高二数学平面向量试题答案及解析
- 格式:docx
- 大小:1.54 MB
- 文档页数:29
6.3.2 平面向量的正交分解及坐标表示一、选择题1.设i ,j 是平面直角坐标系内分别与x 轴,y 轴正方向相同的两个单位向量,O 为坐标原点,若OA →=4i +2j ,则OA →的坐标是( )A .(4,-2)B .(4,2)C .(2,4)D .(-4,8)【答案】B【解析】因为OA →=4i +2j ,所以OA →=(4,2),故选B 。
2.如果用i ,j 分别表示x 轴和y 轴正方向上的单位向量,且A (2,3),B (4,2),则AB →可以表示为( )A .2i +3jB .4i +2jC .2i -jD .-2i +j 【答案】C【解析】记O 为坐标原点,则OA →=2i +3j ,OB →=4i +2j ,所以AB →=OB →-OA →=2i -j .故选C 。
3.已知AB →=(-2,4),则下列说法正确的是( )A .A 点的坐标是(-2,4)B .B 点的坐标是(-2,4)C .当B 是原点时,A 点的坐标是(-2,4)D .当A 是原点时,B 点的坐标是(-2,4) 【答案】D【解析】当向量起点与原点重合时,向量坐标与向量终点坐标相同.故选D 。
4.若{i ,j }为正交基底,设a =(x 2+x +1)i -(x 2-x +1)j (其中x ∈R ),则向量a 对应的坐标位于( )A .第一、二象限B .第二、三象限C .第三象限D .第四象限【答案】D【解析】x 2+x +1=⎝⎛⎭⎫x +122+34>0, x 2-x +1=⎝⎛⎭⎫x -122+34>0, 所以向量a 对应的坐标位于第四象限.故选D 。
5. (多选题)下列说法正确的是( ) A. 相等向量的坐标相同;B. 平面上一个向量对应平面上唯一的坐标;C. 一个坐标对应唯一的一个向量;D. 平面上一个点与以原点为始点,该点为终点的向量一一对应。
【答案】ABD【解析】由向量坐标的定义得一个坐标可对应无数个相等的向量,故C 错误。
高二数学平面向量试题答案及解析1.若干个能唯一确定一个数列的量称为该数列的“基本量”.设是公比为的无穷等比数列,下列的四组量中,一定能成为该数列“基本量”的是第组;①;②;③;④.【答案】①④【解析】由得,所以①唯一确定数列,由得,方程的解不定,所以②不能唯一确定数列,由得方程的解不定,所以③不能唯一确定数列,由得,所以④唯一确定数列.【考点】数列基本量运算2.下列各组向量中不平行的是()A.a="(1,2,-2),b=(-2,-4,4)"B.c=(1,0,0),d=(-3,0,0)C.e="(2,3,0)," f="(0,0,0)"D.g=(-2,3,5),h=(16,-24,40)【答案】D【解析】略3.已知则 ,.【答案】;【解析】由三边可知,以向量为邻边的平行四边形是菱形,夹角为,,为另一对角线长度为1【考点】向量运算与三角形法则4.已知向量与的夹角为且,若,且,则实数的值为A.B.1C.2D.【答案】B【解析】因为,所以,所以得.【考点】1.数量积;2.向量垂直.5.已知向量,,若,则__________________.【答案】或【解析】两向量平行,所以,解得:或.【考点】向量平行的坐标表示6.设,向量,且,则()A.﹣2B.4C.﹣1D.0【答案】D【解析】向量,且,可得,解得或(舍去,因为).则.故选:D.【考点】平面向量数量积的运算7.已知||=2,||=4,⊥(+),则与夹角的度数为.【答案】120【解析】设与夹角为.由⊥(+)得,,解得,所以.【考点】向量的数量积及其运算律并求向量的夹角.8.已知平面向量满足,且,则向量与的夹角为()A.B.C.D.【答案】C【解析】根据题意,由于平面向量满足,且,那么代入可知向量与的夹角的余弦值为,即可知向量与的夹角为,选C.【考点】向量的数量积公式.9.设,,且,则锐角为()A.B.C.D.【答案】C【解析】由,得,即,由二倍角公式得,故选C.【考点】1、向量的坐标运算;2、向量共线的基本定理.【思路点晴】本题主要考查的向量的基本概念与简单运算、向量的坐标运算,属于容易题.本题通过向量共线,得,代入坐标运算的公式;再由二倍角公式,得到关于角的三角函数值,从而求得锐角的值.10.在平面直角坐标系中,为原点,,动点满足,则的最大值是.【答案】【解析】设,表示以为圆心,r=1为半径的圆,而,所以,,,故得最大值为【考点】1.圆的标准方程;2.向量模的运算11.若||=1,||=2,=+,且⊥,则与的夹角为________。
专题02 平面向量基本定理及坐标表示(专题测试)【基础题】1. (2020·广东东莞市·高一期末)已知向量()2,3a =,(),6b m =,且a b ⊥,则m =( ) A .4- B .4C .9-D .9【答案】C【分析】根据向量的数量积的运算公式和向量的垂直条件,列出方程,即可求解. 【详解】由题意,向量(2,3)a =,(),6b m =,因为a b ⊥,可得2362180a b m m ⋅=⨯+⨯=+=,解得9m =-. 故选:C.【点睛】本题主要考查了平面向量的数量积的坐标运算,以及向量的垂直条件的应用,其中解答中熟记向量的数量积的计算公式是解答的关键,着重考查计算能力.2. (2020·广东揭阳市·高一期中)已知(1,1)AB =-,(0,1)C ,若2CD AB =,则点D 的坐标为 A .(2,3)- B .(2,3)-C .(2,1)-D .(2,1)-【答案】D【分析】设出D 的坐标,代入2CD AB =,计算出D 点的坐标.【详解】设(),D x y ,则(),1CD x y =-,()22,2AB =-,根据2CD AB =得()(),12,2x y -=-,即212x y =⎧⎨-=-⎩,解得()2,1D -,故选D. 【点睛】本小题主要考查向量的减法和数乘计算,考查两个向量相等的坐标表示,属于基础题.3.(2020·广东汕头市·高二期末)如图所示,已知在ABC 中,D 是边AB 上的中点,则CD =( )A .12BC BA -B .12BC BA -+ C .12BC BA --D .12BC BA + 【答案】B【分析】利用向量减法和数乘运算求得正确结论. 【详解】1122CD BD BC BA BC BC BA =-=-=-+.故选:B 4. (2019·广东深圳市·福田外国语高中高三一模(文))向量(1,2)a =,(2,)b k =-,若a 与b 共线,则|3|a b +=( )A B .C .D .5【答案】A【分析】通过向量共线求出k ,然后求解|3|a b +即可. 【详解】向量(1,2)a =,(2,)b k =-,a 与b 共线, ∴4k =-,即3(1,2)a b +=,∴2312a b +=+=故选:A .【点睛】本题考查向量的共线,向量的模的求法,属于基础题.5.(2020·东莞市光明中学高二月考)已知向量()3,2a =,(),4b x =且//a b ,则x 的值是( ) A .6- B .83C .6D .83-【答案】C【分析】根据平面向量共线的坐标表示可得出关于实数x 的等式,由此可解得实数x 的值. 【详解】向量()3,2a =,(),4b x =且//a b ,212x ∴=,解得6x =.故选:C.【点睛】本题考查平面向量共线的坐标表示,属基础题.6.(2020·汕头市澄海中学高二期中)已知向量()2,1a =-,()5,4b =-,(),c x y =,若()a b c +⊥,则x 、y 可以是( )A .1x =,1y =B .0x =,1y =C .1x =,0y =D .1x =,1y =- 【答案】A【分析】根据()0a b c +⋅=可得x y =.【详解】因为()a b c +⊥,所以()()()3,3,330a b c x y x y +⋅=-⋅=-+=,即x y =,故选:A. 【点睛】本题考查了平面向量垂直的坐标表示,考查了平面向量线性运算的坐标表示,属于基础题. 7.(2020·广东深圳市·高一期末)设向量(,1)a x x =+,(1,2)b =,且a b ⊥,则x =( ). A .23-B .23C .1-3D .13【答案】A【分析】由a b ⊥得0a b ⋅=,建立方程求解即可. 【详解】a b ⊥,()210a b x x ∴⋅=++=,解得23x =-.故选:A. 【点睛】本题考查向量垂直的坐标表示,属于基础题.8.(2012·广东湛江市·)已知向量()3,4a =,()sin ,cos b αα=,且//a b ,则tan α=( ) A .34B .34-C .43D .43-【答案】A【分析】根据向量共线的坐标表示以及同角公式可得结果. 【详解】因为//a b ,所以3cos 4sin 0αα-=,所以3tan 4α=.故选:A. 【点睛】本题考查了向量共线的坐标表示,考查了同角公式,属于基础题.9.(2020·广州市·广东实验中学高三月考(文))已知向量()(),,1,2a x y b ==-,且()1,3a b +=,则2a b -等于( ) A .1 B .3C .4D .5【答案】D【分析】先根据已知求出x,y 的值,再求出2a b -的坐标和2a b -的值.【详解】由向量()(),,1,2a x y b ==-,且()1,3a b +=,则()(1,2)1,3a b x y +=-+=,解得2,1x y ==,所以()()2,1,1,2a b ==-,所以2(2,1)2(1,2)(4,3)a b -=--=-,所以224(5a b -=+=,故答案为D【点睛】本题主要考查向量的坐标运算和向量的模的计算,意在考查学生对这些知识的掌握水平和分析推理能力.10.(多选题)(2020·廉江市第三中学高二月考)如果平面向量(2,0)a=,(1,1)b =,那么下列结论中正确的是( ) A .2a b = B .22a b ⋅=C .()-⊥a b bD .//a b【答案】AC【分析】根据题中条件,由向量模的坐标表示,数量积的坐标表示,以及向量共线的坐标表示,逐项判定,即可得出结果. 【详解】由平面向量(2,0)a=,(1,1)b =知:在A 中,2=a ,2b =,∴=2a b ,故A 正确;在B 中,2a b,故B 错误;在C 中,(1,1)a b -=-,∴()110a b b -⋅=-=,∴()-⊥a b b ,故C 正确; 在D 中,∵2011≠,∴a 与b 不平行,故D 错误. 故选:A C .【点睛】本题主要考查向量数量积的坐标运算,考查向量共线的坐标表示等,属于基础题型.【提升题】11.(2021·广东高三其他模拟)在90A ∠=︒的等腰直角ABC 中,E 为AB 的中点,F 为BC 的中点,BC AF CE λμ=+,则λ=( )A .23-B .32-C .43-D .1-【答案】A【分析】以A 为原点建立直角坐标系,设直角边长为2,写出各点坐标,计算可得λ的值. 【详解】以A 为原点建立直角坐标系,设()2,0B ,()0,2C ,则()1,1F ,()1,0E ,则()2,2BC =-,()()()1,11,2,2AF CE λμλμλμλμ+=+-=+-,所以222λμλμ+=-⎧⎨-=⎩,所以23λ=-.