河北省2021年数学中考真题(含答案解析)
- 格式:docx
- 大小:458.24 KB
- 文档页数:27
2021全国中考真题分类汇编(四边形)----多边形与平行四边形一、选择题1. (2021•湖南省常德市)一个多边形的内角和是1800°,则这个多边形是( )边形.A. 9B. 10C. 11D. 12 【答案】D【解析】【分析】根据n 边形的内角和是(n ﹣2)×180 ,根据多边形的内角和为1800 ,就得到一个关于n 的方程,从而求出边数.【详解】根据题意得:(n ﹣2)×180=1800,解得:n =12.故选:D .2. (2021•株洲市)如图所示,在正六边形内,以为边作正五边形,则( )A.B. C. D.【答案】B 3. (2021•江苏省连云港)正五边形的内角和是( )A.B. C. D.【答案】D【解析】【分析】n 边形的内角和是 ,把多边形的边数代入公式,就得到多边形的内角︒︒︒︒ABCDEF AB ABGHI FAI ∠=10︒12︒14︒15︒360︒540︒720︒900︒()2180n -⋅︒和.详解】(7﹣2)×180°=900°.故选D .4. (2021•江苏省南京市)下列长度的三条线段与长度为5的线段能组成四边形的是( )A. 1,1,1B. 1,1,8C. 1,2,2D. 2,2,2 【答案】D【解析】【分析】若四条线段能组成四边形,则三条较短边的和必大于最长边,由此即可完成.【详解】A 、1+1+1<5,即这三条线段的和小于5,根据两点间距离最短即知,此选项错误; B 、1+1+5<8,即这三条线段的和小于8,根据两点间距离最短即知,此选项错误; C 、1+2+2=5,即这三条线段的和等于5,根据两点间距离最短即知,此选项错误; D 、2+2+2>5,即这三条线段的和大于5,根据两点间距离最短即知,此选项正确; 故选:D .5. (2021•江苏省扬州) 如图,点A 、B 、C 、D 、E 在同一平面内,连接、、、、,若,则( )A.B. C. D.【答案】D【解析】 【分析】连接BD ,根据三角形内角和求出∠CBD +∠CDB ,再利用四边形内角和减去∠CBD 和∠CDB 的和,即可得到结果.【详解】解:连接BD ,∵∠BCD =100°,∴∠CBD +∠CDB =180°-100°=80°,∴∠A +∠ABC +∠E +∠CDE =360°-∠CBD -∠CDB =360°-80°=280°,【AB BC CD DE EA 100BCD ∠=︒A B D E ∠+∠+∠+∠=220︒240︒260︒280︒故选D .6. (2021•四川省眉山市)正八边形中,每个内角与每个外角的度数之比为( )A .1:3B .1:2C .2:1D .3:1【分析】此题要结合多边形的内角与外角的关系来寻求等量关系,构建方程求出每个外角.多边形外角和是固定的360°.【解答】解:这个八边形的内角和为:(8﹣2)×180°=1080°;这个八边形的每个内角的度数为:1080°÷8=135°;这个八边形的每个外角的度数为:360°÷8=45°;∴这个八边形每个内角与每个外角的度数之比为:135:45=3:1.故选:D .7. (2021•四川省自贡市) 如图,AC 是正五边形ABCDE 的对角线,的度数是( )A. 72°B. 36°C. 74°D. 88°【答案】A【解析】 【分析】根据正五边形的性质可得,,根据等腰三角形的性质可得,利用角的和差即可求解.ACD∠108B BCD ∠=∠=︒AB BC =36BCA BAC ∠=∠=︒【详解】解:∵ABCDE 是正五边形,∴,,∴,∴,故选:A .8. (2021•北京市)下列多边形中,内角和最大的是( )DA.B .C .D . 9. (2021•福建省)如图,点F 在正ABCDE 五边形的内部,△ABF 为等边三角形,则∠AFC 等于( )CA .108°B .120°C .126°D .132° 10. (2021•云南省)一个10边形的内角和等于( )CA .1800°B .1660°C .1440°D .1200° 11. (2021•山东省济宁市)如图,正五边形ABCDE 中,∠CAD 的度数为( )A .72°B .45°C .36°D .35°【分析】首先可根据五边形内角和公式求出每个内角的度数,然后求出∠CAB 和∠DAE ,108B BCD ∠=∠=︒AB BC =36BCA BAC ∠=∠=︒1083672ACD ∠=︒-︒=︒即可求出∠CAD.【解答】解:根据正多边形内角和公式可得,正五边形ABCDE的内角和=180°×(5﹣2)=540°,则∠BAE=∠B=∠E==108°,根据正五边形的性质,△ABC≌△AED,∴∠CAB=∠DAE=(180°﹣108°)=36°,∴∠CAD=108°﹣36°﹣36°=36°,故选:C.12.(2021•贵州省铜仁市)用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的镶嵌.工人师傅不能用下列哪种形状、大小完全相同的一种地砖在平整的地面上镶嵌()A. 等边三角形B. 正方形C. 正五边形D. 正六边形【答案】C13.(2021•襄阳市)正多边形的一个外角等于60°,这个多边形的边数是()A. 3B. 6C. 9D. 12【答案】B14.(2021•绥化市)已知一个多边形内角和是外角和的4倍,则这个多边形是()A. 八边形B. 九边形C. 十边形D. 十二边形【答案】C【解析】【分析】设这个多边形的边数为n,然后根据内角和与外角和公式列方程求解即可.【详解】设这个多边形的边数为n,则(n-2)×180°=4×360°,解得:n=10,故选C.15. (2021•河北省)如图,点O为正六边形ABCDEF对角线FD上一点,S△AFO=8,S△CDO =2,则S正六边边ABCDEF的值是( )A.20B.30C.40D.随点O位置而变化【分析】正六边形ABCDEF的面积=S矩形AFDC+S△EFD+S△ABC,由正六边形每个边相等,每个角相等可得FD=AF,过E作FD垂线,垂足为M,利用解直角三角形可得△FED 的高,即可求出正六边形的面积.【解答】解:设正六边形ABCDEF的边长为x,过E作FD的垂线,垂足为M,连接AC,∵∠FED=120°,FE=ED,∴∠EFD=∠FDE,∴∠EDF=(180°﹣∠FED)=30°,∵正六边形ABCDEF的每个角为120°.∴∠CDF=120°﹣∠EDF=90°.同理∠AFD=∠FAC=∠ACD=90°,∴四边形AFDC为矩形,∵S△AFO=FO×AF,S△CDO=OD×CD,在正六边形ABCDEF中,AF=CD,∴S△AFO+S△CDO=FO×AF+OD×CD=(FO +OD )×AF=FD ×AF=10,∴FD ×AF =20,DM =cos30°DE =x ,DF =2DM =x , EM =sin30°DE =,∴S 正六边形ABCDEF =S 矩形AFDC +S △EFD +S △ABC=AF ×FD +2S △EFD=x •x +2×x •x=x 2+x 2 =20+10=30,故选:B .16.(2021•株洲市) 如图所示,四边形是平行四边形,点在线段的延长线上,若,则( )A. B. C. D.ABCD E BC 132DCE ∠=︒A ∠=38︒48︒58︒66︒【答案】B17.(2021•山东省泰安市)如图,在平行四边形ABCD中,E是BD的中点,则下列四个结论:①AM=CN;②若MD=AM,∠A=90°,则BM=CM;③若MD=2AM,则S△MNC=S△BNE;④若AB=MN,则△MFN与△DFC全等.其中正确结论的个数为( )A.1个B.2个C.3个D.4个【分析】根据平行四边形的性质,证明△MDB≌△NBD,从而判断①正确;若MD=AM,∠A=90°,则平行四边形ABCD为矩形,通过证明△BAM≌△CDM可以判断②;过点M作MG⊥BC,交BC于G,过点E作EH⊥BC,交BC于H,通过三角形面积公式可以判断③;若AB=MN则四边形MNCD是等腰梯形,通过证明△MNC≌△DCN和△MFN≌△DFC即可判断④.【解答】解:①∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵E是BD的中点,∴BE=DE,在△MDB和△NBD中,,∴△MDB≌△NBD(ASA),∴DM=BN,∴AM=CN,故①正确;②若MD=AM,∠A=90°,则平行四边形ABCD为矩形,∴∠D=∠A=90°,在△BAM和△CDM中,,∴△BAM≌△CDM(SAS),∴BM=CM,故②正确;③过点M作MG⊥BC,交BC于G,过点E作EH⊥BC,交BC于H,由①可知四边形MBCD是平行四边形,E为BD中点,∴MG=2EH,又∵MD=2AM,BN=MD,AM=NC,∴S△ANC=NC•MG=•BN•2EH=BN•EH=S△BNE,故③正确;④∵AB=MN,AB=DC,∴MN=DC,∴四边形MNCD是等腰梯形,∴∠MNC=∠DCN,在△MNC和△DCN中,,∴△MNC≌△DCN(SAS),∴∠NMC=∠CDN,在△MFN和△DFC中,,∴△MFN≌△DFC(AAS),故④正确.∴正确的个数是4个,故选:D.18.(2021•陕西省)在菱形ABCD中,∠ABC=60°,连接AC、BD,则( )A.B.C.D.【分析】由菱形的性质可得AO=CO,BO=DO,AC⊥BD,∠ABD=∠ABC=30°,由锐角三角函数可求解.【解答】解:设AC与BD交于点O,∵四边形ABCD是菱形,∴AO=CO,BO=DO,∠ABD=,∵tan∠ABD=,∴,故选:D.19.(2021•河北省)如图1,▱ABCD中,AD>AB,∠ABC为锐角.要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案( )A.甲、乙、丙都是B.只有甲、乙才是C.只有甲、丙才是D.只有乙、丙才是【分析】方案甲,连接AC,由平行四边形的性质得OB=OD,OA=OC,则NO=OM,得四边形ANCM为平行四边形,方案甲正确;方案乙:证△ABN≌△CDM(AAS),得AN=CM,再由AN∥CM,得四边形ANCM为平行四边形,方案乙正确;方案丙:证△ABN≌△CDM(ASA),得AN=CM,∠ANB=∠CMD,则∠ANM=∠CMN,证出AN∥CM,得四边形ANCM为平行四边形,方案丙正确.【解答】解:方案甲中,连接AC,如图所示:∵四边形ABCD是平行四边形,O为BD的中点,∴OB=OD,OA=OC,∵BN=NO,OM=MD,∴NO=OM,∴四边形ANCM为平行四边形,方案甲正确;方案乙中:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABN=∠CDM,∵AN⊥B,CM⊥BD,∴AN∥CM,∠ANB=∠CMD,在△ABN和△CDM中,,∴△ABN≌△CDM(AAS),∴AN=CM,又∵AN∥CM,∴四边形ANCM为平行四边形,方案乙正确;方案丙中:∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,AB=CD,AB∥CD,∴∠ABN=∠CDM,∵AN平分∠BAD,CM平分∠BCD,∴∠BAN=∠DCM,在△ABN和△CDM中,,∴△ABN≌△CDM(ASA),∴AN=CM,∠ANB=∠CMD,∴∠ANM=∠CMN,∴AN∥CM,∴四边形ANCM为平行四边形,方案丙正确;故选:A.20.(2021•泸州市)如图,在平行四边形ABCD中,AE平分∠BAD且交BC于点E,∠D=58°,则∠AEC的大小是()A. 61°B. 109°C. 119°D. 122°【答案】C【解析】 【分析】根据四边形ABCD 是平行四边形,得到对边平行,再利用平行的性质求出,根据角平分线的性质得:AE 平分∠BAD 求,再根据平行线的性质得,即可得到答案.【详解】解:∵四边形ABCD 是平行四边形∴,∴∵AE 平分∠BAD∴ ∵∴故选C .21. (2021•四川省南充市)如图,点O 是▱ABCD 对角线的交点,EF 过点O 分别交AD ,BC 于点E ,F ,下列结论成立的是( )A .OE =OFB .AE =BFC .∠DOC =∠OCD D .∠CFE =∠DEF【分析】证△AOE ≌△COF (ASA ),得OE =OF ,AE =CF ,∠CFE =∠AEF ,进而得出结论.【解答】解:∵▱ABCD 的对角线AC ,BD 交于点O ,∴AO =CO ,BO =DO ,AD ∥BC ,180122BAD D ∠=︒-∠=︒DAE ∠AEC ∠//AB CD //AD BC 180********BAD D ∠=︒-∠=︒-︒=︒111226122DAE BAD ∠=∠=⨯︒=︒//AD BC 180********AEC DAE ∠=︒-∠=︒-︒=︒∴∠EAO =∠FCO ,在△AOE 和△COF 中,,∴△AOE ≌△COF (ASA ),∴OE =OF ,AE =CF ,∠CFE =∠AEF ,又∵∠DOC =∠BOA ,∴选项A 正确,选项B 、C 、D 不正确,故选:A .22. (2021•天津市)如图,的顶点A ,B ,C 的坐标分别是,则顶点D 的坐标是( )A.B. C. D.【答案】C【解析】 【分析】根据平行四边形性质以及点的平移性质计算即可.【详解】解:∵四边形ABCD 平行四边形,点B 的坐标为(-2,-2),点C 的坐标为(2,-2),∴点B 到点C 为水平向右移动4个单位长度,∴A 到D 也应向右移动4个单位长度,∵点A 的坐标为(0,1),则点D 的坐标为(4,1),故选:C .23. (2021•湖北省恩施州)如图,在▱ABCD 中,AB =13,AD =5,AC ⊥BC ,则▱ABCD ABCD Y ()()()2,0,1,2,2,2---()4,1-()4,2-()4,1()2,1是的面积为( )A.30B.60C.65D.【分析】根据平行四边形的性质以及勾股定理求出四边形ABCD的底边BC和其对角线AC的值,然后根据平行四边形的面积计算公式求解.【解答】解:∵四边形ABCD为平行四边形,∴BC=AD=5.∵AC⊥BC,∴△ACB是直角三角形.∴AC===12.∴S▱ABCD=BC•AC=5×12=60.故选:B.24.(2021•湖北省荆门市)如图,将一副三角板在平行四边形ABCD中作如下摆放,设∠1=30°,那么∠2=( )A.55°B.65°C.75°D.85°【分析】根据等腰直角三角形的性质求出∠FHE=45°,求出∠NHB=∠FHE=45°,根据三角形内角和定理求出∠HNB=105°,根据平行四边形的性质得出CD∥AB,根据平行线的性质得出∠2+∠HNB=180°,带哦求出答案即可.【解答】解:延长EH交AB于N,∵△EFH 是等腰直角三角形,∴∠FHE =45°,∴∠NHB =∠FHE =45°,∵∠1=30°,∴∠HNB =180°﹣∠1﹣∠NHB =105°,∵四边形ABCD 是平行四边形,∴CD ∥AB ,∴∠2+∠HNB =180°,∴∠2=75°,故选:C .25.(2021•山东省威海市) 如图,在平行四边形ABCD 中,AD-3,CD=2.连接AC ,过点B 作BE ∥AC ,交DC 的延长线于点E ,连接AE ,交BC 于点F .若∠AFC=2∠D ,则四边形ABEC 的面积为( )B.C. 6D.【答案】B【解析】 【分析】先证明四边形ABEC 为矩形,再求出AC ,即可求出四边形ABEC 的面积.【详解】解:∵四边形ABCD 平行四边形,∴AB ∥CD ,AB =CD =2,BC =AD =3,∠D =∠ABC ,∵,是//BE AC∴四边形ABEC 为平行四边形,∵,∴,∵∠AFC =∠ABF +∠BAF ,∴∠ABF =∠BAF ,∴AF =BF ,∴2AF =2BF ,即BC =AE ,∴平行四边形ABEC 是矩形,∴∠BAC =90°,∴,∴矩形ABEC 的面积为故选:B26.