(9分)已知实数x,y满足x2+y2+4x+3=0,求:(1(2)(x-3)2+(y-4)2的最大值与最小值.解:圆x2+y2+4x+3=0的标准方程为(x+2)2+y2=1,记为圆C,则圆心C(-2,0),半径r=1.(1)如图①,设点M(x,y)在圆C上,Q(1,2),k kx-y-k+2=0.由图可知,当直线QM与圆C相切时,k取得最大值或最小值.由C(-2,0)到直线kx-y-k+2=0的距离为1,k所图①图②(2)如图②,令A(3,4),则(x-3)2+(y-4)2表示圆上的点与点A距离的平方.设直线AC与圆交于P,Q两点,则(x-3)2+(y-4)2的最大值为|AQ|2,最小值为|AP|2.|AQ|=|AC|+r( x-3)2+(y-4)2的最大值最小值19.(10分)已知圆C:x2+y2+2x-4y+1=0,O为坐标原点,动点P在圆C外,过P作圆C的切线l,设切点为M.(1)若点P运动到(1,3)处,求此时切线l的方程;(2)求满足条件|PM|=|PO|的点P的轨迹方程.解:把圆C的方程化成标准方程(x+1)2+(y-2)2=4,所以圆心为C(-1,2),半径r=2.(1)当l的斜率不存在时,此时l的方程为x=1,点C到l的距离d=2=r,满足条件.当l的斜率存在时,设斜率为k,则l的方程为y-3=k(x-1),即kx-y+3-k=0,k=所以l的方程为y-3=即3x+4y-15=0.综上,满足条件的切线l的方程为x=1或3x+4y-15=0.(2)设P(x,y),则|PM|2=|PC|2-|MC|2=(x+1)2+(y-2)2-4,|PO|2=x2+y2,因为|PM|=|PO|,所以(x+1)2+(y-2)2-4=x2+y2,整理,得2x-4y+1=0.故点P的轨迹方程为2x-4y+1=0.20.(10分)已知圆C经过点M(0,-2),N(3,1),且圆心C在直线x+2y+1=0上.(1)求圆C的方程;(2)设直线ax-y+1=0与圆C相交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.解:(1)设圆C的方程为x2+y2+Dx+Ey+F=0,故圆C的方程为x2+y2-6x+4y+4=0.(2)设符合条件的实数a存在,由于l垂直平分弦AB,故圆心C(3,-2)必在l上,所以l的斜率k PC=-2,k AB=a=所以a把直线ax-y+1=0,即y=ax+1代入圆C的方程,消去y,整理得(a2+1)x2+6(a-1)x+9=0.由于直线ax-y-1=0交圆C于A,B两点,故Δ=36(a-1)2-36(a2+1)>0,即-72a>0,解得a<0.则实数a的取值范围是(-∞,0).由∉(-∞,0),故不存在实数a,使得过点P(2,0)的直线l垂直平分弦AB.。
第四章综合测试一、单项选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数()3x y f =的定义域为[1,1]-,则函数()3log y f x =的定义域为( )A .[1,1]-B .1,23éùêúëûC .[1,2]D.2.已知函数1()2)2f x x =+,则1(lg 2)lg 2f f æö+=ç÷èø( )A .1-B .0C .1D .23.设函数2()log f x x =,若(1)2f a +<,则实数a 的取值范围为( )A .(1,3)-B .(,3)-¥C .(,1)-¥D .(1,1)-4.已知函数2||()e x f x x =+,若()02a f =,121log 4b f æö=ç÷ç÷èø,2log c f æ=ççè,则,,a b c 的大小关系为( )A .a b c >>B .a c b >>C .b a >>cD .c a b>>5.已知(31)4,1,()log ,1aa x a x f x x x -+ì=íî<≥,是R 上的减函数,那么实数a 的取值范围是( )A .(0,1)B .11,73éö÷êëøC .10,3æöç÷èøD .11,93æöç÷èø6.已知,(1,)m n Î+¥,且m n >,若26log log 13m n n m +=,则函数2()m nf x x =的图像为( )AB C D7.给出下列命题:①函数e e 2x xy -+=为偶函数;②函数e 1e 1x x y -=+在x ÎR上单调递增;③函数lg y x =在区间(0,)+¥上单调递减;④函数13xy æö=ç÷èø与3log y x =-的图像关于直线y x =对称。
高中数学必修第二册全册各章测验汇总章末质量检测(一) 平面向量及其应用 ............................................................................... 1 章末质量检测(二) 复数 ....................................................................................................... 8 章末质量检测(三) 立体几何初步 ..................................................................................... 14 章末质量检测(四) 统计 ..................................................................................................... 23 章末质量检测(五)概率 (32)章末质量检测(一) 平面向量及其应用一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在⊙O 中,向量OB →,OC →,AO →是( ) A .有相同起点的向量 B .共线向量 C .模相等的向量 D .相等的向量解析:由图可知OB →,OC →,AO →是模相等的向量,其模均等于圆的半径,故选C. 答案:C2.若A (2,-1),B (4,2),C (1,5),则AB →+2BC →等于( ) A .5 B .(-1,5) C .(6,1) D .(-4,9)解析:AB →=(2,3),BC →=(-3,3),∴AB →+2BC →=(2,3)+2(-3,3)=(-4,9). 答案:D3.设向量a ,b 均为单位向量,且|a +b |=1,则a 与b 的夹角θ为( ) A.π3 B.π2 C.2π3 D.3π4解析:因为|a +b |=1,所以|a |2+2a ·b +|b |2=1,所以cos θ=-12.又θ∈[0,π],所以θ=2π3.答案:C4.若A (x ,-1),B (1,3),C (2,5)三点共线,则x 的值为( ) A .-3 B .-1 C .1 D .3解析:AB →∥BC →,(1-x,4)∥(1,2),2(1-x )=4,x =-1,故选B. 答案:B5.已知向量a ,b 满足a +b =(1,3),a -b =(3,-3),则a ,b 的坐标分别为( ) A .(4,0),(-2,6) B .(-2,6),(4,0) C .(2,0),(-1,3) D .(-1,3),(2,0)解析:由题意知,⎩⎪⎨⎪⎧a +b =1,3,a -b =3,-3,解得⎩⎪⎨⎪⎧a =2,0,b =-1,3.答案:C6.若a =(5,x ),|a |=13,则x =( ) A .±5 B.±10 C .±12 D.