故选:A12.(2020·广东高三月考)已知菱形ABCD 的边长为2,60A ∠=︒,点P 满足1()2AP AB AC =+,则PA PD ⋅=( )A .0B .3C .3D .92【答案】C【分析】如图,以菱形ABCD 的对角线AC 方向为x 轴方向,DB 方向为y 轴方向建立平面直角坐标系,由1()2AP AB AC =+,可知P 点为线段BC 的中点,由60A ∠=︒,菱形ABCD 的边长为2,可求出,,P A D 的坐标,从而可求出PA PD ⋅的值【详解】以菱形ABCD 的对角线AC 方向为x 轴方向,DB 方向为y 轴方向建立平面直角坐标系, 根据1()2AP AB AC =+,可知P 点为线段BC 的中点,又因为60A ∠=︒,所以2AB BC CD DA BD =====,易求得31,22P ⎛⎫ ⎪⎝⎭,(3,0)A -,(0,1)D -,331,22PA ⎛⎫=-- ⎪ ⎪⎝⎭,33,22PD ⎛⎫=-- ⎪ ⎪⎝⎭,所以,3PA PD ⋅=, 故选:C .13. (2020·广东汕尾市·高一月考)已知向量()1,2a =,()2,b t =.若a b ⊥,则t =______,此时a 与a b +的夹角为______. 【答案】1-π4【分析】利用向量垂直的坐标表示列方程,解方程求得t 的值.利用夹角公式,求得a 与a b +的夹角的余弦值,进而求得a 与a b +的夹角.【详解】由于a b ⊥,所以()()1,22,220t t ⋅=+=,解得1t =-, 所以()()2,1,3,1b a b =-+=. 设a 与a b +的夹角为θ,则()()()22221,23,152cos 25101231a a ba a bθ⋅+⋅====⋅⋅++⋅+. 由于[]0,θπ∈,所以4πθ=.故答案为:1-;π4【点睛】本小题主要考查向量数量积的坐标运算,考查向量垂直的坐标表示,考查向量夹角的计算,属于中档题.14(2021·全国高三其他模拟)地砖是一种地面装饰材料,也叫地板砖,用黏土烧制而成质坚、耐压、耐磨、防潮.地板砖品种非常多,图案也多种多样.如图是某公司大厅的地板砖铺设方式,地板砖有正方形与正三角形两种形状,且它们的边长都相同,若OA a =,OB b =,则AF =( )A .5122a b -- B .33232a b ⎛⎫-+- ⎪ ⎪⎝⎭C .3323a b ⎛--+ ⎝⎭ D .3323a b ⎛-+- ⎝⎭ 【答案】D【分析】以AB 的中点M 为坐标原点建立平面直角坐标系,根据平面向量的坐标运算公式,结合平面向量基本定理进行求解即可.【详解】以AB 的中点M 为坐标原点建立平面直角坐标系,设2AB =,则(3O ,()1,0A -,()10B ,,(1,223F +,所以(1,3OA =--,(1,3OB =-,(2,2AF =+.设AF OA OB λμ=+,则22λμ-+=⎧⎪-=+233λμ⎧=--⎪⎪⎨⎪=-⎪⎩,所以33233AF OA OB ⎛⎫=-+- ⎪ ⎪⎝⎭,即3323AF a b b ⎛⎫=-+- ⎪ ⎪⎝⎭,故选:D 【点睛】用一组基底表示平面向量往往利用平面向量的坐标表示公式以及平面向量运算的坐标表示公式进行求解.15.(2020·广东高一期末)已知向量(1,2cos ),3sin ,0,23π⎛⎫⎛⎫⎛⎫==∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎭a x b x x . (1)若//a b ,求tan2x 的值;(2)若f (x )=a •b,则函数f (x )的值域. 【答案】(1(2) 【分析】(1)利用向量共线的坐标表示可得cos 02x x -=,根据二倍角的正弦公式可得1sin 22x =,根据x 的范围可得26x π=,进一步可得tan 23x =;(2)利用平面向量的数量积的坐标表示与两角和的正弦公式可得())4fx x π=+,再根据x 的范围,结合正弦函数的图象可得结果.【详解】(1)因为//a b ,所以cos 02x x -=,所以1sin 22x =,因为03x π<<,所以2023x π<<,所以26x π=,所以tan 2tan6x π==. (2)()f x a b =⋅=2cos x x x x+=+)4x π=+, 因为03x π<<,所以74412x πππ<+<,所以2sin()(,1]42x π+∈,所以()(3,6]f x ∈. 【点睛】本题考查了平面向量共线的坐标表示,考查了二倍角的正弦公式,考查了平面向量数量积的坐标表示,考查了两角和的正弦公式,考查了利用正弦函数的图象求值域,属于中档题.【拓展题】(选用)16.(2020·山西太原市·高三期末(理))赵爽是我国古代数学家大约在公元222年,他为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成)类比“赵爽弦图”,可构造如图所示的图形,它是由3个全等的三角形与中间一个小等边三角形拼成的一个较大的等边三角形,设AD AB AC λμ=+,若2DF AF =,则可以推出λμ+=_________.【答案】1213【分析】利用建系的方法,假设1AF =,根据120ADB ∠=,利用余弦定理可得AB 长度,然后计算cos ,sin DAB DAB ∠∠,可得点D 坐标,最后根据点,B C 坐标,可得结果.【详解】设1AF =,则3,1AD BD AF ===如图由题可知:120ADB ∠=,由2222cos AB AD BD AD BD ADB =+-⋅⋅∠所以AB =AC AB ==所以),22BC ⎛⎫⎪ ⎪⎝⎭,()0,0A又sin sin sin 26BD AB BAD BAD ADB =⇒∠=∠∠所以cos BAD ∠==所以()cos ,sin D AD AD BAD BAD ∠∠即D ⎝⎭所以()2113339,13,026,26ADAB ⎛⎫==⎪ ⎪⎝⎭13,22AC ⎛=⎝⎭又ADAB AC λμ=+所以913313μλμμ⎧==⎪⎪⇒⎨⎪==⎪⎩ 所以1213λμ+=故答案为:1213【点睛】本题考查考查向量的坐标线性表示,关键在于建系,充分使用条件,考验分析能力,属难题.。
一、选择题1.已知非零向量,a b 满足4,2a b ==,且a 在b 方向上的投影与b 在a 方向上的投影相等,则a b -等于( ) A .1B .25C .5D .32.在AOB ∆中,0,5,25,OA OB OA OB AB ⋅===边上的高为,OD D 在AB 上,点E 位于线段OD 上,若34OE EA ⋅=,则向量EA 在向量OD 上的投影为( ) A .12或32B .1C .1或12D .323.已知1a ,2a ,1b ,2b ,()*k b k ⋅⋅⋅∈N是平面内两两互不相等的向量,121a a-=,且对任意的1,2i = 及1,2,,j k =⋅⋅⋅,{}1,2i j a b -∈,则k 最大值为( ) A .3 B .4C .5D .64.已知a ,b 是单位向量,a •b =0.若向量c 满足|c a b --|=1,则|c |的最大值为( ) A .21-B .2C .21+D .22+5.如图,在梯形ABCD 中,//AB CD ,6AB =,3AD CD ==,E 是CD 的中点,14DF DA =,若12AE BF ⋅=-,则梯形ABCD 的高为( )A .1B 6C 5D .26.已知M 、N 为单位圆22:1O x y +=上的两个动点,且满足1MN =,()3,4P ,则PM PN +的取值范围为( )A .53,53+⎡⎣B .103,103⎡-⎣C .523,523-+⎡⎣D .1023,1023-+⎡⎤⎣⎦7.如下图,四边形OABC 是边长为1的正方形,点D 在OA 的延长线上,且2OD =,点P 为BCD 内(含边界)的动点,设(,)OP OC OD R αβαβ=+∈,则αβ+的最大值等于( )A .3B .2C .52D .328.已知(),0A a ,()0,C c ,2AC =,1BC =,0AC BC ⋅=,O 为坐标原点,则OB 的取值范围是( ) A .(0,21⎤-⎦B .(0,21⎤+⎦ C .21,21⎡⎤-+⎣⎦D .)21,⎡-+∞⎣9.已知ABC ,若对任意m R ∈,BC mBA CA -≥恒成立,则ABC 为( ) A .锐角三角形B .钝角三角形C .直角三角形D .不确定10.在ABC 中,||:||:||3:4:5AB AC BC =,圆O 是ABC 的内切圆,且与BC 切于D 点,设AB a =,AC b =,则AD =( )A .2355a b + B .3255a b + C .2133a b +D .1233a b +11.设θ为两个非零向量,a b 的夹角,且6πθ=,已知对任意实数t ,b ta +的最小值为1,则b =( ) A .14B .12C .2D .412.如图所示,在ABC 中,点D 在线段BC 上,且3BD DC =,若AD AB AC λμ=+,则λμ=( )A .12B .13C .2D .23二、填空题13.已知向量(9,6),(3,)a b x ==,若//a b ,则()b a b ⋅-=___________.14.已知ABC ,点P 是平面上任意一点,且AP AB AC λμ=+(,λμ∈R ),给出以下命题: ①若1ABλ=,1ACμ=,则P 为ABC 的内心;②若1λμ==,则直线AP 经过ABC 的重心; ③若1λμ+=,且0μ>,则点P 在线段BC 上; ④若1λμ+>,则点P 在ABC 外; ⑤若01λμ<+<,则点P 在ABC 内. 其中真命题为______15.已知平面向量a ,b 的夹角为120︒,且1a b ⋅=-,则a b -的最小值为________. 16.在平面内,定点,,A B C 满足DA DB DC ==,2DA DB DB DC DC DA ⋅=⋅=⋅=-,动点,P M 满足1AP PM MC ==,则2BM 的最大值为________.17.已知非零向量m →,n →满足4m →=3n →,cos m →〈,13n →〉=.若n →⊥t m n →→⎛⎫+ ⎪⎝⎭,则实数t的值为_____________.18.已知ABC 的三边长3AC =,4BC =,5AB =,P 为AB 边上任意一点,则()CP BA BC ⋅-的最大值为______________.19.向量a ,b ,c 在正方形网格(每个小正方形的边长为1)中的位置如图所示,若向量a b λ+与c 共线,则||a b λ-=________.20.已知ABC ∆中,3AB =,5AC =,7BC =,若点D 满足1132AD AB AC =+,则DB DC ⋅=__________.三、解答题21.已知向量()sin ,cos a x x =,()3,1b =-,[]0,x π∈.(1)若a b ⊥,求x 的值;(2)记()f x a b =⋅,求()f x 的最大值和最小值以及对应的x 的值.22.如图,在扇形OAB 中,120AOB ∠=︒,半径2OA OB ==,P 为弧AB 上一点.