(2021•浙江省衢州卷)如图,在中,,,,点D ,E ,F 分别是AB ,BC ,CA 的中点,连结DE ,EF ,则四边形ADEF 的周长为( )A. 6B. 9C. 12D. 15【答案】B27.(2021•贵州省贵阳市)如图,在▱ABCD 中,∠ABC 的平分线交AD 于点E ,∠BCD 的平分线交AD 于点F ,若AB =3,AD =4,则EF 的长是( )2AFC D ∠=∠2AFC ABC ∠=∠AC ===AB AC =g ABC V 4AB =5AC =6BC =A .1B .2C .2.5D .3【分析】根据平行四边形的性质证明DF =CD ,AE =AB ,进而可得AF 和ED 的长,然后可得答案.【解答】解:∵四边形ABCD 是平行四边形,∴AD ∥CB ,AB =CD =3,AD =BC =5,∴∠DFC =∠FCB ,又∵CF 平分∠BCD ,∴∠DCF =∠FCB ,∴∠DFC =∠DCF ,∴DF =DC =3,同理可证:AE =AB =3,∵AD =4,∴AF =5﹣4=1,DE =4﹣3=1,∴EF =4﹣1﹣1=2.故选:B .28.(2021•湖南省娄底市)如图,点在矩形的对角线所在的直线上,,则四边形是( )A. 平行四边形B. 矩形C. 菱形D. 正方形 【答案】A【解析】【分析】利用三角形全等的性质得,对应边相等及对应角相等,得出一组对边平行且相等,即可判断出形状. ,E F ABCD BD BE DFAECF【详解】解:由题意:,,又,,,,四边形为平行四边形,故选:A .二.填空题1. (2021•湖北省黄冈市)正五边形的一个内角是 108 度.【分析】因为n 边形的内角和是(n ﹣2)•180°,因而代入公式就可以求出内角和,再用内角和除以内角的个数就是一个内角的度数.【解答】解:(5﹣2)•180=540°,540÷4=108°.2. (2021•陕西省)正九边形一个内角的度数为 140° .【分析】先根据多边形内角和定理:180°•(n ﹣2)求出该多边形的内角和,再求出每一个内角的度数.【解答】解:该正九边形内角和=180°×(9﹣2)=1260°,则每个内角的度数==140°.故答案为:140°.3. (2021•上海市)六个带角的直角三角板拼成一个正六边形,直角三角板的最短边为1,求中间正六边形的面积_________.//,AD BC ADB CBD ∴∠=∠ FDA EBC ∴∠=∠,AD BC BE DF == ()ADF CBE SAS ∴V V ≌AF EC ∴=,//AFD CEB AF EC ∴∠=∠∴∴AECF 30°【解析】【分析】由六个带角的直角三角板拼成一个正六边形,直角三角板的最短边为1,可以得到中间正六边形的边长为1,做辅助线以后,得到△ABC 、△CDE、△AEF 为以1为边长的等腰三角形,△ACE 为等边三角形,再根据等腰三角形与等边三角形的性质求出边长,求出面积之和即可.【详解】解:如图所示,连接AC 、AE 、CE ,作BG ⊥AC 、DI ⊥CE、FH ⊥AE ,AI ⊥CE ,在正六边形ABCDEF 中,∵直角三角板的最短边为1,∴正六边形ABCDEF 为1,∴△ABC 、△CDE 、△AEF 为以1为边长的等腰三角形,△ACE 为等边三角形, ∵∠ABC =∠CDE =∠EFA =120︒,AB =BC = CD =DE = EF =FA =1,∴∠BAG =∠BCG =∠DCE =∠DEC =∠FAE =∠FEA =30︒,∴BG =DI = FH =, ∴由勾股定理得:AG =CG = CI = EI = EH = AH ∴AC =AE =,∴由勾股定理得:AI=, ∴S = 30°1232111332222⨯+=4. (2021•新疆) 四边形的外角和等于_______.【答案】360°.5. (2021•浙江省湖州市)为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(A ,B ,C,D ,E 是正五边形的五个顶点),则图中∠A 的度数是 度.【答案】36【解析】首先根据正五边形的内角和计算公式,求出每个内角的度数为108°,即∠ABC =∠BAE =108°,那么等腰△ABC 的底角∠BAC =36°,同理可求得∠DAE =36°,故∠CAD =∠BAE ﹣∠BAC ﹣∠EAD =108°﹣36°﹣36°=36°.其实正五角星的五个角是36°,可以作为一个常识直接记住.6. (2021•江苏省盐城市)若一个多边形的每个外角均为40°,则这个多边形的边数为 9 .【分析】一个多边形的外角和为360°,而每个外角为40°,进而求出外角的个数,即为多边形的边数.【解答】解:360°÷40°=9,故答案为:9.7. (2021•广西玉林市)如图、在正六边形中,连接线,,,,,与交于点,与交于点为,与交于点,分别延长,于点,设.有以下结论:①;②;③重心、内心及外心均是点;④四边形绕点逆时针旋转与四边形重合.则所有正确结论的序号是______.ABCDEF AD AE AC DF DB AC BD M AE DF N MN AD O AB DC G 3AB =MN AD ⊥MN =DAG △的M FACD O 30°ABDE【答案】①②③8. (2021•浙江省衢州卷)如图,在正五边形ABCDE 中,连结AC ,BD 交于点F ,则的度数为________.【答案】9. (2021•江苏省扬州)如图,在中,点E 在上,且平分,若,,则的面积为________.【答案】50【解析】【分析】过点E 作EF ⊥BC ,垂足为F ,利用直角三角形的性质求出EF ,再根据平行线的性质和角平分线的定义得到∠BCE =∠BEC ,可得BE =BC =10,最后利用平行四边形的面积公式计算即可.【详解】解:过点E 作EF ⊥BC ,垂足为F ,∵∠EBC =30°,BE =10,AFB∠72︒ABCD Y AD EC BED ∠30EBC ∠=︒10BE =ABCDY∴EF =BE =5, ∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DEC =∠BCE ,又EC 平分∠BED ,即∠BEC =∠DEC ,∴∠BCE =∠BEC ,∴BE =BC =10,∴四边形ABCD 的面积===50,故答案为:50.10.(2021•山东省临沂市)在平面直角坐标系中,平行四边形ABCD 的对称中心是坐标原点,顶点A 、B 的坐标分别是(﹣1,1)、(2,1),将平行四边形ABCD 沿x 轴向右平移3个单位长度,则顶点C 的对应点C 1的坐标是 (4,﹣1) .【分析】由题意A ,C 关于原点对称,求出点C 的坐标,再利用平移的性质求出点C 1的坐标可得结论.【解答】解:∵平行四边形ABCD 的对称中心是坐标原点,∴点A ,点C 关于原点对称,∵A (﹣1,1),∴C (1,﹣1),∴将平行四边形ABCD 沿x 轴向右平移3个单位长度,则顶点C 的对应点C 1的坐标是(4,﹣1),故答案为:(4,﹣1).11.(2021•山东省菏泽市)如图,在Rt △ABC 中,∠C =30°,D 、E 分别为AC 、BC 的中点,DE =2,过点B 作BF ∥AC ,交DE 的延长线于点F ,则四边形ABFD 的面积为 8 .12BC EF ⨯105⨯【分析】由三角形的中位线定理证得DE∥AB,AB=2DE=4,进而证得四边形ABFD是平行四边形,在Rt△ABC中,根据勾股定理求出BC=4,得到BE=2,根据平行四边形的面积公式即可求出四边形ABFD的面积.【解答】解:∵D、E分别为AC、BC的中点,∵DE是△ABC的中位线,∴DE∥AB,DE=AB,∴AB=2DE,DF∥AB,又∵BF∥AC,∴BF∥AD,∴四边形ABFD是平行四边形,∵AB⊥BE,∴S平行四边形ABFD=AB•BE,∵DE=2,∴AB=2×2=4,在Rt△ABC中,∵∠C=30°,∴AC=2AB=2×4=8,∴BC===4,∴BE=BC=2,∴S平行四边形ABFD=4×2=8,故答案为8.12. 6.(2021•浙江省丽水市)一个多边形过顶点剪去一个角后,所得多边形的内角和为720°,则原多边形的边数是__________.【答案】6或7【解析】【分析】求出新的多边形为6边形,则可推断原来的多边形可以是6边形,可以是7边形.【详解】解:由多边形内角和,可得(n-2)×180°=720°,∴n=6,∴新的多边形为6边形,∵过顶点剪去一个角,∴原来的多边形可以是6边形,也可以是7边形,故答案为6或7.13.(2021•青海省)如图,在▱ABCD中,对角线BD=8cm,AE⊥BD,垂足为E,且AE=3cm,BC=4cm,则AD与BC之间的距离为 6cm .【分析】设AB与CD之间的距离为h,由条件可知▱ABCD的面积是△ABD的面积的2倍,可求得▱ABCD的面积,再S四边形ABCD=BC•h,可求得h的长.【解答】解:∵四边形ABCD为平行四边形,∴AB=CD,AD=BC,在△ABD和△BCD中∴△ABD≌△BCD(SSS),∵AE⊥BD,AE=3cm,BD=8cm,∴S△ABD=BD•AE=×8×3=12(cm2),∴S四边形ABCD=2S△ABD=24cm2,设AD与BC之间的距离为h,∵BC=4cm,∴S四边形ABCD=AD•h=4h,∴4h=24,解得h=6cm,故答案为:6cm.14.(2021•浙江省嘉兴市)如图,在▱ABCD中,对角线AC,BD交于点O,AB⊥AC,AH⊥BD于点H,若AB=2,BC=2,则AH的长为 .【分析】在Rt△ABC和Rt△OAB中,分别利用勾股定理可求出BC和OB的长,又AH⊥OB ,可利用等面积法求出AH 的长.【解答】解:如图,∵AB ⊥AC ,AB =2,BC =2, ∴AC ==2,在▱ABCD 中,OA =OC ,OB =OD ,∴OA =OC =,在Rt △OAB 中,OB ==,又AH ⊥BD ,∴OB •AH =OA •AB ,即=, 解得AH =. 故答案为:. 15.(2021•黑龙江省龙东地区)如图,在平行四边形中,对角线、相交于点O ,在不添加任何辅助线的情况下,请你添加一个条件______________,使平行四边形是矩形..【答案】【解析】【分析】根据矩形的判定方法即可得出答案.【详解】解:∵四边形ABCD 为平行四边形,∴当时,四边形ABCD 为矩形.故答案为:.三、解答题1.(2021•湖北省武汉市)如图,AB ∥CD ,∠B =∠D ,BC 的延长线分别交于点E ,F,求ABCD AC BDABCD 90ABC ∠=︒90ABC ∠=︒90ABC ∠=︒证:∠DEF=∠F.【分析】由平行线的性质得到∠DCF=∠B,进而推出∠DCF=∠D,根据平行线的判定得到AD∥BC,根据平行线的性质即可得到结论.【解答】证明:∵AB∥CD,∴∠DCF=∠B,∵∠B=∠D,∴∠DCF=∠D,∴AD∥BC,∴∠DEF=∠F.2.(2021•怀化市)已知:如图,四边形ABCD为平行四边形,点E、A、C、F在同一直线上,AE=CF.求证:(1)△ADE≌△CBF;(2)ED∥BF.【分析】(1)根据平行四边形的性质,可以得到DA=BC,DA∥BC,然后即可得到∠EAD =∠FCB,再根据SAS即可证明△ADE≌△CBF;(2)根据(1)中的结论和全等三角形的性质,可以得到∠E=∠F,从而可以得到ED∥BF.【解答】证明:(1)∵四边形ABCD为平行四边形,∴DA=BC,DA∥BC,∴∠DAC=∠BCA,∵∠DAC+∠EAD=180°,∠BCA+∠FCB=180°,∴∠EAD=∠FCB,在△ADE和△CBF中,,∴△ADE ≌△CBF (SAS );(2)由(1)知,△ADE ≌△CBF ,∴∠E =∠F ,∴ED ∥BF .3. 如(2021•岳阳市)图,在四边形中,,,垂足分别为点,.(1)请你只添加一个条件(不另加辅助线),使得四边形为平行四边形,你添加的条件是________;(2)添加了条件后,证明四边形为平行四边形.【答案】(1)(答案不唯一,符合题意即可);(2)见解析4. (2021•宿迁市)在①AE=CF ;②OE=OF ;③BE ∥DF 这三个条件中任选一个补充在下面横线上,并完成证明过程.已知,如图,四边形ABCD 是平行四边形,对角线AC 、BD 相交于点O ,点E 、F 在AC 上,(填写序号).求证:BE=DF .注:如果选择多个条件分别解答,按第一个解答计分.【答案】见解析【解析】ABCD AE BD ⊥CF BD ⊥EF AECF AECF //AFCE【分析】若选②,即OE=OF;根据平行四边形的性质可得BO=DO,然后即可根据SAS证明△BOE≌△DOF,进而可得结论;若选①,即AE=CF;根据平行四边形的性质得出OE=OF 后,同上面的思路解答即可;若选③,即BE∥DF,则∠BEO=∠DFO,再根据平行四边形的性质可证△BOE≌△DOF,于是可得结论.【详解】解:若选②,即OE=OF;证明:∵四边形ABCD是平行四边形,∴BO=DO,∵OE=OF,∠BOE=∠DOF,∴△BOE≌△DOF(SAS),∴BE=DF;若选①,即AE=CF;证明:∵四边形ABCD是平行四边形,∴BO=DO,AO=CO,∵AE=CF,∴OE=OF,又∠BOE=∠DOF,∴△BOE≌△DOF(SAS),∴BE=DF;若选③,即BE∥DF;证明:∵四边形ABCD是平行四边形,∴BO=DO,∵BE∥DF;∴∠BEO=∠DFO,又∠BOE=∠DOF,∴△BOE≌△DOF(AAS),∴BE =DF ;5. (2021•山东省聊城市) 如图,在四边形ABCD 中,AC 与BD 相交于点O ,且AO =CO ,点E 在BD 上,满足∠EAO =∠DCO .(1)求证:四边形AECD 是平行四边形;(2)若AB =BC ,CD =5,AC =8,求四边形AECD 的面积.【答案】(1)见解析;(2)24【解析】【分析】(1)根据题意可证明,得到OD =OE ,从而根据“对角线互相平分的四边形为平行四边形”证明即可;(2)根据AB =BC ,AO =CO ,可证明BD 为AC 的中垂线,从而推出四边形AECD 为菱形,然后根据条件求出DE 的长度,即可利用菱形的面积公式求解即可.【详解】(1)证明:在△AOE 和△COD 中,∴.∴OD =OE .又∵AO =CO ,∴四边形AECD 是平行四边形.(2)∵AB =BC ,AO =CO ,∴BO 为AC 的垂直平分线,.∴平行四边形 AECD 是菱形.∵AC =8,.AOE COD V V ≌EAO DCO AO COAOE COD ∠=∠⎧⎪=⎨⎪∠=∠⎩()AOE COD ASA V V ≌BO AC ⊥142CO AC ∴==在 Rt △COD 中,CD =5,,∴,, ∴四边形 AECD 的面积为24.6. (2021•湖南省永州市)如图,已知点A ,D ,C ,B 在同一条直线上,AD =BC ,AE =BF ,AE ∥BF .(1)求证:△AEC ≌△BFD .(2)判断四边形DECF 的形状,并证明.7.(2021•四川省广元市)如图,在平行四边形ABCD 中,E 为DC 边的中点,连接AE ,若AE 的延长线和BC 的延长线相交于点F .(1)求证:BC=CF ;(2)连接AC 和相交于点为G ,若△GEC 的面积为2,求平行四边形ABCD 的面积.【答案】(1)证明见解析;(2)24.