±13解析:由题意得|a |=52+x 2=13, 所以52+x 2=132,解得x =±12. 答案:C7.如图,设A 、B 两点在河的两岸,一测量者在A 的同侧,选定一点C ,测出AC的距离为50 m ,∠ACB =45°,∠CAB =105°,则A ,B 两点的距离为( ) A .50 2 m B .50 3 m C .25 2 m D.2522m解析:由正弦定理得AB =AC ·sin∠ACB sin B=50×2212=502(m).答案:A8.已知平面内四边形ABCD 和点O ,若OA →=a ,OB →=b ,OC →=c ,OD →=d ,且a +c =b+d ,则四边形ABCD 为( )A .菱形B .梯形C .矩形D .平行四边形 解析:由题意知a -b =d -c , ∴BA →=CD →,∴四边形ABCD 为平行四边形,故选D. 答案:D9.某人在无风条件下骑自行车的速度为v 1,风速为v 2(|v 1|>|v 2|),则逆风行驶的速度的大小为( )A .v 1-v 2B .v 1+v 2C .|v 1|-|v 2| D.v 1v 2解析:题目要求的是速度的大小,即向量的大小,而不是求速度,速度是向量,速度的大小是实数,故逆风行驶的速度大小为|v 1|-|v 2|.答案:C10.已知O 为坐标原点,点A 的坐标为(2,1),向量AB →=(-1,1),则(OA →+OB →)·(OA→-OB →)等于( )A .-4B .-2C .0D .2解析:因为O 为坐标原点,点A 的坐标为(2,1), 向量AB →=(-1,1), 所以OB →=OA →+AB →=(2,1)+(-1,1)=(1,2), 所以(OA →+OB →)·(OA →-OB →)=OA →2-OB →2=(22+12)-(12+22) =5-5=0.故选C. 答案:C11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac,(b +c +a )(b+c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形 解析:∵sin A sin B =a c ,∴a b =ac,∴b =c .又(b +c +a )(b +c -a )=3bc ,∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =bc 2bc =12.∵A ∈(0,π),∴A =π3,∴△ABC 是等边三角形.答案:C12.在△ABC 中,若|AB →|=1,|AC →|=3,|AB →+AC →|=|BC →|,则AB →·BC→|BC →|=( )A .-32 B .-12C.12D.32解析:由向量的平行四边形法则,知当|AB →+AC →|=|BC →|时,∠A =90°.又|AB →|=1,|AC →|=3,故∠B =60°,∠C =30°,|BC →|=2,所以AB →·BC →|BC →|=|AB →||BC →|cos 120°|BC →|=-12.答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知A ,B ,C 是不共线的三点,向量m 与向量AB →是平行向量,与BC 是共线向量,则m =________.解析:∵A ,B ,C 不共线,∴AB →与BC →不共线.又m 与AB →,BC →都共线,∴m =0. 答案:014.若向量OA →=(1,-3),|OA →|=|OB →|,OA →·OB →=0,则|AB →|=________. 解析:方法一:设OB →=(x ,y ),由|OA →|=|OB →|知x 2+y 2=10,又OA →·OB →=x -3y=0,所以x =3,y =1或x =-3,y =-1.当x =3,y =1时,|AB →|=25;当x =-3,y =-1时,|AB →|=2 5.故|AB →|=2 5.方法二:由几何意义知,|AB →|就是以OA →,OB →为邻边的正方形的对角线长,又|OA →|=10,所以|AB →|=10×2=2 5.答案:2 515.给出以下命题:①若a ≠0,则对任一非零向量b 都有a·b ≠0; ②若a ·b =0,则a 与b 中至少有一个为0; ③a 与b 是两个单位向量,则a 2=b 2. 其中正确命题的序号是________.解析:上述三个命题中只有③正确,因为|a |=|b |=1,所以a 2=|a |2=1,b 2=|b |2=1,故a 2=b 2.当非零向量a ,b 垂直时,有a·b =0,显然①②错误.答案:③16.用两条成120°角的等长绳子悬挂一个灯具,已知灯具重量为10 N ,则每根绳子的拉力大小为________N.解析:如图,由题意得,∠AOC =∠COB =60°,|OC →|=10,则|OA →|=|OB →|=10,即每根绳子的拉力大小为10 N.答案:10三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图所示,已知OA →=a ,OB →=b ,OC →=c ,OD →=d ,OE →=e ,OF →=f ,试用a ,b ,c ,d ,e ,f 表示:(1)AD →-AB →; (2)AB →+CF →; (3)EF →-CF →.解析:(1)因为OB →=b ,OD →=d , 所以AD →-AB →=BD →=OD →-OB →=d -b . (2)因为OA →=a ,OB →=b ,OC →=c ,OF →=f , 所以AB →+CF →=(OB →-OA →)+(OF →-OC →)=b +f -a -c . (3)EF →-CF →=EF →+FC →=EC →=OC →-OE →=c -e .18.(12分)已知|a |=2,|b |=3,a 与b 的夹角为60°,c =5a +3b ,d =3a +k b ,当实数k 为何值时,(1)c ∥d ;(2)c ⊥d .解析:由题意得a ·b =|a ||b |cos 60°=2×3×12=3.(1)当c ∥d ,c =λd ,则5a +3b =λ(3a +k b ). ∴3λ=5,且kλ=3,∴k =95.(2)当c ⊥d 时,c ·d =0,则(5a +3b )·(3a +k b )=0. ∴15a 2+3k b 2+(9+5k )a ·b =0, ∴k =-2914.19.(12分)已知向量a =(1,3),b =(m,2),c =(3,4),且(a -3b )⊥c . (1)求实数m 的值; (2)求向量a 与b 的夹角θ.解析:(1)因为a =(1,3),b =(m,2),c =(3,4), 所以a -3b =(1,3)-(3m,6)=(1-3m ,-3).因为(a -3b )⊥c ,所以(a -3b )·c =(1-3m ,-3)·(3,4) =3(1-3m )+(-3)×4 =-9m -9=0, 解得m =-1.(2)由(1)知a =(1,3),b =(-1,2), 所以a ·b =5,所以cos θ=a ·b |a ||b |=510×5=22.因为θ∈[0,π],所以θ=π4.20.(12分)已知向量a =(1,3),b =(2,-2). (1)设c =2a +b ,求(b -a )·c ; (2)求向量a 在b 方向上的投影.解析:(1)由a =(1,3),b =(2,-2),可得c =(2,6)+(2,-2)=(4,4),b -a=(1,-5),则(b -a )·c =4-20=-16.