(1)若OA OP ⊥,求PA PB ⋅的值; (2)求PA PB ⋅的最小值.23.已知向量,a b 满足:16,()2a b a b a ==⋅-=,. (1)求向量a 与b 的夹角; (2)求2a b -.24.已知向量(1,2)a =-,||25b =. (1)若b a λ=,其中0λ<,求b 的坐标; (2)若a 与b 的夹角为23π,求()(2)a b a b -⋅+的值. 25.已知||1a =,||2b =.(1)若向量a 与向量b 的夹角为135︒,求||a b +及b 在a 方向上的投影; (2)若向量a b -与向量a 垂直,求向量a 与b 的夹角. 26.已知向量a 、b 的夹角为3π,且||1a =,||3b =. (1)求||a b +的值; (2)求a 与a b +的夹角的余弦.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B【解析】因为a 在b 方向上的投影与b 在a 方向上的投影相等,设这两个向量的夹角为θ,则cos cos 4cos 2cos 2a b πθθθθθ===⇒=,又由2()a b a b -=-且4,2a b ==,所以222()225a b a b a a b b -=-=-⋅+=,故选B.2.A解析:A 【解析】Rt AOB 中,0OA OB ⋅=,∴2AOB π∠=,∵5OA =,25OB =|,∴225AB OA OB =+= , ∵AB 边上的高线为OD ,点E 位于线段OD 上,建立平面直角坐标系,如图所示; 则)5,0A、(025B ,、设(),D m n ,则OAD BAO ∽,∴OA ADAB OA=, ∴1AD =,∴15AD AB =, 即()(155,255m n =-,,求得55m =, ∴452555D ⎛⎝⎭;则45254525,,5555OE OD λλλ⎛⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,45255,EA λλ⎛⎫=-- ⎪ ⎪⎭; ∵34OE EA ⋅=, ∴2454525354λλλ⎛⎫⎛⎫⋅--= ⎪ ⎪ ⎪ ⎪⎭⎝⎭, 解得34λ=或14λ=;∴向量EA 在向量OD 上的投影为()()45251,1ED OD OE λλ⎛⎫=-=-- ⎪ ⎪⎝⎭, 当34λ=时,551,2ED ⎛⎫== ⎪ ⎪⎝⎭;当14λ=时,35353,2ED ⎛⎫== ⎪ ⎪⎝⎭. 即向量EA 在向量OD 上的投影为12或32,故选A. 3.D解析:D 【分析】根据向量的几何意义把抽象问题具体化,转化到圆与圆的位置关系问题. 【详解】如图所示,设11OA a =,22OA a =,此时121A A =,由题意可知:对于任意的1,2i = 及1,2,,j k =⋅⋅⋅,{}1,2i j a b -∈, 作j j OB b =则有1j A B 等于1或2,且2j A B 等于1或2, 所以点(1,2,,)j B j k =同时在以(1,2)i A i =为圆心,半径为1或2的圆上,由图可知共有6个交点满足条件,故k 的最大值为6.故选:D. 【点睛】本题主要考查平面向量的线性运算和平面向量的应用.4.C解析:C 【分析】通过建立直角坐标系,利用向量的坐标运算和圆的方程及数形结合即可得出. 【详解】∵|a |=|b |=1,且0a b ⋅=,∴可设()10a =,,()01b =,,()c x y ,=.∴()11c a b x y --=--,. ∵1c a b --=, ∴22(1)(1)1x y -+-=x ﹣1)2+(y ﹣1)2=1.∴c 的最大值2211121=+=.故选C . 【点睛】熟练掌握向量的坐标运算和圆的方程及数形结合是解题的关键.5.C解析:C 【分析】以,AD AB 为一组基底,表示向量,AE BF ,然后利用12AE BF ⋅=-,求得2cos 3BAD ∠=,然后由梯形ABCD 的高为sin AD BAD ⋅∠求解. 【详解】因为14AE AD DE AD AB =+=+,34BF AF AB AD AB =-=-, ∴22133113444416AE BF AD AB AD AB AD AB AD AB ⎛⎫⎛⎫⋅=+⋅-=--⋅ ⎪ ⎪⎝⎭⎝⎭,223113cos 4416AD AB AD AB BAD =--⋅∠, 31117936cos 12448BAD =⨯-⨯-∠=-, ∴2cos 3BAD ∠=,∴25sin 1cos 3BAD BAD ∠=-∠=, ∴梯形ABCD 的高为sin 5AD BAD ⋅∠=. 故选:C . 【点睛】本题主要考查平面向量的数量积的运算以及平面向量的基本定理,还考查了数形结合的思想和运算求解的能力,属于中档题.6.B解析:B 【分析】作出图形,可求得线段MN 的中点Q 的轨迹方程为2234x y +=,由平面向量加法的平行四边形法则可得出2PM PN PQ +=,求得PQ 的取值范围,进而可求得PM PN +的取值范围. 【详解】由1MN =,可知OMN 为等边三角形,设Q 为MN 的中点,且3sin 602OQ OM ==,所以点Q 的轨迹为圆2234x y +=,又()3,4P ,所以,3322PO PQ PO -≤≤+,即3355PQ -≤≤+. 由平面向量加法的平行四边形法则可得2PM PN PQ +=,因此2103,103PM PN PQ ⎡⎤+=∈-+⎣⎦.故选:B. 【点睛】本题考查平面向量模长的取值范围的计算,考查了圆外一点到圆上一点距离的取值范围的计算,考查数形结合思想的应用,属于中等题.7.D解析:D 【分析】以O 为原点,边OA 和OC 所在的直线分别为x 和y 轴建立如图所示的平面直角坐标系,设(),P x y ,易得1,2y x αβ==,则12x y αβ+=+,再将原问题转化为线性规划问题,求目标函数12x y +在可行域BCD 内(含边界)的最大值,即可求出结果.【详解】以O 为原点,边OA 和OC 所在的直线分别为x 和y 轴建立如图所示的平面直角坐标系, 则()()0,1,2,0C D ,如下图所示:设(),P x y ,∵ (,)OP OC OD R αβαβ=+∈, ∴()()(),0,12,0)2,(x y αββα=+=,∴2,x y βα==,即1,2y x αβ==,∴12x y αβ+=+, 令1,2z x y =+则12y x z =-+,其中z 为直线12y x z =-+在y 轴上的截距,由图可知,当该直线经过点()1,1B 时,其在y 轴上的截距最大为32, ∴αβ+的最大值为32. 故选:D . 【点睛】本题考查平面向量在几何中的应用,建立坐标系后,可将原问题转化为线性规划中的最值问题,考查学生的转化思想、逻辑推理能力和运算能力,属于中档题.8.C解析:C 【分析】法一:将A ,C 视为定点,根据A 、C 分别在 x 轴、y 轴上,得到垂直关系, O 是AC 为直径的圆上的动点,AC 的中点为圆心M ,根据圆心M 和BO 的位置关系即可得取值范围. 法二:设B 的坐标,根据2AC =,1BC =得到224a c +=,()221x y c +-=,整理式子至()222251x a y x y ax cy -+=⇒+=++,利用均值不等式得出22OB x y d =+=,则212d d -≤即可算出距离的取值范围.【详解】解:法一:将A ,C 视为定点,OA OC ⊥,O 视为以AC 为直径的圆上的动点,AC 的中点为M ,当BO 过圆心M ,且O 在B ,M 之间时,OB 21,O 在BM 的延长线上时,OB 21. 故选:C法二:设(),B x y ,则224a c +=,()221x y c +-=,()222251x a y x y ax cy -+=⇒+=++,即221ax cy x y +=+-,()()2222222ax cy ac xy x y +≤++=+,取等号条件:ay cx =,令22OB x y d =+=,则22112{210d d d d d ≥-≤⇔--≤或201{210d d d <<⇔+-≥,解得2121d ≤≤.故选:C 【点睛】本题考查向量的坐标运算和圆的基本性质,综合性强,属于中档题.9.C解析:C 【分析】在直线AB 上取一点D ,根据向量减法运算可得到DC CA≥,由垂线段最短可确定结论. 【详解】在直线AB 上取一点D ,使得mBA BD =,则BC mBA BC BD DC -=-=,DC CA ∴≥.对于任意m R ∈,都有不等式成立,由垂线段最短可知:AC AD ⊥,即AC AB ⊥,ABC ∴为直角三角形. 故选:C . 【点睛】本题考查与平面向量结合的三角形形状的判断,关键是能够利用平面向量数乘运算和减法运算的几何意义准确化简不等式.10.B解析:B 【分析】由题得三角形是直角三角形,设3,4,5AB AC BC ===,设,=,,DB BF x AD AE y EC CF z =====求出,,x y z ,再利用平面向量的线性运算求解.【详解】因为||:||:||3:4:5AB AC BC =,所以ABC 是直角三角形,设3,4, 5.AB AC BC ===如图,设,=,,DB BF x AD AE y EC CF z =====由题得34,2,1,35x y y z x y z x z +=⎧⎪+=∴===⎨⎪+=⎩,所以2232()5555AD AB BD AB BC AB AC AB AB AC =+=+=+-=+3255a b =+. 故选:B 【点睛】本题主要考查平面向量的线性运算,意在考查学生对这些知识的理解掌握水平.11.C解析:C 【分析】由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+,由二次函数的性质可知,当22cos62b a b t aaπ⋅=-=-时,()g t 取得最小值1,变形可得22sin16b π=,从而可求出b 【详解】解:由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+, 因为2222224()44(cos 1)06a b a b a b π∆=⋅-=-<,所以()g t 恒大于零, 所以当232cos622b b a b t aaaπ⋅=-=-=-时,()g t 取得最小值1,所以2223332122bb bg a a b b a a a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-+⋅-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 化简得2114b =,所以2b =, 故选:C 【点睛】此题考查平面向量数量积的运算,涉及二次函数的最值,考查转化思想和计算能力,属于中档题12.B解析:B 【分析】由向量的运算法则,化简得1344AD AB AC =+,再由AD AB AC λμ=+,即可求得,λμ 的值,即可求解.【详解】由向量的运算法则,可得34=+=+AD AB BD AB BC 313()444AB AC AB AB AC =+-=+, 因为AD AB AC λμ=+,所以13,44λμ==,从而求得13λμ=,故选:B . 