【解析】【分析】(1)根据E 是边DC 的中点,可以得到,再根据四边形ABCD 是平行四边形,可以得到,再根据,即可得到,则答案可证;3OD ∴===26DE OD ==11682422AECD S DE AC ∴=⋅=⨯⨯=菱形BE DE CE =ADE ECF ∠∠=AED CEF ∠=∠ADE ECF V V ≌(2)先证明,根据相似三角形的性质得出,,进而得出,由得,则答案可解.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴,,∴,∵点E 为DC 的中点,∴,在和中∴,∴,∴;(2)∵四边形ABCD 是平行四边形,点E 为DC 的中点,∴,,∴,,∴,∵的面积为2, ∴,即, ∵ ∴, ∴, ∴,∴.CEG ABG V :V 8ABG S =V 12AG AB GC CE ==4BGC S =V ABC ABG BCG S S S =+V V V 12ABC S =△//B AD C AD BC =ADE ECF ∠∠=DE CE =ADE V ECF △ADE ECF DE CEAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ADE ECF ASA V V ≌AD CF =BC CF =//AB DC 2AB EC =GEC ABG ∠=∠GCE GAB ∠=∠CEG ABG V :V GEC V 221124ABG CEG S AB S CE ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭V V 4428ABG CEG S S ==⨯=V V CEG ABG V :V 12AG AB GC CE ==118422BGC ABG S S ==⨯=V V 8412ABC ABG BCG S S S =+=+=V V V 221224ABCD ABC S S ==⨯=Y V8. (2021•新疆)如图,在矩形ABCD 中,点E 在边BC 上,点F 在BC 的延长线上,且.求证:(1);(2)四边形AEFD 是平行四边形.【答案】(1)证明过程见解析;(2)证明过程见解析.9.(2021•浙江省绍兴市)问题:如图,在▱ABCD 中,AB =8,∠DAB ,∠ABC 的平分线AE ,F ,求EF 的长.答案:EF =2.探究:(1)把“问题”中的条件“AB =8”去掉,其余条件不变.①当点E 与点F 重合时,求AB 的长;②当点E 与点C 重合时,求EF 的长.(2)把“问题”中的条件“AB =8,AD =5”去掉,其余条件不变,D ,E ,F 相邻两点间的距离相等时,求的值.【分析】(1)①证∠DEA =∠DAE ,得DE =AD =5,同理BC =CF =5,即可求解; ②由题意得DE =DC =5,再由CF =BC =5,即可求解;(2)分三种情况,由(1)的结果结合点C ,D ,E ,F 相邻两点间的距离相等,分别求解即可.【解答】解:(1)①如图1所示:BE CF ABE DCF △≌△∵四边形ABCD是平行四边形,∴CD=AB=8,BC=AD=5,∴∠DEA=∠BAE,∵AE平分∠DAB,∴∠DAE=∠BAE,∴∠DEA=∠DAE,∴DE=AD=5,同理:BC=CF=5,∵点E与点F重合,∴AB=CD=DE+CF=10;②如图3所示:∵点E与点C重合,∴DE=DC=5,∵CF=BC=5,∴点F与点D重合,∴EF=DC=5;(2)分三种情况:①如图3所示:同(1)得:AD=DE,∵点C,D,E,F相邻两点间的距离相等,∴AD=DE=EF=CF,∴=;②如图4所示:同(1)得:AD=DE=CF,∵DF=FE=CE,∴=;③如图5所示:同(1)得:AD=DE=CF,∵DF=DC=CE,∴=2;综上所述,的值为或.。
河北省2021年中考数学试卷含答案解析(Word版)2021年河北省初中毕业生升学文化课考试数学试卷本试卷分卷I和卷II两部分;卷I为选择题,卷II为非选择题本试卷总分120分,考试时间120分钟.卷I(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算:-(-1)=() A.±1B.-2C.-1D.1答案: D解析:利用“负负得正”的口诀,就可以解题。
知识点:有理数的运算 2.计算正确的是() A.(-5)0=0B.x2+x3=x5C.(ab2)3=a2b5D.2a2·a-1=2a答案: D解析:除0以外的任何数的0次幂都等于1,故A项错误;x2+x3的结果不是指数相加,故B项错误;(ab2)3的结果是括号里的指数和外面的指数都相乘,结果是a3b6,故C项错误;2a2·a-1的结果是2不变,指数相加,正好是2a。
知识点:x0=0(x≠0);(ambn)p=ampbnp;aman=am+n3.下列图形中,既是轴对称图形,又是中心对称图形的是()A B C D答案: A解析:先根据轴对称图形,排除C、D两项,再根据中心对称,排除B项。
知识点:轴对称,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形;中心对称,如果把一个图形绕某一点旋转180度后能与自身重合,这个图形就是中心对称图形。
第 1 页共 1 页4.下列运算结果为x-1的是()1A.1?xx2?1xx2?2x?1x?11??B. C. D.xx?1xx?1x?1x-1 x2-1 答案:B解析:挨个算就可以了,A项结果为—— , B项的结果为x-1,C项的结果为——x D项的结果为x+1。
x 知识点:(x+1)(x-1)=x2-1;(x+1)2=x2+2x+1,(x-1)2=x2-2x+1。
2021全国中考真题分类汇编(函数)----函数的实际应用一、选择题1. (2021·安徽省)某品牌鞋子的长度y cm 与鞋子的“码”数x 之间满足一次函数关系.若22码鞋子的长度为16cm ,44码鞋子的长度为27cm ,则38码鞋子的长度为( ) A. 23cmB. 24cmC. 25cmD. 26cm2. (2021•江苏省连云港)关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征. 甲:函数图像经过点;乙:函数图像经过第四象限;丙:当0x >时,y 随x 的增大而增大. 则这个函数表达式可能是( ) A. y x =-B. 1y x=C. 2yx D. 1y x=-3. (2021•四川省自贡市)已知蓄电池的电压为定值,使用蓄电池时,电流O (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.下列说法正确的是( )A. 函数解析式为13I R=B. 蓄电池的电压是18VC. 当10A I ≤时, 3.6R ≥ΩD. 当6R =Ω时,4A I =4. (2021•江苏省苏州市)如图,线段AB =10,点C 、D 在AB 上,以每秒1个单位长度的速度沿着AB 向点D 移动,到达点D 后停止移动.在点P 移动过程中作如下操作:先以点P 为圆心,再将两个扇形分别围成两个圆锥的侧面,设点P 的移动时间为t (秒),则S 关于t 的函数图象大致是( )A.B.C.D.5.(2021•江西省)在同一平面直角坐标系中,二次函数y=ax2与一次函数y=bx+c的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()A. B.C.D.6.(2021•山东省聊城市)已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c的图象和反比例函数y=a b cx++的图象在同一坐标系中大致为()A. B. C. D.7.(2021•山东省聊城市)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A,C分别在x轴,y轴上,B,D两点坐标分别为B(﹣4,6),D(0,4),线段EF在边OA上移动,保持EF=3,当四边形BDEF的周长最小时,点E的坐标为__________.8.(2021•上海市)某人购进一批苹果到集贸市场零售,已知卖出的苹果数量与售价之间的关系如图所示,成本为5元/千克,现以8元/千克卖出,赚___________元.9.(2021•湖北省恩施州)某物体在力F的作用下,沿力的方向移动的距离为s,力对物体所做的功W与s的对应关系如图所示,则下列结论正确的是()A .W =sB .W =20sC .W =8sD .s =10. (2021•浙江省杭州)已知y 1和y 2均是以x 为自变量的函数,当x =m 时,函数值分别是M 1和M 2,若存在实数m ,使得M 1+M 2=0,则称函数y 1和y 2具有性质P .以下函数y 1和y 2具有性质P 的是( ) A .y 1=x 2+2x 和y 2=﹣x ﹣1 B .y 1=x 2+2x 和y 2=﹣x +1C .y 1=﹣和y 2=﹣x ﹣1D .y 1=﹣和y 2=﹣x +111. (2021•浙江省丽水市)一杠杆装置如图,杆的一端吊起一桶水,水桶对杆的拉力的作用点到支点的杆长固定不变.甲、乙、丙、丁四位同学分别在杆的另一端竖直向下施加压力F F F F 丁乙甲丙、、、,将相同重量的水桶吊起同样的高度,若 F F F F <<<甲丁丙乙,则这四位同学对杆的压力的作用点到支点的距离最远的是( )A. 甲同学B. 乙同学C. 丙同学D. 丁同学12. (2021•湖南省张家界市)若二次函数)0(2≠++=a c bx ax y 的图象如图所示,则一次函数b ax y +=与反比例函数xcy -=在同一个坐标系内的大致图象为( )13. (2021•北京市)如图,用绳子围成周长为10m 的矩形,记矩形的一边长为xm ,它的邻边长为ym ,矩形的面积为Sm 2.当x 在一定范围内变化时,y 和S 都随x 的变化而变化,则y 与x ,S 与x 满足的函数关系分别是( )O yxO y xAO y Bx O yCxO yDxA .一次函数关系,二次函数关系B .反比例函数关系,二次函数关系C .一次函数关系,反比例函数关系D .反比例函数关系,一次函数关系14. (2021•内蒙古包头市) 已知二次函数2(0)y ax bx c a =-+≠的图象经过第一象限的点(1,)b -,则一次函数y bx ac =-的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限15. (2021•深圳)二次函数21y ax bx =++的图象与一次函数2y ax b =+在同一平面直角坐标系中的图象可能是( )ABCD16. (2021•湖南省娄底市)用数形结合等思想方法确定二次函数22y x =+的图象与反比例函数2y x=的图象的交点的横坐标0x 所在的范围是( ) A. 0104x <≤ B.01142x <≤ C.01324x <≤ D.0314x <≤ 二、填空题1. (2021•江苏省连云港)某快餐店销售A 、B 两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A 种快餐的利润,同时提高每份B 种快餐的利润.售卖时发现,在一定范围内,每份A 种快餐利润每降1元可多卖2份,每份B 种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是______元.2. (2021•江苏省无锡市)请写出一个函数表达式,使其图象在第二、四象限且关于原点对称: .3.(2021•襄阳市)从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度y (单位:m )与它距离喷头的水平距离x (单位:m )之间满足函数关系式2-241y x x =++,喷出水珠的最大高度是______m .三、解答题1. (2021•湖北省黄冈市)红星公司销售一种成本为40元/件产品,若月销售单价不高于50元/件,一个月可售出5万件,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x (单位:元/件),月销售量为y (单位:万件). (1)直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当月销售单价是多少元时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a 元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元2. (2021•湖北省武汉市)在“乡村振兴”行动中,某村办企业以A ,B 两种农作物为原料开发了一种有机产品.A 原料的单价是B 原料单价的1.5倍,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒,每天少销售10盒. (1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是x 元(x 是整数),每天的利润是w 元,求w 关于x 的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过a 元(a 是大于60的常数,且是整数),直接写出每天的最大利润.3.(2021•怀化市)某超市从厂家购进A、B两种型号的水杯,两次购进水杯的情况如表:进货批次A型水杯(个)B型水杯(个)总费用(元)一1002008000二20030013000(1)求A、B两种型号的水杯进价各是多少元?(2)在销售过程中,A型水杯因为物美价廉而更受消费者喜欢.为了增大B型水杯的销售量,超市决定对B型水杯进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将B型水杯降价多少元时,每天售出B型水杯的利润达到最大?最大利润是多少?(3)第三次进货用10000元钱购进这两种水杯,如果每销售出一个A型水杯可获利10元,售出一个B型水杯可获利9元,超市决定每售出一个A型水杯就为当地“新冠疫情防控”捐b元用于购买防控物资.若A、B两种型号的水杯在全部售出的情况下,捐款后所得的利润始终不变,此时b为多少?利润为多少?4.(2021•江苏省扬州)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:说明:①汽车数量为整数..;②月利润=月租车费-月维护费;③两公司月利润差=月利润较高公司的利润-月利润较低公司的利润.在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是_______元;当每个公司租出的汽车为_______辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;a>给慈善机构,如果捐款后甲公(3)甲公司热心公益事业,每租出1辆汽车捐出a元()0司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.5.(2021•山东省临沂市)公路上正在行驶的甲车,发现前方20m处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程s(单位:m)、速度v(单位:m/s)与时间t (单位:s)的关系分别可以用二次函数和一次函数表示,其图象如图所示.(1)当甲车减速至9m/s时,它行驶的路程是多少?(2)若乙车以10m/s的速度匀速行驶,两车何时相距最近,最近距离是多少?6.(2021•河北省)如图是某机场监控屏显示两飞机的飞行图象,1号指挥机(看成点P)始终以3km/min的速度在离地面5km高的上空匀速向右飞行,2号试飞机(看成点Q)一直保持在1号机P的正下方.2号机从原点O处沿45°仰角爬升,到4km高的A处便立刻转为水平飞行,再过1min到达B处开始沿直线BC降落,要求1min后到达C(10,3)处.