(2)向量a 在b 方向上的投影为a ·b |b |=-422=- 2. 21.(12分)已知O ,A ,B 是平面上不共线的三点,直线AB 上有一点C ,满足2AC→+CB →=0,(1)用OA →,OB →表示OC →;(2)若点D 是OB 的中点,证明四边形OCAD 是梯形. 解析:(1)因为2AC →+CB →=0, 所以2(OC →-OA →)+(OB →-OC →)=0, 2OC →-2OA →+OB →-OC →=0, 所以OC →=2OA →-OB →.(2)证明:如图, DA →=DO →+OA →=-12OB →+OA →=12(2OA →-OB →).故DA →=12OC →.故四边形OCAD 为梯形.22.(12分)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知(a -3b )·cos C=c (3cos B -cos A ).(1)求sin B sin A的值;(2)若c =7a ,求角C 的大小.解析:(1)由正弦定理得,(sin A -3sin B )cos C =sin C (3cos B -cos A ), ∴sin A cos C +cos A sin C =3sin C cos B +3cos C sin B , 即sin(A +C )=3sin(C +B ),即sin B =3sin A ,∴sin Bsin A=3.(2)由(1)知b =3a ,∵c =7a ,∴cos C =a 2+b 2-c 22ab =a 2+9a 2-7a 22×a ×3a =3a 26a 2=12,∵C ∈(0,π),∴C =π3.章末质量检测(二) 复数一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数i -i 2的实部为( ) A .0 B .1 C .i D .-2 解析:i -i 2=1+i. 答案:B2.用C ,R 和I 分别表示复数集、实数集和虚数集,那么有( ) A .C =R ∩I B .R ∩I ={0}C .R =C ∩ID .R ∩I =∅解析:由复数的概念可知R ⊂C ,I ⊂C ,R ∩I =∅. 答案:D3.下列说法正确的是( )A .如果两个复数的实部的差和虚部的差都等于0,那么这两个复数相等B .a i 是纯虚数(a ∈R )C .如果复数x +y i(x ,y ∈R )是实数,那么x =0,y =0D .复数a +b i(a ,b ∈R )不是实数解析:两个复数的实部的差和虚部的差都等于0,则它们的实部、虚部分别相等,所以A 正确;B 中,当a =0时,a i =0是实数,所以B 不正确;要使复数x +y i(x ,y ∈R )是实数,则只需y =0,所以C 不正确;D 中,当b =0时,复数a +b i 是实数,所以D 不正确.答案:A4.复数z =-1-2i(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限解析:由题意得复数z 的实部为-1,虚部为-2,因此在复平面内对应的点为(-1,-2),位于第三象限.答案:C5.设z 1=3-4i ,z 2=-2+3i ,则z 1-z 2在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 解析:z 1-z 2=5-7i. 答案:D6.复数1-7i 1+i 的虚部为( )A .0 B. 2 C .4 D .-4 解析:∵1-7i1+i=1-7i 1-i 1+i1-i =-6-8i2=-3-4i ,∴复数1-7i1+i 的虚部为-4,选D.答案:D7.复数z =(a 2-2a -3)+(a +1)i 为纯虚数,实数a 的值是( ) A .-1 B .3C .1D .-1或3解析:由题意知⎩⎪⎨⎪⎧a 2-2a -3=0,a +1≠0,解得a =3.故选B.答案:B8.已知z-1+i =2+i ,则复数z =( )A .-1+3iB .1-3iC .3+iD .3-i解析:由题意知z -=(1+i)(2+i)=2-1+3i =1+3i ,从而z =1-3i ,选B. 答案:B9.已知z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-3,1)B .(-1,3)C .(1,+∞) D.(-∞,-3)解析:由已知可得复数z 在复平面内对应的点的坐标为(m +3,m -1),且该点在第四象限,所以⎩⎪⎨⎪⎧m +3>0,m -1<0,解得-3<m <1.答案:A10.已知复数z 1=-1+2i ,z 2=1-i ,z 3=3-4i ,它们在复平面上所对应的点分别为A ,B ,C ,若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值是( )A .1B .2C .3D .4解析:依题意3-4i =λ(-1+2i)+μ(1-i)=μ-λ+(2λ-μ)i ,∴⎩⎪⎨⎪⎧μ-λ=32λ-μ=-4,∴⎩⎪⎨⎪⎧λ=-1μ=2,∴λ+μ=1.答案:A11.复数z =x +y i(x ,y ∈R )满足条件|z -4i|=|z +2|,则|2x+4y|的最小值为( )A .2B .4C .4 2D .16解析:由|z -4i|=|z +2|得x +2y =3. 则2x+4y≥22x +2y=2·23=4 2.12.已知f (n )=i n -i -n (i 2=-1,n ∈N ),集合{f (n )}的元素个数是( ) A .2个 B .3个 C .4个 D .无数个 解析:f (0)=i 0-i 0=0,f (1)=i -i -1=i -1i=2i ,f (2)=i 2-i -2=0, f (3)=i 3-i -3=-2i.∴{f (n )}={0,-2i,2i}. 答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.若复数z =(m -1)+(m +2)i 对应的点在直线y =2x 上,则实数m 的值是________.解析:由已知得2(m -1)-(m +2)=0,∴m =4. 答案:414.设复数z 满足i(z +1)=-3+2i(i 是虚数单位),则z 的实部是________. 解析:设z =a +b i(a ,b ∈R ),则i(z +1)=i(a +1+b i)=-b +(a +1)i =-3+2i , 所以a =1,b =3,复数z 的实部是1. 答案:115.在复平面内,复数1+i 与-1+3i 分别对应向量OA →和OB →,其中O 为坐标原点,则|AB →|=________.解析:∵AB →=(-1+3i)-(1+i)=-2+2i , ∴|AB →|=2 2. 答案:2 216.设i 是虚数单位,若复数a -103-i(a ∈R )是纯虚数,则a 的值为________. 解析:先利用复数的运算法则将复数化为x +y i(x ,y ∈R )的形式,再由纯虚数的定义求a .因为a -103-i =a -103+i 3-i 3+i=a -103+i10=(a -3)-i ,由纯虚数的定义,知a -3=0,所以a =3.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)实数m 为何值时,复数z =m +6m -1+(m 2+5m -6)i 是实数? 解析:复数z 为实数,则虚部为0,由于实部是分式,因此要求分式有意义,则⎩⎪⎨⎪⎧m 2+5m -6=0,m ≠1,解得m =-6.