【点睛】该题考查的是有关向量的基本定理,在解题的过程中,需要利用向量直角的关系,结合三角形法则,即可求得结果,属于基础题.二、填空题13.26【分析】先由求出求出再进行的计算【详解】因为所以解得所以故答案为:26【点睛】向量类问题的常用处理方法——向量坐标化利用坐标运算比较简单解析:26 【分析】先由//a b 求出2x =,求出b ,再进行()b a b ⋅-的计算. 【详解】因为//a b ,所以9180x -=,解得2x =,所以(6,4),()362426a b b a b -=⋅-=⨯+⨯=.故答案为:26 【点睛】向量类问题的常用处理方法——向量坐标化,利用坐标运算比较简单.14.②④【分析】①可得在的角平分线上但不一定是内心;②可得在BC 边中线的延长线上;③利用向量线性运算得出可判断;④得出根据向量加法的平行四边形法则可判断;⑤令可判断【详解】①若则因为是和同向的单位向量则解析:②④ 【分析】①可得P 在BAC ∠的角平分线上,但不一定是内心;②可得P 在BC 边中线的延长线上;③利用向量线性运算得出=BP BC μ可判断;④得出()1CP CB AC λλμ=++-,根据向量加法的平行四边形法则可判断;⑤令1132=λμ=-,可判断. 【详解】①若1ABλ=,1ACμ=,则AB AC AP ABAC=+,因为,AB AC ABAC是和,AB AC 同向的单位向量,则P 在BAC ∠的角平分线上,但不一定是内心,故①错误;②若1λμ==,则AP AB AC =+,则根据平行四边形法则可得,P 在BC 边中线的延长线上,故直线AP 经过ABC 的重心,故②正确;③若1λμ+=,且0μ>,则()1=AP AB AC AB AB AC μμμμ=-+-+,即()==AP AB AB AC AC AB μμμ--+-,即=BP BC μ,则点P 在线段BC 上或BC 的延长线上,故③错误;④若1λμ+>,()()11AP AB AC AC λλλμ=+-++-,整理可得()1CP CB AC λλμ=++-,10λμ+->,根据向量加法的平行四边形法则可判断点P 在ABC 外,故④正确;⑤若01λμ<+<,则令1132=λμ=-,,则1132AP AB AC =-+,则根据向量加法的平行四边形法则可判断点P 在ABC 外,故⑤错误. 故答案为:②④. 【点睛】本题考查向量基本定理的应用,解题的关键是正确利用向量的线性运算进行判断,合理的进行转化,清楚向量加法的平行四边形法则.15.【分析】先利用平面向量的夹角为且解出然后求解的最值即可得到的最值【详解】因为所以而当且仅当时等号成立所以故答案为:【点睛】本题考查平面向量数量积的运用考查模长最值的求解难度一般【分析】先利用平面向量a ,b 的夹角为120︒,且1a b ⋅=-解出2a b ⋅=,然后求解2a b -的最值即可得到a b -的最值. 【详解】因为1·cos 12a b a a b b θ⋅=⋅=-⋅=-,所以2a b ⋅=, 而2222222226a b a a b b a b a b -=-⋅+=++≥⋅+=,当且仅当2a b ==时等号成立,所以6a b -≥. 【点睛】本题考查平面向量数量积的运用,考查模长最值的求解,难度一般.16.【分析】由可得为的外心又可得为的垂心则为的中心即为正三角形运用向量的数量积定义可得的边长以为坐标原点所在直线为轴建立直角坐标系求得的坐标再设由中点坐标公式可得的坐标运用两点的距离公式可得的长运用三角 解析:494【分析】由DA DB DC ==,可得D 为ABC ∆的外心,又DA DB DB DC DC DA ⋅=⋅=⋅,可得D 为ABC ∆的垂心,则D 为ABC ∆的中心,即ABC ∆为正三角形.运用向量的数量积定义可得ABC ∆的边长,以A 为坐标原点,AD 所在直线为x 轴建立直角坐标系xOy ,求得,B C 的坐标,再设(cos ,sin ),(02)P θθθπ≤<,由中点坐标公式可得M 的坐标,运用两点的距离公式可得BM 的长,运用三角函数的恒等变换公式,结合正弦函数的值域,即可得到最大值. 【详解】解: 由DA DB DC ==,可得D 为ABC ∆的外心, 又DA DB DB DC DC DA ⋅=⋅=⋅,可得()0,(DB DA DC DC DB ⋅-=⋅ )0DA -=,即0DB AC DC AB ⋅=⋅=, 即有,DB AC DC AB ⊥⊥,可得D 为ABC ∆的垂心, 则D 为ABC ∆的中心,即ABC ∆为正三角形, 由2DA DB ⋅=-,即有||||cos1202DA DB ︒⋅=-, 解得||2DA =,ABC∆的边长为4cos30︒=以A 为坐标原点,AD 所在直线为x 轴建立直角坐标系xOy , 可得B(3,3),C(3,D(2,0)-, 由||1AP=,可设(cos ,sin ),(02)P θθθπ≤<,由PM MC =,可得M为PC中点,即有3cos sin (,)22M θθ+, 则2223cos ||3=+2BM θ+⎛⎫- ⎪⎝⎭⎝ 2(3cos )4θ-=+=3712sin 64πθ⎛⎫+- ⎪⎝⎭=, 当sin 16πθ⎛⎫-= ⎪⎝⎭,即23πθ=时,取得最大值,且为494.故答案为:494. 【点睛】本题考查向量的定义和性质,以及模的最值的求法,注意运用坐标法,转化为三角函数的最值的求法,考查化简整理的运算能力,属于中档题.17.【分析】利用向量的数量积公式向量垂直的性质直接直解【详解】非零向量满足=⊥解得故答案为:【点睛】本题主要考查了向量的数量积公式向量垂直的性质等基础知识考查运算能力属于中档题 解析:4-【分析】利用向量的数量积公式、向量垂直的性质直接直解. 【详解】非零向量m →,n →满足4m →=3n →,cos m →〈,13n →〉=,n →⊥t m n →→⎛⎫+ ⎪⎝⎭,n →∴⋅22+||||cos ,||t m n t m n n t m n m n n →→→→→→→→→→⎛⎫+=⋅=<>+ ⎪⎝⎭223||||034t n n →→=⨯+=, 解得4t =-, 故答案为:4- 【点睛】本题主要考查了向量的数量积公式、向量垂直的性质等基础知识,考查运算能力,属于中档题.18.9【分析】根据题意建立直角坐标系用坐标法解决即可得答案【详解】解:根据题意如图建立直角坐标系∴∴∴∴的最大值为故答案为:【点睛】本题考查坐标法表示向量向量的数量积运算线性运算的坐标表示等是中档题解析:9 【分析】根据题意,建立直角坐标系,用坐标法解决即可得答案. 【详解】解:根据题意,如图建立直角坐标系,∴ ()0,3A ()4,0B ,()0,0C , ∴ ()4,3AB =-,()()()0,34,34,33CP CA AP CA AB λλλλλ=+=+=+-=-,[]0,1λ∈,∴ ()()()[]4,330,3990,9CP BA BC CP CA λλλ⋅-=⋅=-⋅=-∈∴()CP BA BC ⋅-的最大值为9.故答案为:9 . 【点睛】本题考查坐标法表示向量,向量的数量积运算,线性运算的坐标表示等,是中档题.19.【分析】建立平面直角坐标系从而得到的坐标这样即可得出的坐标根据与共线可求出从而求出的坐标即得解【详解】建立如图所示平面直角坐标系则:;与共线故答案为:【点睛】本题考查了平面向量线性运算和共线的坐标表 13【分析】建立平面直角坐标系,从而得到,,a b c 的坐标,这样即可得出a b λ+的坐标,根据a b λ+与c 共线,可求出λ,从而求出a b λ-的坐标,即得解. 【详解】建立如图所示平面直角坐标系,则:(1,1),(0,1),(2,1)a b c ==-= ;(,1)a b λλλ∴+=-a b λ+与c 共线2(1)02λλλ∴--=∴=(2,3)a b λ∴-=22||2313a b λ∴-=+=13【点睛】本题考查了平面向量线性运算和共线的坐标表示,考查了学生概念理解,数形结合,数学运算的能力,属于中档题.20.【分析】根据以为一组基底由得到再由求解【详解】因为又因为所以所以故答案为:-12【点睛】本题主要考查平面向量基本定理和向量的线性运算还考查了运算求解的能力属于中档题 解析:12-【分析】 根据1132AD AB AC =+,以,AB AC 为一组基底,由2222()2BC AC AB AC AB AB AC =-=+-⋅,得到152AB AC ⋅=-,再由2111()()3223⎛⎫⎛⎫⋅=-⋅-=-⋅- ⎪ ⎪⎝⎭⎝⎭DB DC AB AD AC AD AB AC AC AB 求解.【详解】因为2222()2BC AC AB AC AB AB AC =-=+-⋅ 又因为3AB =,5AC =,7BC = 所以152AB AC ⋅=-, 所以2111()()3223DB DC AB AD AC AD AB AC AC AB ⎛⎫⎛⎫⋅=-⋅-=-⋅-= ⎪⎪⎝⎭⎝⎭22211251521294244AB AC AB AC --+⋅=---=-. 故答案为:-12 【点睛】本题主要考查平面向量基本定理和向量的线性运算,还考查了运算求解的能力,属于中档题.三、解答题21.(1)6x π=;(2)23x π=时,()f x 取到最大值2,0x =时,()f x 取到最小值1-.【分析】(1)利用向量垂直的坐标表示可求得tan x =,结合x 的范围可求得x 的值; (2)将函数化简为()2sin 6f x x π⎛⎫=-⎪⎝⎭,根据x 的范围可求得6x π-的范围,结合正弦函数图象可确定最大值和最小值取得的点,进而求得结果. 【详解】解:(1)因为a b ⊥,所以sin co 30s b x x a =-=⋅,于是sin tan s 3co x x x ==, 又[]0,x π∈,所以6x π=;(2)()())sin ,1cos f x a x b x =⋅=⋅-cos x x =-2sin 6x π⎛⎫=- ⎪⎝⎭.因为[]0,x π∈,所以5,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 从而12sin 26x π⎛⎫-≤-≤ ⎪⎝⎭于是,当62x ππ-=,即23x π=时,()f x 取到最大值2; 当66x ππ-=-,即0x =时,()f x 取到最小值1-.【点睛】本题考查平面向量垂直的坐标表示、平面向量与三角函数的综合应用,涉及到三角函数最值的求解问题;求解三角函数最值的关键是能够利用整体对应的方式,结合正弦函数的图象来进行求解.22.(1)223-;(2)2-. 【分析】(1)先通过倒角运算得出30POB ∠=︒,120APB ∠=︒,再在POB 中,由余弦定理可求得62PB =-,然后根据平面向量数量积的定义cos PA PB PA PB APB ⋅=⋅∠,代入数据进行运算即可得解;(2)以O 为原点,OA 所在直线为x 轴建立平面直角坐标系,设()2cos ,2sin P αα,其中20,3πα⎡⎤∈⎢⎥⎣⎦,结合平面向量数量积的坐标运算,用含有α的式子表示出PA PB ⋅,再利用三角恒等变换公式和正弦函数的图象即可得解. 