(1)求OA的h关于s的函数解析式,并直接写出2号机的爬升速度;(2)求BC的h关于s的函数解析式,并预计2号机着陆点的坐标;(3)通过计算说明两机距离PQ不超过3km的时长是多少.[注:(1)及(2)中不必写s的取值范围]7.(2021•河北省)如图是某同学正在设计的一动画示意图,x轴上依次有A,O,N三个点,且AO=2,在ON上方有五个台阶T1~T5(各拐角均为90°),每个台阶的高、宽分别是1和1.5,台阶T1到x轴距离OK=10.从点A处向右上方沿抛物线L:y=﹣x2+4x+12发出一个带光的点P.(1)求点A的横坐标,且在图中补画出y轴,并直接指出点P会落在哪个台阶上;(2)当点P落到台阶上后立即弹起,又形成了另一条与L形状相同的抛物线C,且最大高度为11,求C的解析式,并说明其对称轴是否与台阶T5有交点;(3)在x轴上从左到右有两点D,E,且DE=1,从点E向上作EB⊥x轴,且BE=2.在△BDE沿x轴左右平移时,必须保证(2)中沿抛物线C下落的点P能落在边BD(包括端点)上,则点B横坐标的最大值比最小值大多少?[注:(2)中不必写x的取值范围]8. (2021•湖北省随州市)如今我国的大棚(如图1)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体A 处,另一端固定在离地面高2米的墙体B 处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度y (米)与其离墙体A 的水平距离x (米)之间的关系满足216y x bx c =-++,现测得A ,B 两墙体之间的水平距离为6米.(1)直接写出b ,c 的值;(2)求大棚的最高处到地面的距离;(3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为3724米的竹竿支架若干,已知大棚内可以搭建支架的土地平均每平方米需要4根竹竿,则共需要准备多少根竹竿?9. (2021•四川省达州市)渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,每天可销售500千克,为增大市场占有率,工厂采取降价措施,批发价每千克降低1元(1)写出工厂每天的利润W 元与降价x 元之间的函数关系.当降价2元时,工厂每天的利润为多少元?(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?10. (2021•四川省乐山市)通过实验研究发现:初中生在数学课上听课注意力指标随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散.学生注意力指标y 随时间x (分钟)变化的函数图象如图所示,当010x ≤<和1020x ≤<时,图象是线段;当2045x ≤≤时,图象是反比例函数的一部分.(1)求点A 对应的指标值;(2)张老师在一节课上讲解一道数学综合题需要17分钟,他能否经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于36?请说明理由.11. (2021•天津市)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学校、书店、陈列馆依次在同一条直线上,书店离学校12km ,陈列馆离学校20km .李华从学校出发,匀速骑行0.6h 到达书店;在书店停留0.4h 后,匀速骑行0.5h 到达陈列馆;在陈列馆参观学习一段时间,然后回学校;回学校途中,匀速骑行0.5h 后减速,继续匀速骑行回到学校.给出的图象反映了这个过程中李华离学校的距离km y 与离开学校的时间h x 之间的对应关系.请根据相关信息,解答下列问题: (Ⅰ)填表 离开学校的时间/h 0.1 0.5 0.8 1 3离学校的距离/km 212(Ⅱ)填空:①书店到陈列馆的距离为________km ; ②李华在陈列馆参观学的时间为_______h ;③李华从陈列馆回学校途中,减速前的骑行速度为______km/h ; ④当李华离学校的距离为4km 时,他离开学校的时间为_______h . (Ⅲ)当0 1.5x ≤≤时,请直接写出y 关于x 的函数解析式.12.(2021•浙江省丽水市)李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s(千米)与行驶时间t(小时)的关系如图所示(中途休息、加油的时间不计.当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出工厂离目的地的路程;(2)求s关于t的函数表达式;(3)当货车显示加油提醒后,问行驶时间t在怎样的范围内货车应进站加油?13.(2021•浙江省宁波市)某通讯公司就手机流量套餐推出三种方案,如下表:A方案B方案C方案每月基本费用(元)20 56 266每月免费使用流量(兆)1024 m 无限超出后每兆收费(元)n nA,B,C三种方案每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系如图所示.(1)请直接写出m,n的值.(2)在A方案中,当每月使用的流量不少于1024兆时,求每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系式.(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C方案最划算?14.(2021•浙江省台州)电子体重科读数直观又便于携带,为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻R1,R1与踏板上人的质量m之间的函数关系式为R1=km+b(其中k,b为常数,0≤m≤120),其图象如图1所示;图2的电路中,电源电压恒为8伏,定值电阻R0的阻值为30欧,接通开关,人站上踏板,电压表显示的读数为U0 ,该读数可以换算为人的质量m,温馨提示:①导体两端的电压U,导体的电阻R,通过导体的电流I,满足关系式I=U R;②串联电路中电流处处相等,各电阻两端电压之和等于总电压.(1)求k,b的值;(2)求R1关于U0的函数解析式;(3)用含U0的代数式表示m;(4)若电压表量程为0~6伏,为保护电压表,请确定该电子体重秤可称的最大质量.15.(2021•湖北省荆门市)某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,如表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的三组对应值数据.x407090y1809030W360045002100(1)求y关于x的函数解析式(不要求写出自变量的取值范围);(2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;(3)因疫情期间,该商品进价提高了m(元/件)(m>0),公司为回馈消费者,规定该商品售价x不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m的值.16.(2021•贵州省铜仁市)某品牌汽车销售店销售某种品牌汽车,每辆汽车的进价16(万元).当每辆售价为22(万元)时,每月可销售4辆汽车.根据市场行情,现在决定进行降x )满足价销售.通过市场调查得到了每辆降价的费用1y(万元)与月销售量x(辆)(4某种函数关系的五组对应数据如下表:(1)请你根据所给材料和初中所学的函数知识写出1y与x的关系式1y=________;(2)每辆原售价为22万元,不考虑其它成本,降价后每月销售利润y=(每辆原售价-1y-进价)x,x x≥为多少时,销售利润最大?最大利润是多少?请你根据上述条件,求出月销售量()417.(2021•浙江省衢州卷)如图1是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD 均为24m,在距离D点6米的E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱项部O离水面的距离.(2)如图2,桥面上方有3根高度均为4m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m.①求出其中一条钢缆抛物线的函数表达式.②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.18.(2021•贵州省贵阳市)为庆祝“中国共产党的百年华诞”,某校请广告公司为其制作“童心向党”文艺活动的展板、宣传册和横幅,其中制作宣传册的数量是展板数量的5倍,广告公司制作每件产品所需时间和利润如表:产品展板宣传册横幅1制作一件产品所需时间(小时)制作一件产品所获利润20310(元)(1)若制作三种产品共计需要25小时,所获利润为450元,求制作展板、宣传册和横幅的数量;(2)若广告公司所获利润为700元,且三种产品均有制作,求制作三种产品总量的最小值.19.(2021•贵州省贵阳市)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA可视为抛物线的一部分,在某一时刻,桥拱内的水面宽OA=8m,桥拱顶点B到水面的距离是4m.(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m的打捞船径直向桥驶来,当船驶到桥拱下方且距O点0.4m时,桥下水位刚好在OA处,有一名身高1.68m的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平).(3)如图③,桥拱所在的函数图象是抛物线y=ax2+bx+c(a≠0),该抛物线在x轴下方部分与桥拱OBA在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移m(m >0)个单位长度,平移后的函数图象在8≤x≤9时,y的值随x值的增大而减小,结合函数图象,求m的取值范围.20.(2021•绥化市)小刚和小亮两人沿着直线跑道都从甲地出发,沿着同一方向到达乙地,甲乙两地之间的距离是720米,先到乙地的人原地休息,已知小刚先从甲地出发4秒后,小亮从甲地出发,两人均保持匀速前行.第一次相遇后,保持原速跑一段时间,小刚突然加速,速度比原来增加了2米/秒,并保持这一速度跑到乙地(小刚加速过程忽略不计).小刚与小亮两人的距离S(米)与小亮出发时间t(秒)之间的函数图象,如图所示.根据所给信息解决以下问题.(1)m=_______,n=______;(2)求CD和EF所在直线的解析式;(3)直接写出t为何值时,两人相距30米.21.(2021•浙江省金华市)某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣5)2+6.(1)求雕塑高OA.(2)求落水点C,D之间的距离.(3)若需要在OD上的点E处竖立雕塑EF,OE=10m,EF=1.8m,EF⊥OD.问:顶部F是否会碰到水柱?请通过计算说明.22.(2021•浙江省绍兴市)小聪设计奖杯,从抛物线形状上获得灵感,在平面直角坐标系中画出截面示意图,杯体ACB是抛物线的一部分,抛物线的顶点C在y轴上,且点A,B 关于y轴对称,杯高DO=8,杯底MN在x轴上.(1)求杯体ACB所在抛物线的函数表达式(不必写出x的取值范围);(2)为使奖杯更加美观,小敏提出了改进方案,如图2,杯口直径A′B′∥AB,杯脚高CO不变,求A′B′的长.。
2021年河北省中考数学试卷一.选择题(1-10小题每小题3分,11-16小题每小题3分,共42分每小题的四个选项中只有一个是正确的)1.(3分)(2015•河北)计算:3﹣2×(﹣1)=( )A .5B .1C .﹣1D .6 2.(3分)(2015•河北)下列说法正确的是( )A .1的相反数是﹣1B .1的倒数是﹣1C .1的立方根是±1D .﹣1是无理数3.(3分)(2015•河北)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是( )A .B .C .D . 4.(3分)(2015•河北)下列运算正确的是( )A .()﹣1=﹣B .6×107=6000000C .(2a )2=2a 2D .a 3•a 2=a 55.(3分)(2015•河北)如图所示的三视图所对应的几何体是( )A .B .C .D .6.(3分)(2015•河北)如图,AC,BE 是⊙O 的直径,弦AD 与BE 交于点F,下列三角形中,外心不是点O 的是( ) A .△ABEB .△ACFC .△ABD D .△ADE7.(3分)(2015•河北)在数轴上标注了四段范围,如图,则表示的点落在( )A .段①B .段②C .段③D .段④8.(3分)(2015•河北)如图,AB ∥EF,CD ⊥EF,∠BAC=50°,则∠ACD=( )A .120°B .130°C .140°D .150°9.(3分)(2015•河北)已知:岛P 位于岛Q 的正西方,由岛P,Q 分别测得船R 位于南偏东30°和南偏西45°方向上,符合条件的示意图是( )A .B .C .D . 10.(3分)(2015•河北)一台印刷机每年可印刷的书本数量y (万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y 与x 的函数图象大致是( )A .B .C .D.11.(2分)(2015•河北)利用加减消元法解方程组,下列做法正确的是( ) A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(﹣5) C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(﹣5)+②×212.(2分)(2015•河北)若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是( ) A.a<1B.a>1C.a≤1D.a≥113.(2分)(2015•河北)将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是( ) A.B.C.D.14.(2分)(2015•河北)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在( ) A.1<a<2B.﹣2<a<0C.﹣3≤a≤﹣2D.﹣10<a<﹣415.(2分)(2015•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长。