所以当m =-6时,复数z 是实数. 18.(12分)计算⎣⎢⎡⎦⎥⎤1+2i ·i 100+⎝ ⎛⎭⎪⎫1-i 1+i 52-⎝ ⎛⎭⎪⎫1+i 220.解析:⎣⎢⎡⎦⎥⎤1+2i ·i 100+⎝ ⎛⎭⎪⎫1-i 1+i 52-⎝ ⎛⎭⎪⎫1+i 220=[(1+2i)·1+(-i)5]2-i 10=(1+i)2-i 10=1+2i.19.(12分)复数z =(a 2+1)+a i(a ∈R )对应的点在第几象限?复数z 对应的点的轨迹方程是什么?解析:因为a 2+1≥1>0,复数z =(a 2+1)+a i 对应的点为(a 2+1,a ),所以z 对应的点在第一、四象限或实轴的正半轴上.设z =x +y i(x ,y ∈R ),则⎩⎪⎨⎪⎧x =a 2+1,y =a ,消去a 可得x =y 2+1,所以复数z 对应的点的轨迹方程是y 2=x -1.20.(12分)设复数z 1=(a 2-4sin 2θ)+(1+2cos θ)i ,a ∈R ,θ∈(0,π),z 2在复平面内对应的点在第一象限,且z 22=-3+4i.(1)求z 2及|z 2|;(2)若z 1=z 2,求θ与a 的值.解析:(1)设z 2=m +n i(m ,n ∈R ),则z 22=(m +n i)2=m 2-n 2+2mn i =-3+4i ,即⎩⎪⎨⎪⎧m 2-n 2=-3,2mn =4,解得⎩⎪⎨⎪⎧m =1,n =2,或⎩⎪⎨⎪⎧m =-1,n =-2,所以z 2=1+2i 或z 2=-1-2i.又因为z 2在复平面内对应的点在第一象限,所以z 2=-1-2i 应舍去, 故z 2=1+2i ,|z 2|= 5.(2)由(1)知(a 2-4sin 2θ)+(1+2cos θ)i =1+2i ,即⎩⎪⎨⎪⎧a 2-4sin 2θ=1,1+2cos θ=2,解得cos θ=12,因为θ∈(0,π),所以θ=π3,所以a 2=1+4sin 2θ=1+4×34=4,a =±2.综上,θ=π3,a =±2.21.(12分)虚数z 满足|z |=1,z 2+2z +1z<0,求z .解析:设z =x +y i(x ,y ∈R ,y ≠0),∴x 2+y 2=1.则z 2+2z +1z =(x +y i)2+2(x +y i)+1x +y i =(x 2-y 2+3x )+y (2x +1)i.∵y ≠0,z 2+2z +1z<0,∴⎩⎪⎨⎪⎧ 2x +1=0,x 2-y 2+3x <0,①②又x 2+y 2=1.③ 由①②③得⎩⎪⎨⎪⎧x =-12,y =±32.∴z =-12±32i.22.(12分)已知复数z 1=i(1-i)3. (1)求|z 1|;(2)若|z |=1,求|z -z 1|的最大值.解析:(1)|z 1|=|i(1-i)3|=|2-2i|=22+-22=2 2.(2)如图所示,由|z |=1可知,z 在复平面内对应的点的轨迹是半径为1,圆心为O (0,0)的圆,而z 1对应着坐标系中的点Z 1(2,-2).所以|z-z1|的最大值可以看成是点Z1(2,-2)到圆上的点的距离的最大值.由图知|z-z1|max=|z1|+r(r为圆的半径)=22+1.章末质量检测(三) 立体几何初步一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的是( )A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:A错误.如图1所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.B错误.如图2,若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边所在直线,所得的几何体都不是圆锥.C错误.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.D正确.答案:D2.关于直观图画法的说法中,不正确的是( )A.原图形中平行于x轴的线段,其对应线段仍平行于x′轴,其长度不变B.原图形中平行于y轴的线段,其对应线段仍平行于y′轴,其长度不变C.画与坐标系xOy对应的坐标系x′O′y′时,∠x′O′y′可画成135°D.作直观图时,由于选轴不同,所画直观图可能不同解析:根据斜二测画法的规则可知B不正确.答案:B3.若圆柱的轴截面是一个正方形,其面积为4S,则它的一个底面面积是( )A .4SB .4πSC .πSD .2πS解析:由题意知圆柱的母线长为底面圆的直径2R , 则2R ·2R =4S ,得R 2=S .所以底面面积为πR 2=πS . 答案:C4.如果一个正四面体(各个面都是正三角形)的体积为9 cm 3,则其表面积为( ) A .18 3 cm 2B .18 cm 2C .12 3 cm 2D .12 cm 2解析:设正四面体的棱长为a cm ,则底面积为34a 2 cm 2,易求得高为63a cm ,则体积为13×34a 2×63a =212a 3=9,解得a =32,所以其表面积为4×34a 2=183(cm 2).答案:A5.一个四面体共一个顶点的三条棱两两互相垂直,其长分别为1,6,3,其四面体的四个顶点在一个球面上,则这个球的表面积为( )A .16π B.32π C .36π D.64π解析:将四面体可补形为长方体,此长方体的对角线即为球的直径,而长方体的对角线长为12+62+32=4,即球的半径为2,故这个球的表面积为4πr 2=16π.答案:A6.若平面α∥平面β,直线a ∥平面α,点B 在平面β内,则在平面β内且过点B 的所有直线中( )A .不一定存在与a 平行的直线B .只有两条与a 平行的直线C .存在无数条与a 平行的直线D .存在唯一与a 平行的直线解析:当直线a ⊂平面β,且点B 在直线a 上时,在平面β内且过点B 的所有直线中不存在与a 平行的直线.故选A.答案:A7.若α∥β,A ∈α,C ∈α,B ∈β,D ∈β,且AB +CD =28,AB 、CD 在β内的射影长分别为9和5,则AB 、CD 的长分别为( )A .16和12B .15和13C .17和11D .18和10解析:如图,作AM ⊥β,CN ⊥β,垂足分别为M 、N ,设AB =x ,则CD =28-x ,BM =9,ND =5,∴x 2-81=(28-x )2-25, ∴x =15,28-x =13. 答案:B 8.如图,在棱长为4的正方体ABCD -A 1B 1C 1D 1中,P 是A 1B 1上一点,且PB 1=14A 1B 1,则多面体P -BCC 1B 1的体积为( )A.83B.163 C .4 D .5解析:V 多面体P -BCC 1B 1=13S 正方形BCC 1B 1·PB 1=13×42×1=163.答案:B9.如图,在直三棱柱ABC -A 1B 1C 1中,D 为A 1B 1的中点,AB =BC =BB 1=2,AC =25,则异面直线BD 与AC 所成的角为( )A .30° B.45° C .60° D.90°解析:如图,取B1C1的中点E,连接BE,DE,则AC∥A1C1∥DE,则∠BDE即为异面直线BD与AC所成的角(或其补角).由条件可知BD=DE=EB=5,所以∠BDE=60°,故选C.答案:C10.如图,在三棱锥P-ABC中,不能证明AP⊥BC的条件是( )A.AP⊥PB,AP⊥PCB.AP⊥PB,BC⊥PBC.