【详解】(1)当OA OP ⊥时,如图所示,∵120AOB ∠=︒,∴1209030POB ∠=︒-︒=︒,18030752OPB ︒-︒∠==︒,∴7545120APB ∠=︒+︒=︒, 在POB 中,由余弦定理,得222222cos 22222cos30843PB OB OP OB OP POB =+-⋅∠=+-⨯⨯⨯︒=-∴84362PB =-=,又222PA OA ==,∴1cos 22622232PA PB PA PB APB ⎛⎫⋅=⋅∠=⨯-=- ⎪⎝⎭(2)以O 为原点,OA 所在直线为x 轴建立如图所示的平面直角坐标系,则()2,0A ,∵120AOB ∠=︒,2OB =,∴(3B -,设()2cos ,2sin P αα,其中20,3πα⎡⎤∈⎢⎥⎣⎦, 则()()22cos ,2sin 12cos 32sin PA PB αααα⋅=--⋅-- 2222cos 4cos 234sin αααα=--+-+2cos 2324sin 26πααα⎛⎫=--+=-++ ⎪⎝⎭. ∵20,3πα⎡⎤∈⎢⎥⎣⎦,∴5,666πππα⎡⎤+∈⎢⎥⎣⎦,1sin ,162πα⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦, ∴当62ππα+=,即3πα=时,PA PB ⋅取得最小值为2-.【点睛】 本题考查平面向量的坐标表示,考查平面向量的数量积,考查余弦定理,考查三角函数的图象与性质,属于中档题.23.(1)π3;(2)27 【分析】(1)设向量a 与b 的夹角θ,利用向量的数量积公式计算()2a b a ⋅-=,可得向量的夹角;(2)利用向量的模长公式:2a a =,代入计算可得. 【详解】(1)设向量a 与b 的夹角θ,()16cos 12a b a a b θ⋅-=⋅-=-=,解得1cos 2θ=, 又[]0πθ∈,,π3θ∴= (2)由向量的模长公式可得: ()222a b a b -=-=2244a a b b -⋅+4123627-+=.【点睛】 本题主要考查向量数量积公式的应用,向量模长的计算,求向量的模长需要熟记公式2a a =,考查学生的逻辑推理与计算能力,属于基础题.24.(1)(2,4)-;(2)5-.【分析】(1)由向量模的坐标表示求出λ,可得b 的坐标;(2)根据向量数量积的运算律及数量积的定义计算.【详解】(1)由题知(,2)b λλ=-,2||(|b λλ=+==2λ=-,故(2,4)b =-;(2)21(a =+=∴222221()(2)22||||cos105220532a b a b a a b b a a b b π⎛⎫-⋅+=-⋅-=-⋅-=-⋅--=- ⎪⎝⎭.【点睛】 本题考查向量模的坐标表示,考查向量数量积的运算律,掌握数量积的运算律是解题关键.25.(1)1a b +=;-1;(2)45︒.【分析】(1)根据平面向量数量积的运算律求出||a b +,再根据平面向量的几何意义求出b 在a 方向上的投影;(2)根据向量垂直,则数量积为零,即可得到1a b ⋅=,再根据夹角公式计算可得; 【详解】解:(1)由已知得2222()2121()212a b a b a a b b +=+=+⋅+=+⨯-+=,∴1a b +=;b 在a 方向上的投影为||cos1352(12b =-=- (2)由已知得()0a b a -⋅=,即20a a b -⋅=∴1a b ⋅=,∴[]2cos ,,0,212a b a b a b a b π⋅===∈⨯,, ∴向量a 与b 的夹角为45︒.【点睛】本题考查平面向量的数量积及夹角的计算,属于中档题.26.(12 【分析】(1)利用定义得出a b ⋅,再结合模长公式求解即可;(2)先得出()a a b ⋅+,再由数量积公式得出a 与a b +的夹角的余弦.【详解】(1)313cos 32a b π⋅=⨯⨯=2223()||2||122a b a b a a b b ∴+=+=+⋅+=+⨯=(2)235()||122a a b a a b ⋅+=+⋅=+= 5()2cos ,26113a ab a a b a a b ⋅+∴+===⨯⋅+ 【点睛】 本题主要考查了利用定义求模长以及求夹角,属于中档题.。
专题03 平面向量的应用A 组 基础巩固1.(2020·山东高三期中)(多选题)下列命题中正确的是( ) A .单位向量的模都相等B .长度不等且方向相反的两个向量不一定是共线向量C .若a 与b 满足a b >,且a 与b 同向,则a b >D .两个有共同起点而且相等的向量,其终点必相同【答案】AD【解析】单位向量的模均为1,故A 正确;向量共线包括同向和反向,故B 不正确;向量是矢量,不能比较大小,故C 不正确;根据相等向量的概念知,D 正确.故选:AD2. (2020·北京高二学业考试)(多选题)给出下面四个命题,其中是真命题的是( ) A .0AB BA B .AB BC AC C .AB AC BC += D .00AB +=【答案】AB 【解析】因为0AB BA AB AB ,正确;AB BC AC ,由向量加法知正确;AB AC BC +=,不满足加法运算法则,错误; 0,AB AB +=,所以00AB +=错误.故选:A B .3.最早发现勾股定理的人应是我国西周时期的数学家商高,根据记载,商高曾经和周公讨论过“勾3股4弦5”的问题,我国的《九章算术》也有记载.所以,商高比毕达哥拉斯早500多年发现勾股定理.现有ABC 满足“勾3股4弦5”,如图所示,其中4AB =,D 为弦BC 上一点(不含端点),且ABD 满足勾股定理,则()CB CA AD -⋅=( )A.14425B.25144C.16925D.25169【答案】A【解析】由题意求出125AD =2212144()()525AD CB CA AD AB AD AB AD AD AB -==⋅===,故选A. 4.(多选题)ABC ∆是边长为2的等边三角形,已知向量,a b 满足2AB a =,2AC a b =+,则下列结论中正确的是( )A .a 为单位向量B .b 为单位向量C .a b ⊥D .(4)a b BC +⊥【答案】AD【解析】∵等边三角形ABC 的边长为2,2AB a =,∴||2||2AB a ==,∴||1a =,故A 正确;∵2AC AB BC a BC =+=+,∴BC b =,∴||2b =,故B 错误;由于2,AB a BC b ==,∴a 与b 的夹角为120°,故C 错误; 又∵21(4)4||412402a b BC a b b ⎛⎫+⋅=⋅+=⨯⨯⨯-+= ⎪⎝⎭, ∴(4)a b BC +⊥,故D 正确.5. (2020·北京高二学业考试)已知平面向量满足 ,且与夹角为60°,那么等于( )A .B .C .D .1【答案】C【解析】因为,故选:C. 6.已知O 为ABC ∆内部一点,且5()2AB OB OC =+,则AOB BOC S S ∆∆=( ) A. 1 B. 54 C. 2 D.52 ,a b 1a b ==a b a b ⋅14131211cos 1122a b a b θ⋅=⋅⋅=⨯⨯=【答案】:D.【解析】由题意,5()2OB OA OB OC -=+,即2350OA OB OC ++=。
以下是为⼤家整理的关于《⼈教版⾼⼆必修四数学第⼆章平⾯向量试题》的⽂章,供⼤家学习参考!第四部分练习与试卷2.1 平⾯向量的概念及其线性运算(练习)【练习⽬标】1、理解平⾯向量和向量相等的含义,理解向量的⼏何表⽰;2、掌握向量加、减法的运算,并理解其⼏何意义;3、掌握向量数乘的运算,并理解其⼏何意义,以及两个向量共线的含义;4、了解向量线性运算的性质及其⼏何意义。
【⾃我测试】1、下列命题中(1)与⽅向相同(2)与⽅向相反(3)与有相等的模(4)若与垂直其中真命题的个数是 ( )A、0B、1C、2D、32、已知AD、BE是 ABC的边BC、AC上的中线,且,,则为 ( )A、 B、 C、 D、3、O是平⾯上⼀定点,A、B、C是平⾯上不共线的三个点,动点P满⾜,则P的轨迹⼀定经过 ABC的( )A、外⼼B、内⼼C、垂⼼D、重⼼4、若⾮零向量、满⾜| + |=| — |,则与所成⾓的⼤⼩为_________________。
5、已知点M是 ABC的重⼼,若,求的值。
6、 ABC的外接圆的圆⼼为O,两条边上的⾼的交点为H,,求实数的值。
2.2 平⾯向量的坐标运算【练习⽬标】1、知识与技能:了解平⾯向量的基本定理及其意义、掌握平⾯向量的正交分解及其坐标表⽰;理解⽤坐标表⽰的平⾯向量共线的条件。
2、能⼒⽬标:会⽤坐标表⽰平⾯向量的加、减与数乘运算;3、情感⽬标:通过对平⾯向量的基本定理来理解坐标,实现从图形到坐标的转换过程,锻炼学⽣的转化能⼒。
【⾃我测试】1、下列命题正确的是()A、 B、C、 D、2、已知正⽅形ABCD的边长为1,,则 = ()A、0B、3C、D、3、已知,则共线的条件是()A、 B、 C、 D、或4、如图,在中D、E、F分别是AB、BC、CA的中点,则()A、 B、 C、 D、5、若,则实数p、q的值为()A、 B、 C、 D、6、已知A、B、C是坐标平⾯上的三点,其坐标分别为A(1,2),B(4,1),C(0,-1),则是()A、等腰三⾓形B、等腰直⾓三⾓形C、直⾓三⾓形D、以上都不对2.3 平⾯向量的数量积及其运算【学习⽬标】1.知识与技能:(1)理解向量数量积的定义与性质;(2)理解⼀个向量在另⼀个向量上的投影的定义;(3)掌握向量数量积的运算律;(4)理解两个向量的夹⾓定义;【⾃我测试】1、已知,,和的夹⾓为,则为()A. B. C. D.2、已知向量,,若,则()A. B. C. D.3、在△ABC中,a,b,c分别为三个内⾓A,B,C所对的边,设向量,若 ,则⾓A的⼤⼩为()A. B. C. D.4、设是任意的⾮零平⾯向量,且它们相互不共线,下列命题:①②③不与垂直④其中正确的是()A.①②B.②③C.③④D.②④5、若向量与的夹⾓为,,则向量的模为()A. B. C. D.6、为锐⾓三⾓形的充要条件是()A. B.C. D.7、设是两个⾮零向量,是在的⽅向上的投影,⽽是在的⽅向上的投影,若与的夹⾓为钝⾓,则()A. B. C. D.8、在中,若且,则的形状是()A.等边三⾓形 B.直⾓三⾓形 C.等腰⾮等边三⾓形 D.三边均不相等的三⾓形9、若,则与的夹⾓为; = .10、已知, ,如果与的夹⾓为锐⾓,则的取值范围是11、 = 时,与垂直12、设向量其中,则的值是.13、已知向量与的夹⾓为,,则 = .14、已知,⑴求与的夹⾓;⑵求;⑶若,,求的⾯积.15、已知向量且.⑴求及;⑵若的最⼩值是,求的值.2.4平⾯向量的应⽤【学习⽬标】1.经历⽤向量⽅法解决某些简单的平⾯⼏何问题、⼒学问题与其他⼀些实际问题的过程,体会向量是⼀种处理⼏何问题、物理问题等的⼯具,发展运算能⼒2.运⽤向量的有关知识对物理中的问题进⾏相关分析和计算,并在这个过程中培养学⽣探究问题和解决问题的能⼒1.在△ABC中,AB=a,AC=b,当a•b <0时,△ABC为()A.直⾓三⾓形B.锐⾓三⾓形C.钝⾓三⾓形D.等腰三⾓形2.若向量a、b、c满⾜a +b+c=0,|a|=3,|b|=1,|c|=4,则a b+b c+c a等于()A. 11 B. 12 C. 13 D. 143.