2021年九年级数学中考复习专题:反比例函数综合(考察坐标、取值范围、面积等)(四)1.如图1,在平面直角坐标系中,已知△ABC,∠ABC=90°,∠ACB=30°,顶点A 在第二象限,B,C两点在x轴的负半轴上(点C在点B的右侧),BC=2,△ACD与△ABC关于AC所在的直线对称.(1)当OC=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OC的长;(3)如图2,将第(2)题中的四边形ABCD向左平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交于点P,问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.2.如图1,A(1,0)、B(0,2),双曲线y=(x>0)(1)若将线段AB绕A点顺时针旋转90°后B的对应点恰好落在双曲线y=(x>0)上①则k的值为;②将直线AB平移与双曲线y=(x>0)交于E、F,EF的中点为M(a,b),求的值;(2)将直线AB平移与双曲线y=(x>0)交于E、F,连接AE.若AB⊥AE,且EF =2AB,如图2,直接写出k的值.3.如图1,在平面直角坐标系xOy中,函数y=(m为常数,m>1,x>0)的图象经过点P(m,1)和Q(1,m),直线PQ与x轴,y轴分别交于C,D两点.(1)求∠OCD的度数;(2)如图2,连接OQ、OP,当∠DOQ=∠OCD﹣∠POC时,求此时m的值;(3)如图3,点A,点B分别在x轴和y轴正半轴上的动点.再以OA、OB为邻边作矩形OAMB.若点M恰好在函数y=(m为常数,m>1,x>0)的图象上,且四边形BAPQ为平行四边形,求此时OA、OB的长度.4.如图,在四边形ABCD中,AB=BC=5,AD=DC=8,对角线BD=3+4,点B在y轴上,BD与x轴平行,点C在x轴上.(1)求∠ADC的度数.(2)点P在对角线BD上,点Q在四边形ABCD内且在点P的右边,连接AP、PQ、QC,已知AP=AQ,∠APQ=60°,设BP=m.①求CQ的长(用含m的代数式表示);②若某一反比例函数图象同时经过点A、Q,求m的值.5.已知一次函数y1=kx+n(n<0)和反比例函数y2=(m>0,x>0).(1)如图1,若n=﹣2,且函数y1、y2的图象都经过点A(3,4).①求m,k的值;②直接写出当y1>y2时x的范围;(2)如图2,过点P(1,0)作y轴的平行线l与函数y2的图象相交于点B,与反比例函数y3=(x>0)的图象相交于点C.①若k=2,直线l与函数y1的图象相交点D.当点B、C、D中的一点到另外两点的距离相等时,求m﹣n的值;②过点B作x轴的平行线与函数y1的图象相交于点E.当m﹣n的值取不大于1的任意实数时,点B、C间的距离与点B、E间的距离之和d始终是一个定值.求此时k的值及定值d.6.如图,四边形OABC为矩形,点B坐标为(4,2),A,C分别在x轴,y轴上,点F 在第一象限内,OF的长度不变,且反比例函数y=经过点F.(1)如图1,当F在直线y=x上时,函数图象过点B,求线段OF的长.(2)如图2,若OF从(1)中位置绕点O逆时针旋转,反比例函数图象与BC,AB相交,交点分别为D,E,连结OD,DE,OE.①求证:CD=2AE.②若AE+CD=DE,求k.③设点F的坐标为(a,b),当△ODE为等腰三角形时,求(a+b)2的值.7.如图,二次函数与反比例函数的图象有公共点A(﹣2,5),▱ABCD的顶点B(﹣5,p)在双曲线上,C、D两点在抛物线上(点C在y轴负半轴,点D在x轴正半轴)(1)求直线AB的表达式及C、D两点的坐标;(2)第四象限的抛物线上是否存在点E,使得四边形ACED的面积最大,若存在,求出点E的坐标和面积的最大值,不存在,说明理由.8.如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(﹣6,0)、D(﹣7,3),点B、C在第二象限内.(1)点B的坐标;(2)将正方形ABCD以每秒2个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在y轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P、Q的坐标;若不存在,请说明理由.9.如图所示,在平面直角坐标系Oxy中,等腰△OAB的边OB与反比例函数y=(m >0)的图象相交于点C,其中OB=AB,点A在x轴的正半轴上,点B的坐标为(2,4),过点C作CH⊥x轴于点H.(1)已知一次函数的图象过点O,B,求该一次函数的表达式;(2)若点P是线段AB上的一点,满足OC=AP,过点P作PQ⊥x轴于点Q,连结OP,记△OPQ的面积为S△OPQ,设AQ=t,T=OH2﹣S△OPQ①用t表示T(不需要写出t的取值范围);②当T取最小值时,求m的值.10.如图,点P在曲线上,PA⊥x轴于点A,点B在y轴正半轴上,PA=PB,OA、OB的长是方程t2﹣8t+12=0的两个实数根,且OA>OB,点C是线段PB延长线上的一个动点,△ABC的外接圆⊙M与y轴的另一个交点是D.(1)填空:OA=;OB=;k=;(2)设点Q是⊙M上一动点,若圆心M在y轴上且点P、Q之间的距离达到最大值,则点Q的坐标是;(3)试问:在点C运动的过程中,BD﹣BC的值是否为定值?若是,请求出该定值;若不是,请给出合理的解释.参考答案1.解:(1)∵△ADC与△ABC关于AC所在的直线对称,∴CD=BC=2,∠ACD=∠ACB=30°,如图1,过点D作DE⊥BC于点E,∵∠DCE=60°,∴,∵OC=2,∴OE=3,∴;(2)设OC=m,则OE=m+1,OB=m+2在Rt△ABC中,∠ACB=30°,BC=2,∴,∴,∵A,D在同一反比例函数上,∴,解得:m=1,∴OC=1;(3)由(2)得:∴,∵四边形A1B1C1D1由四边形ABCD平移得到,∴,∵D1在反比例函数上,∴同理:,,∴,∴,∵x P=x A=﹣3,P在反比例函数上,∴,①若P为直角顶点,则A1P⊥DP,过点P作l1⊥y轴,过点A1作A1F⊥l1,过点D作DG⊥l1,则△A1PF∽△PDG,,解得:;②若D为直角顶点,则A1D⊥DP,过点D作l2⊥x轴,过点A1作A1H⊥l2,则△A1DH∽△DPG,,,解得:k=0(舍),综上:存在.2.解:(1)设旋转后点B的对应点为点C,过点C作CD⊥x轴于点D,如图所示∵∠BAC=90°,∴∠BAO+∠CAD=90°,∵∠BAO+∠ABO=90°,∴∠ABO=∠CAD,在△OAB和△DCA中,,∴△OAB≌△DCA(AAS),∴CD=OA=1,AD=OB=2,∴OD=OA+AD=3,∴C(3,1),把C(3,1)代入y=中,得k=3,故答案为:3;(2)直线AB表达式中的k值为﹣2,AB∥EF,则直线EF表达式中的k值为﹣2,设点E(m,n),mn=3,直线EF的表达式为:y=﹣2x+t,将点E坐标代入上式并解得,直线EF的表达式为y=﹣2x+2m+n,将直线EF表达式与反比例函数表达式联立并整理得:2x2﹣(2m+n)x+3=0,x1+x2=,x1x2=,则点F(n,),则a=(),b=(n+),===2;(3)故点E作EH⊥x轴交于点H,由(1)知:△ABO∽△EHA,∴,设EH=m,则AH=2m,则点E(2m+1,m),且k=m(2m+1)=2m2+m,直线AB表达式中的k值为﹣2,AB∥EF,则直线EF表达式中的k值为﹣2,设直线EF的表达式为:y=﹣2x+b,将点E坐标代入并求解得:b=5m+2,故直线EF的表达式为:y=﹣2x+5m+2,将上式与反比例函数表达式联立并整理得:2x2﹣(5m+2)x+3=0,用韦达定理解得:x F+x E=,则x F=,则点F(m,4m+2),则EF==2AB=2×,整理得:3m2+4m﹣4=0,解得:m=或﹣2(舍去负值),k=m(2m+1)=2m2+m=.3.解:(1)设直线PQ的解析式为y=kx+b,则有,解得,∴y=﹣x+m+1,令x=0,得到y=m+1,∴D(0,m+1),令y=0,得到x=m+1,∴C(m+1,0),∴OC=OD,∵∠COD=90°,∴∠OCD=45°.(2)如图2,过Q作QM⊥y轴于M,过P作PN⊥OC于N,过O作OH⊥CD于H,∵P(m,1)和Q(1,m),∴MQ=PN=1,OM=ON=m,∵∠OMQ=∠ONP=90°,∴△OMQ≌△ONP(SAS),∴OQ=OP,∠DOQ=∠POC,∵∠DOQ=∠OCD﹣∠POC,∠OCD=45°,∴∠DOQ=∠POC=∠QOH=∠POH=22.5°,∴MQ=QH=PH=PN=1,∵∠OCD=∠ODC=45°,∴△DMQ和△CNP都是等腰直角三角形,∴DQ=PC=,∵OC=OD=m+1,∴CD=OC=,∵CD=DQ+PQ+PC,∴=2+2,∴m=+1;(3)如图3,∵四边形BAPQ为平行四边形,∴AB∥PQ,AB=PQ,∴∠OAB=45°,∵∠AOB=90°,∴OA=OB,∴矩形OAMB是正方形,∵点M恰好在函数y=(m为常数,m>1,x>0)的图象上,∴M(,),即OA=OB=,∵AB=PQ,∴,解得:m=或(舍),∴OA=OB====.4.解:(1)连接AC交BD于点H,∵AB=BC,AD=DC,BD=BD,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,∴BH是等腰三角形ABC的高,即BH⊥AC,即BD是AC的中垂线,设HD=x,则BH=4+3﹣x,AH2=AB2﹣BH2=AD2﹣DH2,即82﹣x2=52﹣(3+4﹣x)2,解得:x=,cos∠ADB===,故∠ADB=30°BD是AC的中垂线,则∠ADB=30°=∠CDB,故∠ADC=2∠ADB=60°;(2)①连接AQ、QD、PC,∵∠APQ=60°,AP=AQ,∴△APQ为等边三角形,故∠PAQ=60°=∠PAC+∠HAQ,同理△ACD是边长为8的等边三角形,∴∠CAD=60°=∠HAQ+∠QAD,∴∠PAC=∠QAD,而AP=AQ,AD=AC,∴△ACP≌△ADQ(SAS),∵BD是AC的中垂线,故PA=PC,则△ACP为等腰三角形,∴△AQD也为等腰三角形,即AQ=QD,而AC=CD(△ACD为等边三角形),CQ=CQ,∴△ACQ≌△DCQ(SSS),故∠ACQ=∠DCQ,在△CAD中,延长CQ交AD于点K,∵AC=CD,则CK⊥AD,∴∠AKQ=90°∵∠AKQ=90°=∠AHP,∠QAK=∠PAH,PA=AQ,∴△AKQ≌△QHP(AAS),∴QK=PH,过点D作DR⊥x轴交于点R,BD∥x轴,故∠BDC=∠DCR=30°,DR=CD=8×=4=CH=OB,而BC=5,故OC=3=BH,故点C(3,0),PH=BH=BP=3﹣m=QK,在等边三角形ACD中,AD边上的高CK=CD sin∠CDA=8×sin60°=4,则CQ=CK﹣QK=4﹣3+m;②过点Q分别作x、y轴的垂线,垂足为M、N,∵AK是等边三角形CDA的高,则∠KCD=30°,而∠DCR=30°,故∠QCR=60°,QM=CQ sin∠QCM=CQ sin60°=CQ,CM=CQ,故点Q(3+CQ,CQ),点C(3,0),CH=4,故点A(3,8),反比例函数图象同时经过点A、Q,则3×8=(3+CQ)×CQ,而CQ=4﹣3+m,即m2+24m+39﹣96=0,解得:m=﹣4(不合题意值已舍去).5.解:(1)①将点A的坐标代入一次函数表达式并解得:k=2,将点A的坐标代入反比例函数得:m=3×4=12;②由图象可以看出x>3时,y1>y2;(2)①当x=1时,点D、B、C的坐标分别为(1,2+n)、(1,m)、(1,n),则BD=|2+n﹣m|,BC=m﹣n,DC=2+n﹣n=2则BD=BC或BD=DC或BC=CD,即:|2+n﹣m|=m﹣n或|2+n﹣m|=2或m﹣n=2,即:m﹣n=1或0或2或4,当m﹣n=0时,m=n与题意不符,点D不能在C的下方,即BC=CD也不存在,n+2>n,当B、D重合时,m﹣n=2成立,故m﹣n=1或4或2;②点E的横坐标为:,当点E在点B左侧时,d=BC+BE=m﹣n+(1﹣)=1+(m﹣n)(1﹣),m﹣n的值取不大于1的任意数时,d始终是一个定值,当1﹣=0时,此时k=1,从而d=1.当点E在点B右侧时,同理BC+BE=(m﹣n)(1+)﹣1,当1+=0,k=﹣1时,(不合题意舍去)故k=1,d=1.6.解:(1)∵F在直线y=x上∴设F(m,m)∵y=经过点B(2,4).∴k=8.∵F(m,m)在反比例函数的图象上,∴m2=8∴m=2(负值已舍去).∴由两点间的距离公式可知:OF==4.(2)①∵函数y=的图象经过点D,E∴OC•CD=OA•AE=k.∵OC=2,OA=4,∴CD=2AE.②由①得:CD=2AE∴可设:CD=2n,AE=n∴DE=CD+AE=3n,BD=4﹣2n,BE=2﹣n在Rt△EBD,由勾股定理得:DE2=BD2+BE2,∴9n2=(4﹣2n)2+(2﹣n)2.解得n=,∴k=4n=6﹣10.③CD=2c,AE=c当OD=DE时,22+4c2=(4﹣2c)2+(2﹣c)2,∴c=10﹣2,∴k=4c=40﹣8.(a+b)2=a2+b2+2ab=16+2k=96﹣16.当若OE=DE时,16+c2=(4﹣2c)2+(2﹣c)2,∴c=.∴k=4c=10﹣2.∴(a+b)2=a2+b2+2ab=16+2k=36﹣4.当OE=OD时,4+4c2=16+c2,解得c=2.此时点D与点E重合,故此种情况不存在.综上所述,(a+b)2的值为96﹣16或36﹣4.7.解:(1)设反比例函数的解析式为y=.∵它图象经过点A(﹣2,5)和点B(﹣5,p),∴5=,∴k=﹣10,∴反比例函数的解析式为y=﹣,∴P=﹣=2,∴点B的坐标为(﹣5,2),设直线AB的表达式为y=mx+n,则,∴,∴直线AB的表达式为y=x+7.由▱ABCD中,AB∥CD,设CD的表达式为y=x+c,∴C(0,c),D(﹣c,0),∵CD=AB,∴CD2=AB2,∴c2+c2=(﹣5+2)2+(2﹣5)2,∴c=﹣3,∴点C、D的坐标分别是(0,﹣3)、(3,0).(2)设二次函数的解析式为y=ax2+bx﹣3,,∴,∴二次函数的解析式为y=x2﹣2x﹣3,假设第四象限的抛物线上存在点E,使得△CDE的面积最大.设E(k,k2﹣2k﹣3),则F(k,k﹣3),过点E作x轴的垂线交CD于点F,则S△CDE=S△EFC+S△EFD=•EF•OD=•[(k﹣3)﹣(k2﹣2k﹣3)]=﹣(k2﹣3k)=﹣(k﹣)2+,所以,当k=时,△CDE的面积最大值为,此时点E的坐标为(,﹣).∵A(﹣2,5),C(0,﹣3),D(3,0),∴△ACD的面积为定值,∵直线AD的解析式为y=﹣x+3,∴直线AD交y轴于K(0,3),∴S△ACD=S△ACK+S△CKD=×6×2+×6×3=15,∴四边形ACED的面积的最大值为15+=.8.解:(1)过点B、D分别作BE⊥x轴、DF⊥x轴交于点E、F,∵∠DAF+∠BAE=90°,∠DAF+∠FDA=90°,∴∠FDA=∠BAE,又∠DFA=∠AEB=90°,AD=AB,∴△DFA≌△AEB(AAS),∴DF=AE=3,BE=AF=1,∴点B坐标为(﹣3,1),故答案为(﹣3,1);(2)t秒后,点D′(﹣7+2t,3)、B′(﹣3+2t,1),则k=(﹣7+2t)×3=(﹣3+2t)×1,解得:t=,则k=6,则点D′(2,3)、B′(6,1);(3)存在,理由:设:点Q(m,n),点P(0,s),mn=6,①当BD为平行四边形一条边时,图示平行四边形B′D′QP,点B′向左平移4个单位、向上平移2个单位得到点D′,同理点Q(m,n)向左平移4个单位、向上平移2个单位为(m﹣4,n+2)得到点P (0,s),即:m﹣4=0,n+2=s,mn=6,解得:m=4,n=,s=,故点Q(4,)、点P(0,);②当BD为平行四边形对角线时,图示平行四边形D′Q′B′P′,B′、D′中点坐标为(4,2),该中点也是P′Q′的中点,即:4=,=2,mm=6,解得:m=8,n=,s=,故点Q′(8,)、P′(0,);故点Q的坐标为:Q(4,)或(8,),点P的坐标为P(0,)(0,).9.解:(1)将点O、B的坐标代入一次函数表达式:y=kx得:4=2k,解得:k=2,故一次函数表达式为:y=2x,(2)①过点B作BM⊥OA,则∠OCH=∠QPA=∠OAB=∠ABM=α,则tanα=,sinα=,∵OB=AB,则OM=AM=2,则点A(4,0),设:AP=a,则OC=a,在△APQ中,sin∠APQ===sinα=,同理PQ==2t,则PA=a=t,OC=t,则点C(t,2t),T=OH2﹣S△OPQ=(OC•sinα)2﹣×(4﹣t)×2t=4t2﹣4t,②∵4>0,∴T有最小值,当t=时,T取得最小值,而点C(t,2t),故:m=t×2t=.10.解:(1)t2﹣8t+12=0,解得:t=2或6,∵OA、OB的长是方程t2﹣8t+12=0的两个实数根,且OA>OB,即OA=6,OB=2,即点A、B的坐标为(﹣6,0)、(0,2),设点P(﹣6,),由PA=PB得:36+(2+)2=()2,解得:k=﹣60,故点P(﹣6,10),故答案为:6,2,﹣60;(2)当PQ过圆心M时,点P、Q之间的距离达到最大值,tan∠ACO=,线段AB中点的坐标为(﹣3,1),则过AB的中点与直线AB垂直的直线PQ的表达式为:y=mx+n=﹣3x+n,将点(﹣3,1)的坐标代入上式并解得:n=﹣8,即点M的坐标为(0,﹣8),则圆的半径r=MB=2+8=10=MQ,过点Q作QG⊥y轴于点G,tan∠QMG=tan∠HMP===,则sin∠QMG=故GQ=MQ sin∠QMG=,MG=3,故点Q(,﹣8﹣3);故答案为:(,﹣8﹣3).(3)是定值,理由:延长PA交圆M于E,过点E作EH⊥BD于H,连接CE,DE,∵PA=PB,∴∠PAB=∠PBA,∵四边形ABCE是圆的内接四边形,∴∠PAB=∠PCE,∠PBA=∠PEC,∴∠PEC=∠PCE,∴PE=PC,∴AE=BC,∵AO⊥BD,EH⊥BD,PA⊥OA,∴四边形AOHE是矩形,∴AO=EH,AE=OH=BC,∵PA∥BD,∴=,∴,∴∠ABD=∠BDE,且∠AOB=∠EHD=90°,AO=EH,∴△AOB≌△EHD(AAS)∴OB=DH=2,∴BD﹣BC=BD﹣OH=OB+DH=4.。