平面BCP⊥平面PAC,BC⊥PCD.AP⊥平面PBC解析:A中,因为AP⊥PB,AP⊥PC,PB∩PC=P,所以AP⊥平面PBC,又BC⊂平面PBC,所以AP⊥BC,故A正确;C中,因为平面BCP⊥平面PAC,BC⊥PC,所以BC⊥平面APC,AP⊂平面APC,所以AP⊥BC,故C正确;D中,由A知D正确;B中条件不能判断出AP⊥BC,故选B.答案:B11.在等腰Rt△ABC中,AB=BC=1,M为AC的中点,沿BM把它折成二面角,折后A与C的距离为1,则二面角C-BM-A的大小为( )A.30° B.60°C.90° D.120°解析:如图所示,由AB=BC=1,∠A′BC=90°,得A′C= 2.∵M为A′C的中点,∴MC=AM=22,且CM⊥BM,AM⊥BM,∴∠CMA为二面角C-BM-A的平面角.∵AC =1,MC =AM =22,∴∠CMA =90°. 答案:C12.在矩形ABCD 中,若AB =3,BC =4,PA ⊥平面AC ,且PA =1,则点P 到对角线BD 的距离为( )A.292 B.135C.175D.1195 解析:如图,过点A 作AE ⊥BD 于E ,连接PE . ∵PA ⊥平面ABCD ,BD ⊂平面ABCD , ∴PA ⊥BD ,∴BD ⊥平面PAE ,∴BD ⊥PE . ∵AE =AB ·AD BD =125,PA =1, ∴PE =1+⎝ ⎛⎭⎪⎫1252=135.答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.正方形ABCD 绕对角线AC 所在直线旋转一周所得组合体的结构特征是________. 解析:由圆锥的定义知是两个同底的圆锥形成的组合体. 答案:两个同底的圆锥组合体14.若某空间几何体的直观图如图所示,则该几何体的表面积是________. 解析:根据直观图可知该几何体是横着放的直三棱柱,所以S 侧=(1+2+3)×2=2+2+6, S 底=12×1×2=22, 故S 表=2+2+6+2×22=2+22+ 6.答案:2+22+ 615.如图,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.解析:∵EF ∥平面AB 1C ,EF ⊂平面ABCD ,平面ABCD ∩平面AB 1C =AC ,∴EF ∥AC ,∴F 为DC 中点.故EF =12AC = 2.答案: 216.矩形ABCD 中,AB =1,BC =2,PA ⊥平面ABCD ,PA =1,则PC 与平面ABCD所成的角是________.解析:tan∠PCA =PA AC=13=33,∴∠PCA =30°. 答案:30°三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图是由正方形ABCE 和正三角形CDE 所组成的平面图形,试画出其水平放置的直观图.解析:(1)以AB 所在的直线为x 轴,AB 的中垂线为y 轴建立直角坐标系,如图(1),再建立坐标系x ′O ′y ′,使两轴的夹角为45°,如图(2).(2)以O ′为中点,在x ′轴上截取A ′B ′=AB ,分别过A ′,B ′作y ′轴的平行线,截取A ′E ′=12AE ,B ′C ′=12BC .在y ′轴上截取O ′D ′=12OD .(3)连接E ′D ′,E ′C ′,C ′D ′,并擦去作为辅助线的坐标轴,就得到所求的直观图,如图(3).18.(12分)如图,正方体ABCD -A ′B ′C ′D ′的棱长为a ,连接A ′C ′,A ′D ,A ′B ,BD ,BC ′,C ′D ,得到一个三棱锥.求:(1)三棱锥A ′-BC ′D 的表面积与正方体表面积的比值; (2)三棱锥A ′-BC ′D 的体积.解析:(1)∵ABCD -A ′B ′C ′D ′是正方体, ∴A ′B =A ′C ′=A ′D =BC ′=BD =C ′D =2a ,∴三棱锥A ′-BC ′D 的表面积为4×12×2a ×32×2a =23a 2.而正方体的表面积为6a 2,故三棱锥A ′-BC ′D 的表面积与正方体表面积的比值为23a 26a 2=33. (2)三棱锥A ′-ABD ,C ′-BCD ,D -A ′D ′C ′,B -A ′B ′C ′是完全一样的. 故V 三棱锥A ′-BC ′D =V 正方体-4V 三棱锥A ′-ABD =a 3-4×13×12a 2×a =a33.19.(12分)如图,四边形ABCD 与四边形ADEF 都为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.求证:(1)BE ∥平面DMF ; (2)平面BDE ∥平面MNG .证明:(1)设DF 与GN 交于点O ,连接AE ,则AE 必过点O ,且O 为AE 的中点,连接MO ,则MO 为△ABE 的中位线,所以BE ∥MO .因为BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为AD,EF的中点,四边形ADEF为平行四边形,所以DE∥GN.因为DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.因为M为AB的中点,N为AD的中点,所以MN为△ABD的中位线,所以BD∥MN.因为BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG.因为DE∩BD=D,BD,DE⊂平面BDE,所以平面BDE∥平面MNG.20.(12分)S是Rt△ABC所在平面外一点,且SA=SB=SC,D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.证明:(1)如图所示,取AB的中点E,连接SE,DE,在Rt△ABC中,D、E分别为AC、AB的中点,∴DE∥BC,∴DE⊥AB,∵SA=SB,∴△SAB为等腰三角形,∴SE⊥AB.又SE∩DE=E,∴AB⊥平面SDE.又SD⊂平面SDE,∴AB⊥SD.在△SAC中,SA=SC,D为AC的中点,∴SD⊥AC.又AC∩AB=A,∴SD⊥平面ABC.(2)由于AB=BC,则BD⊥AC,由(1)可知,SD⊥平面ABC,BD⊂平面ABC,∴SD⊥BD,又SD∩AC=D,∴BD⊥平面SAC.21.(12分)如图,在斜三棱柱ABC-A1B1C1中,侧面AA1C1C是菱形,AC1与A1C交于点O,点E是AB的中点.(1)求证:OE∥平面BCC1B1;(2)若AC1⊥A1B,求证:AC1⊥BC.证明:(1)连接BC1,因为侧面AA1C1C是菱形,AC1与A1C交于点O,所以O为AC1的中点,又因为E是AB的中点,所以OE∥BC1,因为OE⊄平面BCC1B1,BC1⊂平面BCC1B1,所以OE∥平面BCC1B1.(2)因为侧面AA1C1C是菱形,所以AC1⊥A1C,因为AC1⊥A1B,A1C∩A1B=A1,A1C⊂平面A1BC,A1B⊂平面A1BC,所以AC1⊥平面A1BC,因为BC⊂平面A1BC,所以AC1⊥BC.22.(12分)如图所示,在长方体ABCD-A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点,连接ED,EC,EB和DB.(1)求证:平面EDB⊥平面EBC;(2)求二面角E-DB-C的正切值.解析:(1)证明:在长方体ABCD-A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点.所以△DD1E为等腰直角三角形,∠D1ED=45°.同理∠C1EC=45°.所以∠DEC=90°,即DE⊥EC.