已知点,则∠BAC 的余弦值为.4.已知,且a 与b的夹⾓为钝⾓,则x的取值范围是.5.的顶点为,重⼼.求:(1)边上的中线长;(2)边上的⾼的长.6.已知O为△ABC所在平⾯内的⼀点,且满⾜,试判断△ABC的形状.7.已知,设C是直线OP上的⼀点,其中O为坐标原点.(1)求使取得最⼩值时向量的坐标;(2)当点C满⾜(1)时,求cos∠ACB.8、已知O为△ABC所在平⾯内的⼀点,且满⾜,试判断△ABC的形状.9、已知,设C是直线OP上的⼀点,其中O为坐标原点.(1)求使取得最⼩值时向量的坐标;(2)当点C满⾜(1)时,求cos∠ACB.平⾯向量测试卷命题⼈:蓝承⼀、选择题:本⼤题共8⼩题,每⼩题4分,共32分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1、设向量,,则下列结论中正确的是()A、 B、C、与垂直D、∥2、在平⾏四边形ABCD中,AC为⼀条对⾓线,若, ,则()A.(3,5) B.(2,4) C、(-2,-4) D.(-3,-5)3、义平⾯向量之间的⼀种运算“ ”如下,对任意的,,令,下⾯说法错误的是()A.若与共线,则B.C.对任意的,有D.4、已知向量a,b满⾜a•b=0,|a|=1,|b|=2,则|2a-b|=()A、8B、4C、2D、05、在中,,.若点满⾜,则()A. B. C. D.6、设点M是线段BC的中点,点A在直线BC外,则()A、8B、4C、 2D、17、中,点在上,平⽅.若,,,,则()A、 B、 C、 D 、8、已知和点满⾜ .若存在实数使得成⽴,则 =()A. 2 B. 3 C. 4 D. 5⼆、填空题:本⼤题共4⼩题,每⼩题4分,共16分.把答案填在答题卡的相应位置.9、如图,在中,,,则 = 。
高二数学平面向量基本定理及坐标表示试题答案及解析1.已知向量,,若,则实数的值等于()A.B.C.D.【答案】B【解析】因为,所以,解得,故选B.【考点】平面向量平行的充要条件.2.以下四组向量:①,;②,;③,;④,其中互相平行的是.A.②③B.①④C.①②④D.①②③④【答案】D【解析】因为若∥,则;①②③④都满足,所以都满足∥.【考点】向量的坐标表示、向量的运算.3.已知三点,,.(1)求与的夹角;(2)求在方向上的投影.【答案】(1);(2).【解析】(1)由点的坐标先计算出向量、的坐标,然后利用公式计算出向量夹角的余弦值,最后由余弦值即可确定向量、的夹角;(2)根据一个向量在另一个向量方向上的投影公式进行计算即可.试题解析:(1) , 2分5分而 7分∴ 8分(2)在方向上的投影 12分.【考点】空间向量的基本运算问题.4.向量,若⊥,则实数 .【答案】【解析】由于⊥,则即得.【考点】向量垂直的坐标公式.5.在四边形ABCD中,=,且·=0,则四边形ABCD是()A.矩形B.菱形C.直角梯形D.等腰梯形【答案】B【解析】根据题意,由于四边形ABCD中,=,则说明四边形是平行四边形,且·=0,说明其对角线垂直,说明是菱形,故选B.【考点】向量的运用点评:本试题考查了向量的几何意义的运用,主要是对于向量的数量积为零的理解表示垂直关系,同时能结合向量相等得到模长相等,属于基础题。
6.已知, (为两两互相垂直的单位向量),那么= .【答案】–65【解析】由,可以解得,,所以【考点】本小题主要考查向量的运算.点评:由已知条件可以求出向量的坐标,进而根据向量是数量积运算公式可以求解,难度较低,运算要仔细.7.已知向量,若,则向量与向量的夹角是()A.B.C.D.【答案】B.【解析】因为所以量与向量的夹角为.【考点】向量的数量积,向量的夹角,两角差的余弦公式,向量的模.点评:本小题用到了公式有:.8.已知向量,则等于()A.B.C.25D.5【答案】D【解析】:因为根据向量的数量积公式,以及数量积的性质,要求解向量的模的长度,可以通过平方转化为向量的数量积来得到结论。
专题6.2 平面向量的加法、减法、数乘运算知识储备一.向量加法的法则已知非零向量a,b,在平面内任取一点A,作AB=a,BC=b,则向量AC叫做a与b的和,记作a+b,即a+b=AB+BC=AC.这种求向量和的方法,称为向量加法的三角形法则.对于零向量与任意向量a,规定a+0=0+a=a以同一点O为起点的两个已知向量a,b为邻边作▱OACB,则以O为起点的对角线OC就是a与b的和.把这种作两个向量和的方法叫做向量加法的平行四边形法则有什么关系?【答案】(1)当向量a与b不共线时,a+b的方向与a,b不同,且|a+b|<|a|+|b|.(2)当a与b同向时,a+b,a,b同向,且|a+b|=|a|+|b|.(3)当a与b反向时,若|a|>|b|,则a+b的方向与a相同,且|a+b|=|a|-|b|;若|a|<|b|,则a+b的方向与b相同,且|a+b|=|b|-|a|.二.向量的减法1.定义:向量a加上b的相反向量,叫做a与b的差,即a-b=a+(-b),因此减去一个向量,相当于加上这个向量的相反向量,求两个向量差的运算,叫做向量的减法.2.几何意义:在平面内任取一点O,作OA=a,OB=b,则向量a-b=BA,如图所示.3.文字叙述:如果把两个向量的起点放在一起,那么这两个向量的差是以减向量的终点为起点,被减向量的终点为终点的向量.【思考】若a ,b 是不共线向量,|a +b |与|a -b |的几何意义分别是什么?【答案】如图所示,设OA =a ,OB =b .根据向量加法的平行四边形法则和向量减法的几何意义,有OC =a +b ,BA =a -b .因为四边形OACB 是平行四边形,所以|a +b |=|OC |,|a -b |=|BA |,分别是以OA ,OB 为邻边的平行四边形的两条对角线的长.三 向量数乘的定义实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,其长度与方向规定如下:(1)|λa |=|λ||a |.(2)λa (a ≠0)的方向⎪⎩⎪⎨⎧<>.00的方向相反时,与当的方向相同;时,与当a a λλ 特别地,当λ=0时,λa =0.当λ=-1时,(-1)a =-a .四 向量共线定理向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa .【思考】向量共线定理中为什么规定a ≠0?【答案】若将条件a ≠0去掉,即当a =0时,显然a 与b 共线.(1)若b ≠0,则不存在实数λ,使b =λa .(2)若b =0,则对任意实数λ,都有b =λa .能力检测姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分150分,考试时间120分钟,试题共16题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、单项选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020·江西高一期末(理))下列四式不能化简为AD 的是( )A .MB AD BM +- B .()()AD MB BC CM +++C .()AB CD BC ++D .OC OA CD -+【答案】A 【解析】对B ,()()AD MB BC CM AD MB BC CM AD +++=+++=,故B 正确; 对C ,()AB CD BC AB BC CD AD ++=++=,故C 正确;对D ,OC OA CD AC CD AD -+=+=,故D 正确;故选:A.2.(2021·北京市第四中学顺义分校高一期末)在平行四边形ABCD 中,设对角线AC 与BD 相交于点O ,则AB CB +=( )A .2BOB .2DOC .BD D .AC【答案】B 【解析】因为四边形ABCD 为平行四边形,故0AO CO +=,故22AB CB AO OB CO OB OB DO +=+++==,故选B.3.(2020·莆田第七中学高二期中)在五边形ABCDE中(如图),AB BC DC+-=()A.AC B.AD C.BD D.BE【答案】B【解析】AB BC DC AB BC CD AD+-=++=.故选B4.(2020·全国高二单元测试)如图所示,已知空间四边形ABCD,连接AC,BD,M,G分别是BC,CD的中点,则AB+12BC+12BD等于()A.AD B.GA C.AG D.MG 【答案】C【解析】∵四面体A-BCD中,M、G为BC、CD中点,∵12BC BM=,12BD MG=,∵1122AB BC BD AB BM MG AM MG AG ===+++++.故选C 5.(2021·江苏高一)八卦是中国文化中的哲学概念,如图1是八卦模型图,其平面图形记为图2中的正八边形 ABCDEFGH ,其中1OA =,则给出下列结论:①0BF HF HD -+=;①2OA OC OF +=-;①AE FC GE AB +-=.其中正确的结论为( )A .①①B .①①C .①①D .①①①【答案】C 【解析】对于∵:因为BF HF HD BF FH HD BH HD BD -+=++=+=,故∵错误; 对于∵:因为3602908AOC ︒∠=⨯=︒,则以,OA OC 为邻边的平行四边形为正方形, 又因为OB 平分AOC ∠,所以22OA OC OB OF +==-,故∵正确;对于∵:因为AE FC GE AE FC G EG A FC +-=++=+,且FC GB =,所以AE FC GE AG GB AB +-=+=,故∵正确,故选:C.6.(2019·天津市南开区南大奥宇培训学校高三月考)如图,在四边形ABCD 中,设,,AB a AD b BC c ===,则DC =( )A .a b c -++B .a b c -+-C .a b c ++D .a b c -+【答案】D 【解析】由题意,在四边形ABCD 中,设,,AB a AD b BC c ===,根据向量的运算法则,可得DC DA AB BC b a c a b c =++=-++=-+.故选D.7.(2020·陕西宝鸡市·高三二模(文))点P 是ABC ∆所在平面内一点且PB PC AP +=,在ABC ∆内任取一点,则此点取自PBC ∆内的概率是( )A .12B .13C .14D .15【答案】B【解析】设D 是BC 中点,因为PB PC AP +=,所以2PD AP =,所以A 、P 、D 三点共线且点P 是线段AD 的三等分点, 故13PBC ABC S S ∆∆=,所以此点取自PBC ∆内的概率是13.故选B. 8.(2020·自贡市田家炳中学高二开学考试)P 是ABC 所在平面内一点,若CB PA PB λ=+,其中R λ∈,则P 点一定在( )A .ABC 内部B .AC 边所在直线上 C .AB 边所在直线上D .BC 边所在直线上【答案】B【解析】根据题意,CB PA PB CB PB PA CP PA λλλ=+⇔-=⇔=,∴点P 在AC 边所在直线上,故选B.二、多项选择题:本题共4小题,每小题5分,共20分。