2021年河北中考数学试题分析1、命题模式突破,强调实战能力今年的中考数学试卷改革力度较大,打破了多年的命题模式。
整套试卷“起点低,坡度缓,尾巴翘”。
试题覆盖面广,内容新颖,较好的落实了“狠抓基础,渗透思想,突出能力,着重创新”新课改的理念。
2、以夯实基础为出发点基本题以常规题型为主,采用了直接考查数与式的运算、有理数大小的比较、二次根式的意义、函数的图像与性质、正方体的展开与折叠、圆的有关知识,方差的特征量、统计与概率等的基本知识。
这类试题的特点,起点低,考查的知识相对单一,内容大都来源于课本,是对教材内容的深入考查,学生很容易上手并正确解答。
如1-8题、13-15题、19-21题,都能在课本上找到源头,这对中学数学教学有良好的导向作用。
3、专项试题突出能力今年试题设计精心,立意凸现了对中学数学的通性通法的重点考查。
如:第14、17题体现了转化的思想,第18题考查了特殊到一般的归纳思想,第19、22题考查了方程思想,第12、20题考查了数形结合的思想,第11、24题考查了函数思想,第25、26题用运动变化中特殊数量关系寻找的研究,这使得整套试卷突出能力立意,为初中数学教学指明了方向。
4、“多思少算”命题新倾向今年开放性、探究性试题的设置分布广泛,通过设置操作、观察、探究、应用等方面的问题,给学生提供了一定的思考研究空间。
如第17题留给学生的思考空间较大,虽然其中一个图形处于运动状态,但是通过转化,使阴影部分的周长形成规律,巧妙解题。
第25题以学生熟悉的平行线为原型,通过扇形的改变和运动,形成一个探究性题目,图形的设置减少了文字量,降低了对学生文字阅读能力的要求。
题目发掘并串联了点与直线的距离、直线与圆的位置关系、三角函数等重要内容,侧重考查了运动变化中的不变量问题、解直角三角形问题、垂径定理和圆心角问题,本题带有浓郁的探究成分,要求学生善于对新情景、新信息进行有效的加工和整合,完成本题要求学生有较好的现场学习、迁移和应用的能力,这类试题多有较好的区分度和可推广性。
河北省2021年中考数学试卷一、单选题1.(2021·河北)如图,已知四条线段a,b,c,d中的一条与挡板另一侧的线段m在同一直线上,请借助直尺判断该线段是()A. aB. bC. cD. d【答案】A【考点】直线的性质:两点确定一条直线【解析】【解答】解:设线段m与挡板的交点为A,a、b、c、d与挡板的交点分别为B,C,D,E,连结AB、AC、AD、AE,根据直线的特征经过两点有且只有一条直线,利用直尺可确定线段a与m在同一直线上,故答案为:A.【分析】将A点,与B,C,D,E点分别作直线。
线段m在其中直线就可以解题。
解题关键:理解两点确定一条直线。
2.(2021·河北)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A. A代表B. B代表C. C代表D. B代表【答案】A【考点】几何体的展开图【解析】【解答】解:由正方体展开图可知,A的对面点数是1;B的对面点数是2;C的对面点数是4;∵骰子相对两面的点数之和为7,∴A代表,故答案为:A.【分析】正方体的展开图共有11种,其中“一四一”型共有6种,“二三一”型共有3种,“二二二”,“三三”型各1种。
Figure 1同色的为相对两面三个正方形成一直线形成“目”字形,则两端的正方形必定为对面。
如果四正方形形成Z形,则两端的正方形必定为对面。
解题关键:如何找正方形展图中相对的两面。
3.(2021·河北)如图1,▱ABCD中,AD>AB,∠ABC为锐角.要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案()图2A. 甲、乙、丙都是B. 只有甲、乙才是C. 只有甲、丙才是D. 只有乙、丙才是【答案】A【考点】平行四边形的性质,三角形全等的判定(ASA)【解析】【解答】连接AC,BD交于点O甲方案:∵四边形ABCD是平行四边形∴AO=CO,BO=DO∵BN=NO,OM=MD∴ON=OM∴四边形ANCM为平行四边形.乙方案:∵四边形ABCD是平行四边形∴AB=CD,AB//CD,AO=CO,BO=DO∴∠ABN=∠CDM又∵AN⊥BD,CM⊥BD∴∠ANB=∠CMD∴△ABN≌△CDM(AAS)∴BN=DM∵BO=DO∴ON=OM∴四边形ANCM为平行四边形.丙方案:∵四边形ABCD是平行四边形∴AB=CD,AB//CD,AO=CO,BO=DO,∠BAD=∠BCD∴∠ABN=∠CDM又∵AN,CM分别平分∠BAD,∠BCD∴12∠BAD=12∠BCD,即∠BAN=∠DCN∴△ABN≌△CDM(ASA)∴BN=DM∵BO=DO∴ON=OM∴四边形ANCM为平行四边形.所以甲、乙、丙三种方案都可以.故答案为:A.【分析】平行四边形对边平行且相等,对角分别相等,对角形相互平分。
2021年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在平面内作已知直线m 的垂线,可作垂线的条数有( )A.0条B.1条C.2条D.无数条2.墨迹覆盖了等式“(0x ≠)”中的运算符号,则覆盖的是( ) A.+B.-C.×D.÷3.对于①3(13)x xy x y -=-,②2(3)(1)23x x x x +-=+-,从左到右的变形,表述正确的是( ) A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解4.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是( )A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同5.如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a 元/千克,发现这四个单价的中位数恰好也是众数,则a =( )A.9B.8C.7D.66.如图1,已知ABC ∠,用尺规作它的角平分线.第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ; 第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在ABC ∠内部交于点P ; 第三步:画射线BP .射线BP 即为所求. 下列正确的是( )A.a ,b 均无限制B.0a >,12b DE >的长 C.a 有最小限制,b 无限制D.0a ≥,12b DE <的长7.若a b ≠,则下列分式化简正确的是( )A.22a ab b+=+ B.22a ab b-=- C.22a ab b= D.1212aab b = 8.在如图所示的网格中,以点O 为位似中心,四边形ABCD 的位似图形是( )A.四边形NPMQB.四边形NPMRC.四边形NHMQD.四边形NHMR9.若()()229111181012k--=⨯⨯,则k =( )A.12B.10C.8D.610.如图,将ABC ∆绕边AC 的中点O 顺时针旋转180°.嘉淇发现,旋转后的CDA ∆与ABC ∆构成平行四边点A ,C 分别转到了点C ,A 处, 而点B 转到了点D 处. ∵CB AD =,∴四边形ABCD 是平行四边形.小明为保证嘉淇的推理更严谨,想在方框中“∵CB AD =,”和“∴四边形……”之间作补充.下列正确的是( )A.嘉淇推理严谨,不必补充B.应补充:且AB CD =,C.应补充:且//AB CDD.应补充:且OA OC =,11.若k 为正整数,则()kk kk k k ++⋅⋅⋅+=个( ) A.2kkB.21k k+C.2kkD.2kk+12.如图,从笔直的公路l 旁一点P 出发,向西走6km 到达l ;从P 出发向北走6km 也到达l .下列说法错误..的是( )A.从点P 向北偏西45°走3km 到达lB.公路l 的走向是南偏西45°C.公路l 的走向是北偏东45°D.从点P 向北走3km 后,再向西走3km 到达l13.已知光速为300 000千米秒,光经过t 秒(110t ≤≤)传播的距离用科学记数法表示为10na ⨯千米,则n 可能为( )A.5B.6C.5或6D.5或6或714.有一题目:“已知;点O 为ABC ∆的外心,130BOC ∠=︒,求A ∠.”嘉嘉的解答为:画ABC ∆以及它的外接圆O ,连接OB ,OC ,如图.由2130BOC A ∠=∠=︒,得65A ∠=︒.而淇淇说:“嘉嘉考虑的不周全,A ∠还应有另一个不同的值.”下列判断正确的是( )A.淇淇说的对,且A ∠的另一个值是115°B.淇淇说的不对,A ∠就得65°C.嘉嘉求的结果不对,A ∠应得50°D.两人都不对,A ∠应有3个不同值15.如图,现要在抛物线(4)y x x =-上找点(,)P a b ,针对b 的不同取值,所找点P 的个数,三人的说法如下,甲:若5b =,则点P 的个数为0; 乙:若4b =,则点P 的个数为1; 丙:若3b =,则点P 的个数为1. 下列判断正确的是( )A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对16.如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大..的直角三角形,则选取的三块纸片的面积分别是( )A.1,4,5B.2,3,5C.3,4,5D.2,2,4二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.已知:182222a b -=-=,则ab =_________. 18.正六边形的一个内角是正n 边形一个外角的4倍,则n =_________.19.如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作m T (m 为1~8的整数).函数ky x=(0x <)的图象为曲线L .(1)若L 过点1T ,则k =_________;(2)若L 过点4T ,则它必定还过另一点m T ,则m =_________;(3)若曲线L 使得18~T T 这些点分布在它的两侧,每侧各4个点,则k 的整数值有_________个.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.已知两个有理数:-9和5. (1)计算:(9)52-+; (2)若再添一个负整数m ,且-9,5与m 这三个数的平均数仍小于m ,求m 的值.21.有一电脑程序:每按一次按键,屏幕的A 区就会自动加上2a ,同时B 区就会自动减去3a ,且均显示化简后的结果.已知A ,B 两区初始显示的分别是25和-16,如图.如,第一次按键后,A ,B 两区分别显示:(1)从初始状态按2次后,分别求A ,B 两区显示的结果;(2)从初始状态按4次后,计算A ,B 两区代数式的和,请判断这个和能为负数吗?说明理由.22.如图,点O 为AB 中点,分别延长OA 到点C ,OB 到点D ,使OC OD =.以点O 为圆心,分别以OA ,OC 为半径在CD 上方作两个半圆.点P 为小半圆上任一点(不与点A ,B 重合),连接OP 并延长交大半圆于点E ,连接AE ,CP .(1)①求证:AOE POC ∆∆≌;②写出∠1,∠2和C ∠三者间的数量关系,并说明理由.(2)若22OC OA ==,当C ∠最大时,直接..指出CP 与小半圆的位置关系,并求此时EOD S 扇形(答案保留π).23.用承重指数W 衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W 与木板厚度x (厘米)的平方成正比,当3x =时,3W =. (1)求W 与x 的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x (厘米),Q W W =-厚薄.①求Q 与x 的函数关系式; ②x 为何值时,Q 是W 薄的3倍?【注:(1)及(2)中的①不必写x 的取值范围】24.表格中的两组对应值满足一次函数y kx b =+,现画出了它的图象为直线l ,如图.而某同学为观察k ,b对图象的影响,将上面函数中的k 与b 交换位置后得另一个一次函数,设其图象为直线l '.x-1 0 y-21(1)求直线l 的解析式;(2)请在图上画出..直线l '(不要求列表计算),并求直线l '被直线l 和y 轴所截线段的长; (3)设直线y a =与直线l ,l '及y 轴有三个不同的交点,且其中两点关于第三点对称,直接..写出a 的值. 25.如图,甲、乙两人(看成点)分别在数轴-3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动. ①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位; ②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位; ③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P ;(2)从图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n 次,且他最终..停留的位置对应的数为m ,试用含n 的代数式表示m ,并求该位置距离原点O 最近时n 的值; (3)从图的位置开始,若进行了k 次移动游戏后,甲与乙的位置相距2个单位,直接..写出k 的值. 26.如图1和图2,在ABC ∆中,AB AC =,8BC =,3tan 4C =.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且2AM CN ==.点P 从点M 出发沿折线MB BN -匀速移动,到达点N 时停止;而点Q 在AC边上随P 移动,且始终保持APQ B ∠=∠.