在长方体ABCD-A1B1C1D1中,BC⊥平面D1DCC1,又DE⊂平面D1DCC1,所以BC⊥DE.又EC∩BC=C,所以DE⊥平面EBC.因为DE⊂平面DEB,所以平面DEB⊥平面EBC.(2)如图所示,过E在平面D1DCC1中作EO⊥DC于O.在长方体ABCD-A1B1C1D1中,因为平面ABCD⊥平面D1DCC1,且交线为DC,所以EO⊥面ABCD.过O在平面DBC中作OF⊥DB于F,连接EF,所以EF⊥BD.∠EFO为二面角E-DB-C的平面角.利用平面几何知识可得OF=15,又OE=1,所以tan∠EFO= 5.章末质量检测(四) 统计一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从某年级500名学生中抽取60名学生进行体重的统计分析,下列说法正确的是( )A.500名学生是总体B.每个被抽查的学生是样本C.抽取的60名学生的体重是一个样本D.抽取的60名学生是样本容量解析:A×总体应为500名学生的体重B×样本应为每个被抽查的学生的体重C√抽取的60名学生的体重构成了总体的一个样本D×样本容量为60,不能带有单位2.某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将70个同学按01,02,03,…,70进行编号,然后从随机数表第9行第9列的数开始向右读,则选出的第7个个体是( )(注:如表为随机数表的第8行和第9行)63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54A .07B .44C .15D .51解析:找到第9行第9列数开始向右读,符合条件的是29,64,56,07,52,42,44,故选出的第7个个体是44.答案:B3.对于数据3,3,2,3,6,3,10,3,6,3,2,有以下结论: ①这组数据的众数是3.②这组数据的众数与中位数的数值不等. ③这组数据的中位数与平均数的数值相等. ④这组数据的平均数与众数的数值相等. 其中正确的结论有( ) A .1个 B .2个 C .3个 D .4个解析:由题意知,众数与中位数都是3,平均数为4.只有①正确,故选A. 答案:A4.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为( )A .8B .11C .16D .10解析:若设高三学生数为x ,则高一学生数为x 2,高二学生数为x2+300,所以有x+x 2+x 2+300=3 500,解得x =1 600.故高一学生数为800,因此应抽取的高一学生数为800100=8.答案:A5.在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其他8个长方形的面积和的25,且样本容量为140,则中间一组的频数为( )A .28B .40C .56D .60解析:设中间一组的频数为x ,则其他8组的频数和为52x ,所以x +52x =140,解得x =40.答案:B6.某校共有学生2 000名,各年级男、女生人数如表所示:一年级二年级三年级女生373380y男生377370z现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( )A.24 B.18C.16 D.12解析:一年级的学生人数为373+377=750,二年级的学生人数为380+370=750,于是三年级的学生人数为2 000-750-750=500,那么三年级应抽取的人数为500×642 000=16.故选C.答案:C7.某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如下图,则下面结论中错误的一个是( )A.甲的极差是29 B.乙的众数是21C.甲罚球命中率比乙高 D.甲的中位数是24解析:甲的极差是37-8=29;乙的众数显然是21;甲的平均数显然高于乙,即C成立;甲的中位数应该是23.答案:D8.为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .1B .8C .12D .18解析:由图知,样本总数为N =200.16+0.24=50.设第三组中有疗效的人数为x ,则6+x 50=0.36,解得x =12. 答案:C9.一组数据的方差为s 2,平均数为x ,将这组数据中的每一个数都乘以2,所得的一组新数据的方差和平均数为( )A.12s 2,12x B .2s 2,2x C .4s 2,2x D .s 2,x解析:将一组数据的每一个数都乘以a ,则新数据组的方差为原来数据组方差的a 2倍,平均数为原来数据组的a 倍.故答案选C.答案:C10.某超市连锁店统计了城市甲、乙的各16台自动售货机在12:00至13:00间的销售金额,并用茎叶图表示如图,则可估计有( )A .甲城市销售额多,乙城市销售额不够稳定B .甲城市销售额多,乙城市销售额稳定C .乙城市销售额多,甲城市销售额稳定D .乙城市销售额多,甲城市销售额不够稳定解析:十位数字是3,4,5时乙城市的销售额明显多于甲,估计乙城市销售额多,甲的数字过于分散,不够稳定,故选D.答案:D11.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加上2所得数据,则A ,B 两样本的下列数字特征对应相同的是( )A .众数B .平均数C .中位数D .标准差解析:设A 样本数据为x i ,根据题意可知B 样本数据为x i +2,则依据统计知识可知A ,B 两样本中的众数、平均数和中位数都相差2,只有方差相同,即标准差相同.答案:D12.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为( ) A.1169 B.367 C .36 D.677解析:由题图可知去掉的两个数是87,99,所以87+90×2+91×2+94+90+x=91×7,解得x =4.故s 2=17[(87-91)2+(90-91)2×2+(91-91)2×2+(94-91)2×2]=367.故选B. 答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中横线上) 13.将一个容量为m 的样本分成3组,已知第一组频数为8,第二、三组的频率为0.15和0.45,则m =________.解析:由题意知第一组的频率为 1-(0.15+0.45)=0.4, 所以8m=0.4,所以m =20.答案:2014.某单位有职工100人,不到35岁的有45人,35岁到49岁的有25人,剩下的为50岁以上(包括50岁)的人,用分层抽样的方法从中抽20人,各年龄段分别抽取的人数为________.解析:由于样本容量与总体个体数之比为20100=15,故各年龄段抽取的人数依次为45×15=9(人),25×15=5(人),20-9-5=6(人).答案:9,5,615.某市高三数学抽样考试中,对90分以上(含90分)的成绩进行统计,其频率分布图如图所示,若130~140分数段的人数为90人,则90~100分数段的人数为________.解析:由频率分布图知,设90~100分数段的人数为x ,则0.40x =0.0590,所以x=720.答案:72016.设样本数据x 1,x 2,…,x 2017的方差是4,若y i =2x i -1(i =1,2,…,2 017),则y 1,y 2,…,y 2017的方差为________.