高二数学平面向量的应用试题答案及解析1.已知O是平面上的一个定点,A,B,C,是平面上不共线三个点,动点P满足,则动点P的轨迹一定通过△ABC的()A.重心B.垂心C.外心D.内心【答案】B【解析】如图所示,过点A作AD⊥BC,垂足为D点.则,同理,∵动点P满足∴∴所以,因此P的轨迹一定通过△ABC的垂心.【考点】向量的线性运算性质及几何意义.2.设向量满足,,则()A.1B.2C.3D.5【答案】B【解析】由可得,即,两式相减可得:.【考点】向量的数量积.3.(2009•聊城一模)由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn=nm”类比得到“•=•”;②“(m+n)t=mt+nt”类比得到“(+)•=•+•”;③“t≠0,mt=nt⇒m=n”类比得到“≠0,•=•⇒=”;④“|m•n|=|m|•|n|”类比得到“|•|=||•||”.以上类比得到的正确结论的序号是 _________ (写出所有正确结论的序号).【答案】①②.【解析】由向量的数量积运算的交换律和分配律可知①②正确∵,故③错误;∵|,故④错误.故应填入①②.【考点】1.向量数量积运算性质;2.类比推理.4.在下列命题中:①若向量a,b共线,则向量a,b所在的直线平行;②若向量a,b所在的直线为异面直线,则向量a,b一定不共面;③若三个向量a,b,c两两共面,则向量a,b,c共面;④已知空间的三个向量a,b,c,则对于空间的任意一个向量p总存在实数x,y,z使得p=xa+yb+zc.其中正确命题的个数是()A.0B.1C.2D.3【答案】A【解析】①a,b所在的直线也可能重合;②其中一向量为零向量时,可共面;③其中一向量为零量时,可能出现不共面的情况;④三个向量应该是不共面的向量才可作为空间向量的基底.【考点】空间向量.5.设为单位向量,非零向量,若的夹角为,则的最大值等于________.【答案】2【解析】由题意求得从而可得,再利用二次函数的性质求得的最大值.【考点】(1)向量的运算;(2)二次函数的最值.6.已知向量满足,则向量的夹角为 ( )A.B.C.D.【答案】B【解析】由题意可得可得,求得>的值,可得向量的夹角.【考点】向量的运算.7.已知,,若∥,则等于().A.B.C.D.【答案】B【解析】因为∥,所以,所以。
高二数学平面向量试题答案及解析1.已知则 ,.【答案】;【解析】由三边可知,以向量为邻边的平行四边形是菱形,夹角为,,为另一对角线长度为1【考点】向量运算与三角形法则2.已知,向量的夹角为120°,且,则实数t的值为()A.-2B.-1C.1D.2【答案】B【解析】【考点】向量的数量积运算3.已知点,曲线C:恒过定点B,P为曲线C上的动点且的最小值为2,则()A.﹣2B.﹣1C.2D.1【答案】D【解析】曲线C:恒过点B,则令,可得,即,又点,设,则,由于在(0,+∞)上有最小值2,且,故是的极值点,即最小值点.,恒成立,在(0,+∞)上是增函数,所以没有最小值;故不符合题意;当a>0,时,,函数在是减函数,在是增函数,所以有最小值为,即,解得;故选D.【考点】平面向量数量积的运算.4.已知平面向量,且,则实数的值为()A.1B.4C.D.【答案】D【解析】因为,所以.故选D.【考点】向量平行的充要条件.5.已知菱形的边长为,,则()A.B.C.D.【答案】D【解析】.故D正确.【考点】1向量的加减法;2向量的数量积.6.如图,设为内的两点,且,=+,则的面积与的面积之比为()A.B.C.D.【答案】B【解析】设,则,由平行四边形法则知,所以,同理,故.故答案为:B.【考点】平面向量共线.【思路点睛】首先,利用向量的运算法则——平行四边形法则作出P,利用同底的三角形的面积等于高的比求出,然后再平行四边形法则作出Q,同理可求出,再将两个式子相比,即可求出的面积与的面积之比.7.已知平面向量,,且//,则()A.B.C.D.4【答案】C【解析】两向量平行坐标满足【考点】向量平行的判定8.设,,且,则锐角为()A.B.C.D.【答案】C【解析】由,得,即,由二倍角公式得,故选C.【考点】1、向量的坐标运算;2、向量共线的基本定理.【思路点晴】本题主要考查的向量的基本概念与简单运算、向量的坐标运算,属于容易题.本题通过向量共线,得,代入坐标运算的公式;再由二倍角公式,得到关于角的三角函数值,从而求得锐角的值.9.已知向量,,若与共线,则的值为()A.B.2C.-D.-2【答案】D【解析】,,若与共线,所以有【考点】向量共线与坐标运算10.(本小题满分12分)已知非零向量满足,且.(1)求;(2)当时,求向量与的夹角的值.【答案】(1)(2)【解析】(1)本题考察的是求向量的模,根据题目所给条件很容易得到,即可得到。
(2)根据两个向量的夹角公式可得,再根据向量夹角的取值范围,即可求得夹角的值。
试题解析:(1)因为,即,所以,故.(2)因为,故.【考点】(1)平面向量数量积的运算(2)向量的模和夹角11.设为所在平面内一点,,则()A.B.C.D.【答案】D【解析】.故D正确.【考点】平面向量的加减法.12.若||=1,||=2,=+,且⊥,则与的夹角为________。
【答案】【解析】⊥,所以【考点】向量夹角13.已知椭圆:两个焦点之间的距离为2,且其离心率为.(1)求椭圆的标准方程;(2)若为椭圆的右焦点,经过椭圆的上顶点B的直线与椭圆另一个交点为A,且满足,求外接圆的方程.【答案】(1);(2)或.【解析】(1)由已知条件可得和的值,利用可得的值,进而可得椭圆的方程;(2)由和在椭圆上,得或,分别分析,根据特点写出其外接圆.试题解析:(1),,,椭圆的标准方程是;(2)由已知可得,设,则,,,即,代入,得:或,即或.当为时,,的外接圆是以为圆心,以1为半径的圆,该外接圆的方程为;当为时,,所以是直角三角形,其外接圆是以线段为直径的圆.由线段的中点以及可得的外接圆的方程为,综上所述,的外接圆的方程为或.【考点】1、椭圆的标准方程;2、向量的数量积;3、圆的标准方程;4、三角形的外接圆.14.已知向量则A.2或3B.-1或6C.6D.2【答案】D【解析】由得【考点】向量的坐标运算15.已知、均为单位向量,它们的夹角为,那么等于()A.B.C.D.4【答案】C【解析】根据已知可得:,故选择C【考点】求向量的模16.设向量,,若向量与平行,则A.B.C.D.【答案】D【解析】由两向量平行得【考点】向量平行的判定及向量的坐标运算17.已知方程x 2+y 2-2x-4y+m=0.(1)若此方程表示圆,求m的取值范围;(2)若(1)中的圆与直线x+2y-4=0相交于M,N两点,且(其中O为坐标原点)求m的值;(3)在(2)的条件下,求以MN为直径的圆的方程.【答案】(1)m<5;(2);(3)【解析】(1)将x 2+y 2-2x-4y+m=0转化为:,由方程表示圆,则有5-m>0.(2)由先将直线与圆方程的联立,由相交于两点,则有,又,得出,由韦达定理求解;(3)线段的中点为圆心,圆心到端点的距离为半径,从而求得结论试题解析:(1)x 2+y 2-2x-4y+m=0即(x-1)2+(y-2)2=5-m(2分)若此方程表示圆,则5-m>0∴m<5(2)x=4-2y代入得5y 2-16y+8+m="0"∵△=(-16)2-4×5×(8+m)>0∴,∵得出:x1x2+y1y2=0而x1x2=(4-2y1)•(4-2y2)=16-8(y1+y2)+4y1y2∴5y1y2-8(y1+y2)+16=0,∴满足故的m值为.(3)设圆心为(a,b),且O点为以MN为直径的圆上的点,半径圆的方程【考点】1.直线与圆相交的性质;2.二元二次方程表示圆的条件18.在中,、、的对边分别为、、,且,,则的面积为()A.B.C.D.【答案】C【解析】由,根据正弦定理可得,;再根据,得,,所以的面积为,故C为正确答案.【考点】1、正弦定理;2、向量的数量积.【思路点晴】本题主要考查的是正弦定理、三角函数的和差公式、向量的数量积的综合运用,属于中档题;由,根据正弦定理求出的值,进而求出的值;再根据,利用两个向量的数量积的定义求得的值,最后根据面积公式求出的面积即可.19.长为3的线段AB的端点A、B分别在x、y轴上移动,动点C(x,y)满足,则动点C的轨迹方程是.【答案】【解析】动点满足,则,根据题意得,即.则点的轨迹方程是椭圆.故答案为【考点】椭圆的标准方程.20.在平面直角坐标系中,为坐标原点,以为圆心的圆与直线相切.(Ⅰ)求圆的方程;(Ⅱ)若直线:与圆交于,两点,在圆上是否存在一点,使得,若存在,求出此时直线的斜率;若不存在,说明理由.【答案】(Ⅰ);(Ⅱ)存在,.【解析】(Ⅰ)已知圆心,求圆的方程,只需求出圆的半径,由圆切线的性质:圆心到切线的距离等于半径即可求得圆的方程;(Ⅱ)先由直线与圆相交可得直线斜率的取值范围,由及,可知四边为菱形,所以,从而得到直线的方程,解方程组求得点的坐标,代入圆的方程即得的值,验证是否满足相交的条件.试题解析:(Ⅰ)设圆的半径为,因为直线与圆相切,所以所以圆的方程为.(Ⅱ)方法一:因为直线:与圆相交于,两点,所以,所以或,假设存在点,使得,因为,在圆上,且,而,由向量加法的平行四边形法则可知四边形为菱形,所以与互相垂直且平分所以原点到直线:的距离为即,解得,,经验证满足条件所以存在点,使得.方法二:假设存在点,使得.记与交于点因为,在圆上,且,由向量加法的平行四边形法则可知四边形为菱形,因为直线斜率为,显然,所以直线方程为由,解得,所以点坐标为因为点在圆上,所以,解得即,经验证满足条件所以存在点,使得.【考点】圆的方程,直线与圆的位置关系的应用.【方法点晴】求圆的方程常用待定系数法,设法求出圆心和半径即得圆的方程;直线与圆位置关系在应用中要特别注意垂直关系,一方面可以找到斜率之间的关系,另一方面又可以构造直角三角形,本题中及,且结合向量加法的几何意义,可知为菱形的对角线,既可利用点到直线的距离公式求解,又可以求出点的坐标代入圆方程即得解.21.已知平面向量,,则向量()A.B.C.D.【答案】C【解析】.故C正确.【考点】向量的减法的三角形法则.22.已知向量、,满足,,则的最小值为_________.【答案】【解析】由得,,所以,,,解得,所以的最小值为.【考点】向量的数量积运算及其性质.【方法点晴】要求的最小值,可以考虑建立关于的不等式或不等式组.已知,由结合向量数量积的运算律可得关于及的关系式, 根据向量数量积的定义,把向量的夹角转化为关于的表达式,再由向量夹角的有界性最终得到关于的不等式,解不等式即得的最小值.23.已知为圆上三点,的延长线与线段的延长线交于圆外点。