(1)当点P 在BC 上时,求点P 与点A 的最短距离;(2)若点P 在MB 上,且PQ 将ABC ∆的面积分成上下4:5两部分时,求MP 的长;(3)设点P 移动的路程为x ,当03x ≤≤及39x ≤≤时,分别求点P 到直线AC 的距离(用含x 的式子表示);(4)在点P 处设计并安装一扫描器,按定角APQ ∠扫描APQ ∆区域(含边界),扫描器随点P 从M 到B 再到N 共用时36秒.若94AK =,请直接..写出点K 被扫描到的总时长. 2021年河北省初中毕业生升学文化课考试数学答案卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1-10小题各3分,11~16小题各2分,每小题给出的四个选项中只有一个是符合题目要求的)题号 1 2 3 4 5 6 7 8 选项 D D C D B B D A 题号 9 10 11 12 13 14 15 16 选项 BBAACACB卷Ⅱ(非选择题,共78分)二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题各有3个空,每空2分)17.6 18.12 19.-16;5;7三、解答題(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(1)-2 (2)1m =-21.(1)2252a +;166a --(2)22254(1612)(23)0a a a ++--=-≥,和不能为负数 22.(1)①证明略; ②21C ∠=∠+∠ (2)43π 23.(1)213W x =(2)①2211(6)33Q x x =--124x =-②由题可知:2112433x x -=⨯解得:12x =;26x =-(舍) ∴当2cm x =时,Q 是W 薄的3倍. 24.(1)l :31y x =+(2)l ':3y x =+(3)a 的值为52或175或7 25.(1)14P =(2)256m n =- 当0m =时,解得256n = ∵n 为整数∴当4n =时,距离原点最近 (3)3k =或5 26.(1)min 1tan 32d BC C =⋅= (2)APQ ABC ∆∆∽∴2APQ ABCS AP AB S ∆∆⎛⎫= ⎪⎝⎭即23AP AB = ∴103AP =,43MP =(3)当03x ≤≤时,24482525d x =+ 当39x ≤≤时,33355d x =-+(4)23t s =。
2021年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2021河北中考,1,3分,★☆☆)如图,已知四条线段a,b,c,d中的一条与挡板另一侧的线段m 在同一直线上,请借助直尺判断该线段是()A.a B.b C.c D.d2.(2021河北中考,2,3分,★☆☆)不一定相等的一组是()A.a+b与b+a B.3a与a+a+aC.a3与a•a•a D.3(a+b)与3a+b3.(2021河北中考,3,3分,★☆☆)已知a>b,则一定有﹣4a□﹣4b,“□”中应填的符号是()A.>B.<C.≥D.=4.(2021河北中考,4,3结果相同的是()A.3﹣2+1 B.3+2﹣1 C.3+2+1 D.3﹣2﹣15.(2021河北中考,5,3分,★☆☆)能与﹣(34﹣65)相加得0的是()A.﹣34﹣65B.65+34C.﹣65+34D.﹣34+656.(2021河北中考,6,3分,★☆☆)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A.A代表B.B代表C.C代表D.B代表7.(2021河北中考,7,3分,★★☆)如图1,▱ABCD中,AD>AB,∠ABC为锐角.要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案()A.甲、乙、丙都是B.只有甲、乙才是C.只有甲、丙才是D.只有乙、丙才是8.(2021河北中考,8,3分,★★☆)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB=()A.1cm B.2cm C.3cm D.4cm9.(2021河北中考,9,3 1.442﹣)A.﹣100 B.﹣144.2 C.144.2 D.﹣0.0144210.(2021河北中考,10,3分,★★☆)如图,点O为正六边形ABCDEF对角线FD上一点,S△AFO=8,S△CDO=2,则S正六边形ABCDEF的值是()A.20 B.30C.40 D.随点O位置而变化11.(2021河北中考,11,2分,★★☆)如图,将数轴上﹣6与6两点间的线段六等分,这五个等分点所对应数依次为a1,a2,a3,a4,a5,则下列结论正确的是()A.a3>0 B.|a1|=|a4|C.a1+a2+a3+a4+a5=0 D.a2+a5<012.(2021河北中考,12,2分,★★☆)如图,直线l,m相交于点O.P为这两直线外一点,且OP=2.8.若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是()A.0 B.5 C.6 D.713.(2021河北中考,13,2分,★★☆)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.证法1:如图,∵∠A+∠B+∠ACB=180°(三角形内角和定理),又∵∠ACD+∠ACB=180°(平角定义),∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代换).∴∠ACD=∠A+∠B(等式性质).证法2:如图,∵∠A=76°,∠B=59°,且∠ACD=135°(量角器测量所得),又∵135°=76°+59°(计算所得),∴∠ACD=∠A+∠B(等量代换).下列说法正确的是()A.证法1还需证明其他形状的三角形,该定理的证明才完整B.证法1用严谨的推理证明了该定理C.证法2用特殊到一般法证明了该定理D.证法2只要测量够一百个三角形进行验证,就能证明该定理14.(2021河北中考,14,2分,★★☆)小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中“()”应填的颜色是()A.蓝B.粉C.黄D.红15.(2021河北中考,15,2分,★★★)由(12cc++﹣12)值的正负可以比较A=12cc++与12的大小,下列正确的是()A.当c=﹣2时,A=12B.当c=0时,A≠12C.当c<﹣2时,A>12D.当c<0时,A<1216.(2021河北中考,16,2分,★★★)如图,等腰△AOB中,顶角∠AOB=40°,用尺规按①到④的步骤操作:①以O为圆心,OA为半径画圆;②在⊙O上任取一点P(不与点A,B重合),连接AP;③作AB的垂直平分线与⊙O交于M,N;④作AP的垂直平分线与⊙O交于E,F.结论Ⅰ:顺次连接M,E,N,F四点必能得到矩形;结论Ⅱ:⊙O上只有唯一的点P,使得S扇形FOM=S扇形AOB.对于结论Ⅰ和Ⅱ,下列判断正确的是()A.Ⅰ和Ⅱ都对B.Ⅰ和Ⅱ都不对C.Ⅰ不对Ⅱ对D.Ⅰ对Ⅱ不对二、填空题(本大题有3个小题,每小题有2个空,每空2分,共12分)17.(2021河北中考,17,4分,★☆☆)现有甲、乙、丙三种不同的矩形纸片(边长如图).(1)取甲、乙纸片各1块,其面积和为;(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片块.18.(2021河北中考,18,4分,★★☆)如图是可调躺椅示意图(数据如图),AE与BD的交点为C,且∠A,∠B,∠E保持不变.为了舒适,需调整∠D的大小,使∠EFD=110°,则图中∠D应(填“增加”或“减少”)度.19.(2021河北中考,19,4分,★★★)用绘图软件绘制双曲线m:y=60x与动直线l:y=a,且交于一点,图1为a=8时的视窗情形.(1)当a=15时,l与m的交点坐标为;(2)视窗的大小不变,但其可视范围可以变化,且变化前后原点O始终在视窗中心.例如,为在视窗中看到(1)中的交点,可将图1中坐标系的单位长度变为原来的12,其可视范围就由﹣15≤x≤15及﹣10≤y≤10变成了﹣30≤x≤30及﹣20≤y≤20(如图2).当a=﹣1.2和a=﹣1.5时,l与m的交点分别是点A和B,为能看到m在A和B之间的一整段图象,需要将图1中坐标系的单位长度至少变为原来的1k,则整数k=.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(2021河北中考,20,8分,★★☆)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本.现购进m本甲种书和n本乙种书,共付款Q元.(1)用含m,n的代数式表示Q;(2)若共购进5×104本甲种书及3×103本乙种书,用科学记数法表示Q的值.21.(2021河北中考,21,9分,★★☆)已知训练场球筐中有A、B两种品牌的乒乓球共101个,设A品牌乒乓球有x个.(1)淇淇说:“筐里B品牌球是A品牌球的两倍.”嘉嘉根据她的说法列出了方程:101﹣x=2x.请用嘉嘉所列方程分析淇淇的说法是否正确;(2)据工作人员透露:B品牌球比A品牌球至少多28个,试通过列不等式的方法说明A品牌球最多有几个.22.(2021河北中考,22,9分,★★☆)某博物馆展厅的俯视示意图如图1所示.嘉淇进入展厅后开始自由参观,每走到一个十字道口,她自己可能直行,也可能向左转或向右转,且这三种可能性均相同.(1)求嘉淇走到十字道口A向北走的概率;(2)补全图2的树状图,并分析嘉淇经过两个十字道口后向哪个方向参观的概率较大.23.(2021河北中考,23,9分,★★☆)如图是某机场监控屏显示两飞机的飞行图象,1号指挥机(看成点P)始终以3km/min的速度在离地面5km高的上空匀速向右飞行,2号试飞机(看成点Q)一直保持在1号机P的正下方.2号机从原点O处沿45°仰角爬升,到4km高的A处便立刻转为水平飞行,再过1min到达B处开始沿直线BC降落,要求1min后到达C(10,3)处.(1)求OA的h关于s的函数解析式,并直接写出2号机的爬升速度;(2)求BC的h关于s的函数解析式,并预计2号机着陆点的坐标;(3)通过计算说明两机距离PQ不超过3km的时长是多少.[注:(1)及(2)中不必写s的取值范围]24.(2021河北中考,24,9分,★★☆)如图,⊙O的半径为6,将该圆周12等分后得到表盘模型,其中整钟点为A n(n为1~12的整数),过点A7作⊙O的切线交A1A11延长线于点P.A A长度哪个更长;(1)通过计算比较直径和劣弧711(2)连接A7A11,则A7A11和P A1有什么特殊位置关系?请简要说明理由;(3)求切线长P A7的值.25.(2021河北中考,25,10分,★★★)如图是某同学正在设计的一动画示意图,x轴上依次有A,O,N三个点,且AO=2,在ON上方有五个台阶T1~T5(各拐角均为90°),每个台阶的高、宽分别是1和1.5,台阶T1到x轴距离OK=10.从点A处向右上方沿抛物线L:y=﹣x2+4x+12发出一个带光的点P.(1)求点A的横坐标,且在图中补画出y轴,并直接指出点P会落在哪个台阶上;(2)当点P落到台阶上后立即弹起,又形成了另一条与L形状相同的抛物线C,且最大高度为11,求C 的解析式,并说明其对称轴是否与台阶T5有交点;(3)在x轴上从左到右有两点D,E,且DE=1,从点E向上作EB⊥x轴,且BE=2.在△BDE沿x 轴左右平移时,必须保证(2)中沿抛物线C下落的点P能落在边BD(包括端点)上,则点B横坐标的最大值比最小值大多少?[注:(2)中不必写x的取值范围]26.(2021河北中考,26,12分,★★★)在一平面内,线段AB=20,线段BC=CD=DA=10,将这四条线段顺次首尾相接.把AB固定,让AD绕点A从AB开始逆时针旋转角α(α>0°)到某一位置时,BC,CD将会跟随出现到相应的位置.论证:如图1,当AD∥BC时,设AB与CD交于点O,求证:AO=10;发现:当旋转角α=60°时,∠ADC的度数可能是多少?尝试:取线段CD的中点M,当点M与点B距离最大时,求点M到AB的距离;拓展:①如图2,设点D与B的距离为d,若∠BCD的平分线所在直线交AB于点P,直接写出BP的长(用含d的式子表示);②当点C在AB下方,且AD与CD垂直时,直接写出α的余弦值.2021年河北省初中毕业生升学文化课考试数学试卷答案全解全析1.答案:A解析:利用直尺画出图形如下:可以看出线段a与m在一条直线上.故答案为a.考查内容:作图题,几何直观.命题意图:本题主要考查学生线段,射线,直线三者之间关系的理解,难度较低.2.答案:D解析:A.因为a+b=b+a,所以A选项一定相等;B.因为a+a+a=3a,所以B选项一定相等;C.因为a•a•a=a3,所以C选项一定相等;D.因为3(a+b)=3a+3b,所以3(a+b)与3a+b不一定相等.故选D.考查内容:合并同类项;去括号;同底数幂的乘法.命题意图:本题主要考查学生对整式的运算法则的运用能力,难度较低.3.答案:B解析:根据不等式的性质,不等式两边同时乘以负数,不等号的方向改变.∵a>b,∴﹣4a<﹣4b.故选B.考查内容:不等式的基本性质.命题意图:本题主要考查学生对不等式基本性质的掌握,难度较低.4.答案:A==,∵3﹣2+1=2,故A符合题意;2∵3+2﹣1=4,故B不符合题意;∵3+2+1=6,故C不符合题意;∵3﹣2﹣1=0,故D不符合题意.故选A.考查内容:二次根式的性质与化简.命题意图:本题主要考查学生对二次根式的运算性质的掌握,难度较低.5.答案:C解析:﹣(34﹣65)=﹣34+65,与其相加得0的是﹣34+65的相反数.﹣34+65的相反数为+34﹣65,故选C.考查内容:有理数的加减混合运算.命题意图:本题主要考查学生对有理数混合运算的掌握,以及对去括号法则和相反数概念的理解,难度较低.6.答案:A解析:根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A与点数是1的对面,B与点数是2的对面,C与点数是4的对面,∵骰子相对两面的点数之和为7,∴A代表的点数是6,B代表的点数是5,C代表的点数是3.故选A.考查内容:正方体的表面展开图.命题意图:本题主要考查学生对正方体表面展开图的理解,难度较低.知识拓展:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.7.答案:A解析:方案甲,连接AC,由平行四边形的性质得OB=OD,OA=OC,则NO=OM,得四边形ANCM为平行四边形,方案甲正确;方案乙:证△ABN≌△CDM(AAS),得AN=CM,再由AN∥CM,得四边形ANCM为平行四边形,方案乙正确;方案丙:证△ABN≌△CDM(ASA),得AN=CM,∠ANB=∠CMD,则∠ANM=∠CMN,证出AN∥CM,得四边形ANCM为平行四边形,方案丙正确.考查内容:平行四边形的判定与性质.命题意图:本题主要考查学生对平行四边形的判定与性质、全等三角形的判定与性质、平行线的判定与性质等知识的掌握和运用能力,难度中等.8.答案:C解析:如图:过O作OM⊥CD,垂足为M,过O作ON⊥AB,垂足为N,∵CD∥AB,∴△CDO∽ABO,即相似比为CDAB,∴CDAB=OMON,∵OM=15﹣7=8,ON=11﹣7=4,∴CDAB=OMON,684AB,∴AB=3,故选C.考查内容:相似三角形的应用.命题意图:本题主要考查学生应用相似三角形的性质和判定解决实际问题的能力,难度中等.9.