解析:本题考查数据的方差.由题意得D (y i )=D (2x i -1)=D (2x i )=4D (x i )=4×4=16.答案:16三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)某总体共有60个个体,并且编号为00,01,…,59.现需从中抽取一个容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列的1开始.依次向下读数,到最后一行后向右,直到取足样本为止(大于59及与前面重复的数字跳过),求抽取样本的号码.95 33 95 22 00 18 74 72 00 18 38 79 58 69 32 81 76 80 26 92 82 80 84 25 39 90 84 60 79 80 24 36 59 87 38 82 07 53 89 35 56 35 23 79 18 05 98 90 07 35 46 40 62 98 80 54 97 20 56 95 15 74 80 08 32 16 46 70 50 80 67 72 16 42 79 20 31 89 03 43 38 46 82 68 72 32 14 82 99 70 80 60 47 18 97 63 49 30 21 30 71 59 73 05 50 08 22 23 71 77 91 01 93 20 49 82 96 59 26 94 66 39 67 98 60解析:由随机数表法可得依次的读数为:18,24,54,38,08,22,23,0118.(12分)某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加了其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的14,且该组中,青年人占50%,中年人占40%,老年人占10%,为了了解各组不同的年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本.试确定:(1)游泳组中,青年人、中年人、老年人分别所占的比例; (2)游泳组中,青年人、中年人、老年人分别应抽取的人数.解析:(1)设登山组人数为x ,游泳组中,青年人、中年人、老年人各占比例分别为a ,b ,c ,则有x ·40%+3xb 4x =47.5%,x ·10%+3xc4x=10%.解得b =50%,c =10%. 故a =1-50%-10%=40%.即游泳组中,青年人、中年人、老年人各占比例分别为40%,50%,10%.(2)游泳组中,抽取的青年人数为200×34×40%=60;抽取的中年人数为200×34×50%=75;抽取的老年人数为200×34×10%=15.19.(12分)已知一组数据按从小到大的顺序排列为-1,0,4,x,7,14,中位数为5,求这组数据的平均数与方差.解析:由于数据-1,0,4,x,7,14的中位数为5,所以4+x2=5,x =6.设这组数据的平均数为x -,方差为s 2,由题意得 x -=16×(-1+0+4+6+7+14)=5,s 2=16×[(-1-5)2+(0-5)2+(4-5)2+(6-5)2+(7-5)2+(14-5)2]=743. 20.(12分)为了了解小学生的体能情况,抽取了某校一个年级的部分学生进行一分钟跳绳次数测试,将取得数据整理后,画出频率分布直方图(如图).已知图中从左到右前三个小组频率分别为0.1,0.3,0.4,第一小组的频数为5.(1)求第四小组的频率;(2)参加这次测试的学生有多少人;(3)若次数在75次以上(含75次)为达标,试估计该年级学生跳绳测试的达标率是多少.解析:(1)由累积频率为1知,第四小组的频率为1-0.1-0.3-0.4=0.2. (2)设参加这次测试的学生有x 人,则0.1x =5, 所以x =50.即参加这次测试的学生有50人. (3)达标率为0.3+0.4+0.2=90%,所以估计该年级学生跳绳测试的达标率为90%.21.(12分)市体校准备挑选一名跳高运动员参加全市中学生运动会,对跳高运动队的甲、乙两名运动员进行了8次选拔比赛.他们的成绩(单位:m)如下:甲:1.70 1.65 1.68 1.69 1.72 1.73 1.68 1.67乙:1.60 1.73 1.72 1.61 1.62 1.71 1.70 1.75(1)甲、乙两名运动员的跳高平均成绩分别是多少?(2)哪位运动员的成绩更为稳定?(3)若预测跳过1.65 m就很可能获得冠军,该校为了获得冠军,可能选哪名运动员参赛?若预测跳过1.70 m才能得冠军呢?解析:(1)甲的平均成绩为:(1.70+1.65+1.68+1.69+1.72+1.73+1.68+1.67)÷8=1.69 m,乙的平均成绩为:(1.60+1.73+1.72+1.61+1.62+1.71+1.70+1.75)÷8=1.68 m;(2)根据方差公式可得:甲的方差为0.0006,乙的方差为0.00315∵0.0006<0.00315∴甲的成绩更为稳定;(3)若跳过1.65 m就很可能获得冠军,甲成绩均过1.65米,乙3次未过1.65米,因此选甲;若预测跳过1.70 m才能得冠军,甲成绩过1.70米3次,乙过1.70米5次,因此选乙.22.(12分)某中学高一女生共有450人,为了了解高一女生的身高(单位:cm)情况,随机抽取部分高一女生测量身高,所得数据整理后列出频率分布表如下:(1)(2)画出频率分布直方图;(3)估计该校高一女生身高在[149.5,165.5]范围内的有多少人?解析:(1)由题意得M=80.16=50,落在区间[165.5,169.5]内的数据频数m=50-(8+6+14+10+8)=4,。
第四章综合测试一、单项选择题(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.55 cos cos sin sin 8888ππππ+=()A .1B .0C .1-D .122.若 sin 4cos 0αα-=,则3tan 4πα⎛⎫- ⎪⎝⎭的值为()A .53B .53-C .35D .35-3.若()()4tan 114tan 17αβ+-=,则()tan αβ-的值为()A .14B .12C .4D .124.已知3cos 45πα⎛⎫+= ⎪⎝⎭,则sin 2sin 4απα⋅⎛⎫- ⎪⎝⎭的值为()A .715B .715-C .4315D .4315-5.已知 tan 2α=,则22sin 1cos 24απα+⎛⎫⋅- ⎪⎝⎭的值是()A .53B .134-C .135D .1346.已知4sin()cos cos()sin 5αβααβα---=,且β是第三象限角,则cos 2β的值等于()A .55±B .255±C .55D .255-7.函数()22cos 2()f x x x x =⋅∈R 的最小正周期和最大值分别是()A .2π,3B .2π,1C .π,3D .π,18.化简2222sin 1sin 2sin 3sin 89︒++++︒︒ 的结果是()A .89B .892C .45D .452二、多项选择题(本题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列各式中,值为12的是()A .2tan15cos 15︒︒B .2233312312ππ-C .2tan 301tan 30︒︒⋅-D 10.