答案:B解析:取1.442,1﹣3﹣98)≈1.442×(﹣100)=﹣144.2.故选B.考查内容:实数的运算.命题意图:本题主要考查学生对实数运算能力的掌握,难度中等.10.答案:B解析:设正六边形ABCDEF的边长为x,过E作FD的垂线,垂足为M,连接AC,∵∠FED=120°,FE=ED,∴∠EFD=∠FDE,∴∠EDF=12(180°﹣∠FED)=30°,∵正六边形ABCDEF的每个角为120°.∴∠CDF=120°﹣∠EDF=90°.同理∠AFD=∠F AC=∠ACD=90°,∴四边形AFDC为矩形,∵S△AFO=12FO×AF,S△CDO=12OD×CD,在正六边形ABCDEF中,AF=CD,∴S△AFO+S△CDO=12FO·AF+12OD·CD=12(FO+OD)·AF=12FD·AF=10,∴FD·AF=20,DM =cos30°DE ,DF =2DM ,EM =sin30°DE =2x ,∴S 正六边形ABCDEF =S 矩形AFDC +S △EFD +S △ABC =AF ·FD +2S △EFD =x +2×12•12x2+2x 2=322=32(AF ·FD )=30,故选B . 考查内容:三角形的面积;正多边形和圆.命题意图:本题主要考查学生对正六边形的性质和解直角三角形知识的运用能力,难度中等.11.答案:C解析:﹣6与6两点间的线段的长度=6﹣(﹣6)=12,六等分后每个等分的线段的长度=12÷6=2,∴a 1,a 2,a 3,a 4,a 5表示的数为:﹣4,﹣2,0,2,4,A 选项,a 3=﹣6+2×3=0,故该选项错误;B 选项,|﹣4|≠2,故该选项错误;C 选项,﹣4+(﹣2)+0+2+4=0,故该选项正确;D 选项,﹣2+4=2>0,故该选项错误.故选C .考查内容:数轴.命题意图:本题主要考查学生对数轴及其数轴上两点之间距离的理解,难度中等.12.答案:B解析:连接OP 1,OP 2,P 1P 2,∵点P 关于直线l ,m 的对称点分别是点P 1,P 2,∴OP 1=OP =2.8,OP =OP 2=2.8,OP 1+OP 2≥P 1P 2,0<P1P2≤5.6,故选B.考查内容:线段垂直平分线的性质.命题意图:本题主要考查学生对线段垂直平分线的性质以及三角形三边关系的理解和运用,难度中等.13.答案:B解析:∵证法1按照定理证明的一般步骤,从已知出发经过严谨的推理论证,得出结论的正确,具有一般性,无需再证明其他形状的三角形,∴A的说法不正确,不符合题意;∵证法1按照定理证明的一般步骤,从已知出发经过严谨的推理论证,得出结论的正确,∴B的说法正确,符合题意;∵定理的证明必须经过严谨的推理论证,不能用特殊情形来说明,∴C的说法不正确,不符合题意;∵定理的证明必须经过严谨的推理论证,与测量次数的多少无关,∴D的说法不正确,不符合题意;综上,B的说法正确.故选B.考查内容:三角形内角和定理;三角形的外角性质.命题意图:本题主要考查学生对三角形的外角的性质,定理的证明的一般步骤的掌握,难度中等.14.答案:D解析:根据题意得5÷10%=50(人),(16÷50)×100%=32%,则喜欢红色的人数是:50×28%=14(人),50﹣16﹣5﹣14=15(人),∵柱的高度从高到低排列,∴图2中“()”应填的颜色是红色.故选D.考查内容:扇形统计图;条形统计图.命题意图:本题主要考查学生对扇形统计图和条形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.难度中等.15.答案:C解析:A 选项,当c =﹣2时,分式无意义,故该选项不符合题意;B 选项,当c =0时,A =12,故该选项不符合题意; C 选项,12c c ++﹣12=222(2)c c ++﹣22(2+c)c +=2(2)c c +, ∵c <﹣2,∴2+c <0,c <0,∴2(2+c )<0, ∴2(2)c c +>0,∴A >12,故该选项符合题意; D 选项,当c <0时,∵2(2+c )的正负无法确定,∴A 与12的大小就无法确定,故该选项不符合题意.故选C . 考查内容:分式的加减运算.命题意图:本题主要考查学生对分时加减运算法则的掌握以及运用分式的减法运算进行大小比较的能力,难度较大.16.答案:D解析:如图,连接EM ,EN ,MF .NF .∵OM =ON =OE =OF ,∴四边形MENF 是平行四边形,∵EF =MN ,∴四边形MENF 是矩形,故(Ⅰ)正确,观察图形可知当∠MOF =∠AOB ,∴S 扇形FOM =S 扇形AOB ,观察图形可知,这样的点P 不唯一(如下图所示),故(Ⅱ)错误,故选D .考查内容:线段垂直平分线的性质;等腰三角形的性质;矩形的性质;点与圆的位置关系;扇形面积的计算;作图—复杂作图.命题意图:本题主要考查作图﹣复杂作图,线段的垂直平分线的性质,矩形的判定,扇形的面积等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型,难度较大.17.答案:(1)a2+b2;(2)4解析:(1)由图可知一块甲种纸片的面积为a2,一块乙种纸片的面积为b2,一块丙种纸片面积为ab,∴取甲、乙纸片各1块,其面积和为a2+b2;(2)设取丙种纸片x块才能用它们拼成一个新的正方形,(x≥0)∴a2+4b2+xab是一个完全平方式,∴x为4.考查内容:完全平方公式的几何背景;完全平方式.命题意图:本题主要考查学生对完全平方式的几何背景的掌握,难度中等.18.答案:减少;10解析:延长EF,交CD于点G,如图:∵∠ACB=180°﹣50°﹣60°=70°,∴∠ECD=∠ACB=70°.∵∠DGF=∠DCE+∠E,∴∠DGF=70°+30°=100°.∵∠EFD=110°,∠EFD=∠DGF+∠D,∴∠D=10°.而图中∠D=20°,∴∠D应减少10°.考查内容:三角形内角和定理;三角形的外角性质.命题意图:本题主要考查学生对三角形外角的性质,三角形的内角和定理的掌握和运用能力,难度中等.19.答案:(1)(4,15);(2)4解析:(1)a =15时,y =15,由6015y x y ⎧=⎪⎨⎪=⎩,得415x y =⎧⎨=⎩,故答案为(4,15); (2)由601.2y x y ⎧=⎪⎨⎪=-⎩,得501.2x y =-⎧⎨=-⎩,∴A (﹣50,﹣1.2), 由601.5y x y ⎧=⎪⎨⎪=-⎩,得401.5x y =-⎧⎨=-⎩,∴B (﹣40,﹣1.5), 为能看到m 在A (﹣50,﹣1.2)和B (﹣40,﹣1.5)之间的一整段图象,需要将图1中坐标系的单位长度至少变为原来的14,∴整数k =4. 考查内容:反比例函数与一次函数的交点问题.命题意图:本题主要考查学生对反比例函数图象与直线的交点坐标的掌握,涉及根据交点坐标调整直角坐标系单位长度的问题,难度较大.归纳总结:反比例函数与一次函数的交点问题(1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.(2)判断正比例函数y =k 1x 和反比例函数y =2k x在同一直角坐标系中的交点个数可总结为: ①当k 1与k 2同号时,正比例函数y =k 1x 和反比例函数y =2k x在同一直角坐标系中有2个交点; ②当k 1与k 2异号时,正比例函数y =k 1x 和反比例函数y =2k x 在同一直角坐标系中有0个交点. 20.解析:(1)由题意可得:Q =4m +10n ;(2)将m =5×104,n =3×103代入(1)式,得Q =4×5×104+10×3×103=2.3×105.考查内容:科学记数法—表示较大的数;列代数式.命题意图:本题主要考查学生根据实际问题列代数式和用科学记数法表示较大的数的能力,难度中等.21.解析:(1)嘉嘉所列方程为101﹣x =2x ,解得x =3323,又∵x为整数,∴x=3323不合题意,∴淇淇的说法不正确.(2)设A品牌乒乓球有x个,则B品牌乒乓球有(101﹣x)个,依题意,得101﹣x﹣x≥28,解得x≤3612,又∵x为整数,∴x可取的最大值为36.答:A品牌球最多有36个.考查内容:由实际问题抽象出一元一次方程;一元一次不等式的应用.命题意图:本题主要考查学生由实际问题抽象出一元一次方程和一元一次不等式的能力,难度中等.【核心素养】解决本题的关键是:(1)根据题意建立方程模型,通过解一元一次方程,求出x的值;(2)根据各数量之间的关系,建立不等式模型,正确列出一元一次不等式.体现了对数学建模素养的考查.22.解析:(1)嘉淇走到十字道口A向北走的概率为13;(2)补全树状图如下:共有9种等可能的结果,嘉淇经过两个十字道口后向西参观的结果有3种,向南参观的结果有2种,向北参观的结果有2种,向东参观的结果有2种,∴向西参观的概率为3193,向南参观的概率=向北参观的概率=向东参观的概率=29,∴向西参观的概率大.考查内容:列表法与树状图法.命题意图:本题主要考查学生对用列表法或画树状图法求概率的掌握,难度中等.技巧点拨:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率等于所求情况数与总情况数之比.23.解析:(1)∵2号飞机爬升角度为45°,∴OA上的点的横纵坐标相同.∴A(4,4).设OA 的解析式为:h =ks ,∴4k =4.∴k =1.∴OA 的解析式为:h =s .∵2号试飞机一直保持在1号机的正下方,∴它们的飞行的时间和飞行的水平距离相同.∵2号机的爬升到A 处时水平方向上移动了4km ,飞行的距离为,又1号机的飞行速度为3km /min ,∴2号机的爬升速度为:43=km /min . (2)设BC 的解析式为h =ms +n ,由题意:B (7,4),∴74103m n m n +=⎧⎨+=⎩, 解得13193m n ⎧=-⎪⎪⎨⎪=⎪⎩. ∴BC 的解析式为h =-11933s +. 令h =0,则s =19.∴预计2号机着陆点的坐标为(19,0).(3)∵PQ 不超过3km ,∴5﹣h ≤3. ∴531195()333s s -≤⎧⎪⎨--+≤⎪⎩, 解得2≤s ≤13.∴两机距离PQ 不超过3km 的时长为:(13﹣2)÷3=113min . 考查内容:一次函数的应用;解直角三角形的应用﹣仰角俯角问题.命题意图:本题主要考查学生对解直角三角形的仰角问题,待定系数法求函数的解析式,解不等式组,一次函数的应用的综合应用能力.难度较大.24.解析:(1)由题意,∠A 7OA 11=120°,∴711A A 的长为:1206180π=4π>12,A A比直径长.∴711(2)结论:P A1⊥A7A11.理由:连接A1A7,A7A11,OA11.∵A1A7是⊙O的直径,∴∠A7A11A1=90°,∴P A1⊥A7A11.(3)∵P A7是⊙O的切线,∴P A7⊥A1A7,∴∠P A7A1=90°,∵∠P A1A7=60°,A1A7=12,∴P A7=A1A7•tan60°=考查内容:切线的性质;正多边形和圆;弧长的计算.命题意图:本题主要考查学生对正多边形与圆,切线的性质,圆周角定理,弧长公式,解直角三角形等知识的综合应用能力,解题的关键是熟练掌握正多边形与圆的关系,难度较大.【核心素养】本题属几何推理型问题,通过对圆中重要知识点的考查和应用,体现了对数学逻辑推理素养的考查.25.解析:(1)图形如图所示,由题意台阶T4左边的端点坐标(4.5,7),右边的端点(6,7),对于抛物线y=﹣x2+4x+12,令y=0,x2﹣4x﹣12=0,解得x=﹣2或6,∴A(﹣2,0),∴点A的横坐标为﹣2,当x=4.5时,y=9.75>7,当x=6时,y=0<7,当y=7时,7=﹣x2+4x+12,解得x=﹣1或5,∴抛物线与台阶T4有交点,设交点为R(5,7),∴点P会落在台阶T4上.(2)由题意抛物线C:y=﹣x2+bx+c,经过R(5,7),最高点的纵坐标为11,∴241142557c bb c⎧--=⎪-⎨⎪-++=⎩,解得1438bc=⎧⎨=-⎩或62bc=⎧⎨=⎩(舍弃),∴抛物线C的解析式为y=﹣x2+14x﹣38,对称轴x=7,∵台阶T5的左边的端点(6,6),右边的端点为(7.5,6),∴抛物线C的对称轴与台阶T5有交点.(3)对于抛物线C:y=﹣x2+14x﹣38,令y=0,得到x2﹣14x+38=0,解得x=7,∴抛物线C交x轴的正半轴于(,0),当y=2时,2=﹣x2+14x﹣38,解得x=4或10,∴抛物线经过(10,2),Rt△BDE中,∠DEB=90°,DE=1,BE=2,∴当点D与(,0)重合时,点B的横坐标的值最大,最大值为,当点B与(10,2)重合时,点B的横坐标最小,最小值为10,∴点B﹣2.考查内容:二次函数综合题命题意图:本题属于二次函数综合题,主要考查学生对二次函数的性质,待定系数法等知识的综合运用能力,解题的关键是学会寻找特殊点解决问题,属于中考压轴题.难度非常大.26.解析:论证:证明:∵AD ∥BC ,∴∠A =∠B ,∠C =∠D ,在△AOD 和△BOC 中,A B AD BC D C ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOD ≌△BOC (ASA ),∴AO =BO ,∵AO +BO =AB =20,∴AO =10;发现:①设AB 的中点为O ,如图:当AD 从初始位置AO 绕A 顺时针旋转60°时,BC 也从初始位置BC '绕点B 顺时针旋转60°, 而BO =BC '=10,∴△BC 'O 是等边三角形,∴BC旋转到BO的位置,即C以O重合,∵AO=AD=CD=10,∴△ADC是等边三角形,∴此时∠ADC=60°;②如图:当AD从AO绕A逆时针旋转60°时,CD从CD'的位置开始也旋转60°,故△ADO和△CDO都是等边三角形,∴此时∠ADC=120°,综上所述,∠ADC为60°或120°;尝试:取线段CD的中点M,当点M与点B距离最大时,D、C、B共线,过D作DQ⊥AB于Q,过M 作MN⊥AB于N,如图:由已知可得AD=10,BD=BC+CD=20,BM=CM+BC=15,设AQ=x,则BQ=20﹣x,∵AD2﹣AQ2=DQ2=BD2﹣BQ2,∴100﹣x2=400﹣(20﹣x)2,解得x=52,∴AQ=52,∴DQ=∵DQ⊥AB,MN⊥AB,∴MN∥DQ,∴MN BMDQ BD=1520=,∴MN∴点M到AB;拓展:①设直线CP交DB于H,过D作DG⊥AB于G,连接DP,如图:∵BC=DC=10,CP平分∠BCD,∴∠BHC=∠DHC=90°,BH=12BD=12d,设BG=m,则AG=20﹣m,∵AD2﹣AG2=BD2﹣BG2,∴100﹣(20﹣m)2=d2﹣m2,∴m=230040d+,∴BG=230040d+,∵∠BHP=∠BGD=90°,∠PBH=∠DBG,∴△BHP∽△BGD,∴BP BH BD BG=,∴BP=2220300 BH BD dBG d=+;②过B作BG⊥CD于G,如图:设AN=t,则BN=20﹣t,DN=∵∠D=∠BGN=90°,∠AND=∠BNG,∴△ADN∽△BGN,∴NG BN BGDN AN AD==,2010t BGt-==,∴NG=(20tt-,BG=20010tt-,Rt△BCG中,BC=10,∴CG,∵CD=10,∴DN+NG+CG=10,t=10,∴(20﹣t=10t,=10t,即=t﹣,两边平方,整理得:3t2﹣40t=﹣4,∵t≠0,∴3t﹣40=﹣,解得t(大于20,舍去)或t∴AN∴cos α=9AD AN ==. 考查内容:几何变换综合题命题意图:本题主要考查学生对几何变换的综合应用能力,主要涉及全等三角形的判定与性质、等边三角形判定与性质、相似三角形的判定与性质、勾股定理及分式方程、无理方程等知识,题目综合性强,难度非常大.。