下列各式与tan α不相等的是()A B .sin 1cos αα+C .21cos sin 2αα--⋅D .sin 1cos 2aα-11.有下列四个函数,其中在2π上为递增函数的是()A .sin cos y x x =+B .sin cos y x x=-C .sin cos y x x=D .sin cos x y x=12.关于函数()()2sin cos cos f x x x x =-有下列四个结论,其中正确的有()AB .把函数() 21f x x =-的图象向右平移4π个单位长度后可得到函数()()2sin cos cos f x x x x =-的图象C .递增区间为711 ,88k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ()D .图象的对称中心为,1()28k k ππ⎛⎫+-∈ ⎪⎝⎭Z 三、填空题(本题共4小题,每小题5分,共20分,请把正确答案填在题中横线上)13.如果1cos 5α=,且α是第四象限的角,那么cos 2πα⎛⎫+= ⎪⎝⎭________.14.已知tan 24x π⎛⎫+= ⎪⎝⎭,则tan tan 2x x 的值为________.15.已知s 1sin 63πα⎛⎫+= ⎪⎝⎭,3παπ<<,则sin 12πα⎛⎫-= ⎪⎝⎭________.16.ABC △的三个内角为A ,B ,C ,当A 为________时,cos 2cos 2B CA ++取得最大值,且这个最大值为________.四、解答题(本题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.已知1sin 0,tan 523a παβ⎛⎫=∈= ⎪⎝⎭,,.(1)求tan α的值;(2)求tan(2)αβ+的值.18.在平面直角坐标系中,点O 为坐标原点,点21,cos 2P θ⎛⎫⎪⎝⎭在角α的终边上,点()2sin ,1Q θ-在角β的终边上,且12OP OQ ⋅=- .求:(1)cos 2θ的值;(2)sin()αβ+的值.19.从圆心角为120︒,半径为20 cm 的扇形铁片上截出一块矩形OPMN ,如图,让矩形的一边在扇形的一条半径OA 上,点M 在弧AB 上,求此矩形面积的最大值.20.已知函数()tan 24f x x π⎛⎫=+ ⎪⎝⎭.(1)求()f x 的定义域与最小正周期;(2)设0,4a π⎛⎫∈ ⎪⎝⎭,若2cos 22f αα⎛⎫= ⎪⎝⎭,求α的大小.21.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数a .①22sin 13cos 17sin13cos17︒︒︒+-︒;②22sin 15cos 15sin 15cos15︒︒︒+-⋅︒;③22sin 18cos 12sin 18cos12︒︒︒+-⋅︒;④()()22sin 18cos 48sin 18cos48︒︒︒-+--︒;⑤()()22sin 25cos 55sin 25cos55︒︒︒-+--︒.(1)从上述五个式子中选择一个,求出常数a ;(2)根据(1)的计算结果,将该同学的发现推广为一个三角恒等式,并证明你的结论.22.已知函数2()cos 2cos 1()f x x x x x '=⋅+-∈R .(1)求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值;(2)若()06 5f x =,0,42x ππ⎡⎤∈⎢⎥⎣⎦,求0cos2x 的值.第四章综合测试答案解析一、1.【答案】B 【解析】55 cos cos sin sin cos 088882πππππ+==,故选B .2.【答案】A【解析】由已知得sin tan 4cos ααα==,于是31tan 5tan 41tan 3πααα--⎛⎫-== ⎪-⎝⎭,故选A .3.【答案】C【解析】由已知得()()tan tan 161tan tan h αβαβ-=+,即tan tan 41tan tan αβαβ-=+,tan()4αβ∴-=,故选C .4.【答案】A【解析】因为3cos 45πα⎛⎫+= ⎪⎝⎭,所以273sin 2cos 212cos ,sin cos 2425445ππππααααα⎛⎫⎛⎫⎛⎫⎛⎫=-+=-+==+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以27sin 725 315sin 54απα⋅==⎛⎫- ⎪⎝⎭,故选A .5.【答案】D【解析】22222222sin 13sin cos 3sin cos 3tan 132113sin 22sin cos 2tan 224cos 24ααααααπααααα++++⨯+=====⨯⎛⎫- ⎪⎝⎭,故选D .6.【答案】A【解析】由已知,得4sin[()]sin()5αβαβ--=-=,4sin 5β∴=-,β 是第三象限角,3cos 5β∴=-,5cos25β∴=±,故选A .7.【答案】C【解析】13 ()cos 2122cos 2212cos 21223f x x x x x x π⎛⎫⎛⎫=+=-+=++ ⎪ ⎪ ⎪⎝⎭⎝⎭,T π∴=,max ()3f x =,故选C .8.【答案】B【解析】222222222 sin 1sin 2sin 3sin 89sin 1sin 2sin 45cos 44cos 1︒︒︒︒︒︒︒︒++++=++++++ ()()()2222222189sin 1cos 1sin 2cos 2sin 44cos 44sin 454422=+++++++=︒︒︒︒︒︒=︒+,故选B .二、9.【答案】BD【解析】A 中,2tan15cos 15sin15cos15︒︒︒︒=11sin 3024==︒⋅,A 不正确;B 中,221cos 312312362πππ-===,B 正确;C 中,2tan301tan 601tan 3022=︒-︒=︒,C 不正确;D12=,D 正确,故选BD .10.【答案】ABD【解析】A|tan |α=,A 不符合;B 中22sincos sin 22tan 1cos 22cos 2αααααα==+,B 不符合;C 中,21cos 22sin tan sin 22sin cos αααααα-==,C 符合;D 中,2sin sin 11cos 22sin sin ααααα==-,D 不符合,故选ABD .11.【答案】BD【解析】A中,sin cos 4y x x x π⎛⎫=+=+ ⎪⎝⎭,由图象可知,在0,2π⎛⎫⎪⎝⎭上为递减函数,A 不符合;B中,4x π⎛⎫- ⎪⎝⎭,由图象可知,在0,2π⎛⎫⎪⎝⎭上为递增函数,B 符合;C 中,1sin cos sin 22y x x x ==,由图象知函数在0,2π⎛⎫ ⎪⎝⎭上先增后减,C 不符合;D 中,tan y x =在0,2π⎛⎫⎪⎝⎭上递增,D 符合,故选BD .12.【答案】CD【解析】因为2 ()2sin cos 2cos sin 2cos 21214f x x x x x x x π⎛⎫=-=--=-- ⎪⎝⎭,所以最大值为1-,A错误;将()21f x x =-的图象向右平移4π个单位长度后得到()214f x x π⎡⎤⎛⎫=-- ⎪⎢⎥⎝⎭⎣⎦212x π⎛⎫=-- ⎪⎝⎭的图象,B 错误;由222,()242k x k k πππππ--+∈Z ,答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。