若则在以下哪个范围内()【答案】B【解析】由于三点共线,所以存在实数满足又所以即对比可知:所以的取值范围是.【考点】共线向量定理和平面向量基本定理.【方法点晴】本题中条件“的延长线与线段的延长线交于圆外点”内涵非常丰富,既包含了共线向量,又包含了参数的范围,是本题的点睛之处.三点共线可得其中三点共线可得两式联立,就用表示出了,再结合点与圆的位置关系即可求得的范围.24.(2015秋•陕西校级月考)若平面α,β垂直,则下面可以作为这两个平面的法向量的是()A.=(1,2,1),=(﹣3,1,1)B.=(1,1,2),=(﹣2,1,1)C.=(1,1,1),=(﹣1,2,1)D.=(1,2,1),=(0,﹣2,﹣2)【答案】A【解析】根据平面α,β垂直,它们的法向量也垂直,对四个选项进行判断即可.解:∵平面α,β垂直,∴这两个平面的法向量也互相垂直,不妨设为、,则•=0;对于A,有•=﹣3+2+1=0,满足题意;对于B,•=﹣2+1+2=1≠0,不满足题意;对于C,•=﹣1+2+1=2≠0,不满足题意;对于D,•=0﹣4﹣2=﹣4≠0,不满足题意.故选:A.【考点】平面的法向量.25.如图,正方形中,为的中点,若,则的值为A.B.C.D.【答案】D【解析】因为E是DC的中点,所以,∴,∴,.【考点】平面向量的几何运算26.已知下列命题(是非零向量)(1)若,则;(2)若,则;(3)则假命题的个数为___________.【答案】3【解析】(1)不正确;(2)不正确,表示两向量共线;(3)不正确;向量不满足结合律【考点】向量运算法则27.已知是不等式组表示的平面区域内的一点,,为坐标原点,则的最大值()A.2B.3C.5D.6【答案】D【解析】可行域为一个三角形BCD及其内部,其中而,因此直线过点C时取最大值6. 选D.【考点】线性规划28.已知△ABC的三个顶点A,B,C的坐标分别为(0,1),(,0),(0,﹣2),O为坐标原点,动点P满足||=1,则|++|的最小值是()A.﹣1B.﹣1C.+1D.+1【答案】A【解析】设点P(x,y),则动点P满足||=1可得 x2+(y+2)2=1.根据|++|=,表示点P(x y)与点A(﹣,﹣1)之间的距离.显然点A在圆C x2+(y+2)2=1的外部,求得AC=,问题得以解决.解:设点P(x,y),则动点P满足||=1可得 x2+(y+2)2=1.根据++的坐标为(+x,y+1),可得|++|=,表示点P(x y)与点A(﹣,﹣1)之间的距离.显然点A在圆C x2+(y+2)2=1的外部,求得AC=,|++|的最小值为AC﹣1=﹣1,故选:A.【考点】平面向量的坐标运算.29.如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD为平行四边形,已知=,=,=,则用向量,,可表示向量为()A.++B.﹣++C.﹣+D.﹣+﹣【答案】B【解析】利用空间向量的平行六面体法则即可得出.解:===﹣.故选:B.【考点】平面向量的基本定理及其意义.30.已知向量=(﹣1,0),=(,),则向量与的夹角为()A.B.C.D.【答案】D【解析】由条件利用两个向量的数量积公式,两个向量的夹角公式,求得向量与的夹角.解:∵向量=(﹣1,0),=(,),设向量与的夹角为θ,则由cosθ==﹣,θ∈[0,π],∴θ=,故选:D.【考点】数量积表示两个向量的夹角.31.若=(﹣2,1),=(x,﹣3),,则x=()A.B.C.6D.【答案】A【解析】利用向量共线定理即可得出.解:∵,∴1×(﹣3)﹣(﹣2)x=0,解得x=.故选A.【考点】平面向量共线(平行)的坐标表示.32.三棱锥A﹣BCD中,AB=AC=AD=2,∠BAD=90°,∠BAC=60°,则•等于()A.﹣2B.2C.﹣2D.2【答案】A【解析】用表示出,再计算数量积.解:∵,∴×=×()=﹣=2×2×cos90°﹣2×2×cos60°=﹣2.故选:A.【考点】平面向量数量积的运算.33.已知点在平面内,并且对空间任一点,,则的值为()A.B.C.D.0【答案】A【解析】由于点在平面内,且对空间任一点,根据空间向量基本定理可知,解得;【考点】空间向量基本定理;34.设数列满足,点对任意的,都有向量,则数列的前项和【答案】【解析】∴等差数列,公差,代入得【考点】数列与向量的综合35.已知A、B、C三点不共线,对平面ABC外的任一点O,下列条件中能确定点M与点A、B、C一定共面的是A. B.C. D.【答案】C【解析】由题:因为A、B、C三点不共线,对平面ABC外的任一点O,如果能确定点M与点A、B、C一定共面,则必然满足共起点的向量关系式中,等式右边系数和为1.【考点】向量中四点共面的判定.36.已知点,点,分别是轴和轴上的动点,且,动点满足,设动点的轨迹为.(1)求曲线的方程;(2)点为曲线上不同的三点,且,过两点分别作曲线的切线,记两切线的交点为,求的最小值.【答案】(1);(2).【解析】(1)设,则,由,得.(2)已知,设,设的方程为,联立方程,求得,同理设的方程为.求得切线的方程为.同时理抛物线在点处的切线的方程为.联立两个条切线的方程,求得点的坐标为.点在直线上.求得点到直线的距离,求得.试题解析:(1)设,则,,由,得.(2)已知,设,设的方程为,联立方程,消去,得,所以.同理,设的方程为.对函数求导,得,所以拋物线在点处的切线斜率为,所以切线的方程为,即.同时理抛物线在点处的切线的方程为.联立两个条切线的方程,解得,所以上点的坐标为.因此点在直线上.因为点到直线的距离,,当且仅当时等号成立.由,得,验证知符合题意,所以当时,有最小值.【考点】1、抛物线的标准方程;2、直线与与抛物线的位置关系及其应用.【方法点睛】本题考查曲线方程的求法、直线与圆锥曲线的位置关系及其应用、线段的最小值的求法,意在考查考生的抽象概括能力与推理论证能力及运算求解能力,属难题.第一问中利用向量的知识即可求解;第二问中先求得的方程,函数求导,求得切线的斜率,从而求得切线的方程,同理求得切线的方程,联立两切线方程求导交点坐标,代入直线,利用点到直线的距离公式求得的最小值,求解中注意点到直线的距离公式的合理运用.37.设向量满足,则()A.B.C.D.【答案】A【解析】,故选A.【考点】向量数量积的性质.38.在中,,,是边上的点,且,,则()A.B.1C.D.2【答案】B【解析】在等腰三角形中,,,则, 又因为,,选B.【考点】平面向量的运算.【方法点晴】本题主要考查的是向量在几何中的应用,向量的数量积及向量的加法乘法运算,属于中档题.本题由于条件中存在向量的数量关系,且两边长及夹角已知,因此考虑以,为基底,来表示,通过数量积的运算,将所求转化为基底向量的运算,从而求出结果,注意三角形中向量夹角和三角形内角关系.39.在平面直角坐标系中,点P是直线上一动点,点F(1,0),点Q为PF的中点,点M满足且,过点M作圆的切线,切点分别A,B,则|AB|的最小值为()A.3B.C.D.【答案】D【解析】由点Q为PF的中点,点M满足可知,由可知,所以的轨迹为抛物线,其方程为,设,其到点的距离满足时取得最小值8,所以|AB|的最小值为【考点】抛物线,圆的方程与性质40.设平面向量、满足||=2、||=1,,点P满足,则点P所表示的轨迹长度为()A.B.C.D.【答案】D【解析】由题意得,,所以,分别以为轴,建立如图所示的平面直角坐标系,则:,则,,设,则,所以,所以,所以点的轨迹表示以原点为圆心,半径为的圆在第一象限的部分,点所表示的轨迹长度为,故选D.【考点】向量的线性运算与向量的几何意义.【方法点晴】本题主要考查了向量的线性运算与向量的几何意义,通过建立平面直角坐标系,利用向量的坐标解决向量问题的的方法,求出平面上的点到的坐标,根据点的坐标求出向量的坐标,以及向量的坐标数乘运算,圆的标准方程,圆的周长公式等知识点的综合应用,着重考查了学生分析问题和解答问题的能力,属于中档试题.41.等差数列的前项和为,且,,则过点的直线的一个方向向量是()A.B.C.D.【答案】A【解析】设等差数列首项,公差为,则,,解方程组得:,则,,选A.【考点】等差数列,直线的方向向量.42.已知非零向量与满足,且,则的形状为()A.三边均不相等的三角形B.等边三角形C.等腰非等边三角形D.直角三角形【答案】B【解析】因为是与上的单位向量,又由可知,为边上的高,所以为等腰三角形,由可得,故为等边三角形,故选B.【考点】1、单位向量及向量的夹角;2、向量的加法运算、向量垂直的性质及正三角形的性质.43.等腰三角形中,,,为边中线上任意一点,则的值为()A.5B.C.D.【答案】C【解析】设边中线为,那么根据向量数量积的几何意义,可得,中,,所以,所以,故选C.【考点】向量数量积的几何意义44.已知向量,满足,,,则______.【答案】【解析】,故填:.【考点】向量数量积45.如图,空间四边形中,,,,点在上,且,点为中点,则等于()A.B.C.D.【答案】B【解析】,选B.【考点】向量表示46.设是正三棱锥,是的重心,是上的一点,且,若,则为()A.B.C.D.【答案】A【解析】,所以,因此为,选A.【考点】向量基本定理47.若直线与圆交于、两点(其中为坐标原点),则的最小值为()A.1B.2C.3D.4【答案】D【解析】直线可化为,恒过定点,圆圆心为径为,∴,当时,最小,取最大值,此时取最小值,此时的斜率为,由垂直关系可得,解得,故此时直线方程为,即,联立,解得,或,∴取最小值,取最大值,此时最小值.故选:D.【考点】直线与圆的位置关系;平面向量数量积的运算.【思路点晴】直线与圆的位置关系有三种,相切、相交和相离,其中考察比较多的为相切和相交.一般选用几何法判断圆心到直线的距离与半径的关系,还可以利用直线方程与圆的方程联立方程组求解.通过解的个数来判断.本题考查直线和圆相交的性质,先要观察到直线恒过定点,其次涉及向量的数量积,用定义展开,转化为余弦值的最值,属中档题.48.等边△ABC的边长为1,记=, =,=,则•﹣﹣•等于.【答案】【解析】:由题意可得,,故•﹣﹣•=【考点】平面向量数量积的运算49.在四边形中,,则该四边形的面积为()A.B.C.5D.15【答案】D【解析】由,故选D.【考点】向量垂直的充要条件.【易错点睛】本题主要考查了向量垂直的充要条件.由四边形的对角线构成的向量的数量积为零,可得两向量垂直,将四边形拆成两个三角形,由此可得四边形的面积.向量垂直是向量的数量积的重要应用之一,它不仅从数的角度反应了等式关系,也从形的角度解释了数量积的意义,是平面向量部分重要的考点.本题难度不大.50.已知平面向量=(1,-3),=(4,-2),与垂直,则是()A.2B.1C.-2D.-1【答案】D【解析】,由与垂直可知【考点】向量垂直与坐标运算51.由点向圆:引两条切线,切点为,,则的最小值是()A.B.C.D.【答案】A【解析】设,则,,,,所以的最小值是.【考点】1、向量数量积;2、基本不等式.【思路点晴】本题是一道小综合题,包含了圆的切线知识与数量积知识,属于中档题.处理圆的切线问题的基本方法是构造直角三角形,转化为勾股问题;而处理数量积问题手段就非常丰富了,定义法、坐标法、几何法、三角法等等.本题的一种处理方式,引入边作为变量分别来表示数量积中的模长与夹角余弦,从而把问题转化为函数的最值问题,二次问题与对勾函数问题是比较常见的形态.52.下列各命题中,正确的是()A.若向量,则或B.若,,则C.长度不相等而方向相反的两个向量一定是平行向量D.若,则【答案】C【解析】若,则,所以A错误;若,显然,,,但错误,所以B错误;由于向量不能比大小,所以D错误;综上故选C.【考点】1、向量的模;2、向量的平行;3、相等向量.53.如图,为菱形,下列可用同一条有向线段表示的两个向量是()A.和B.和C.和D.和【答案】B【解析】如果两个向量相等,则这两个向量就可用同一条有向线段表示,由于为菱形,所以,因此可用同一条有向线段表示的两个向量是和,故选B.【考点】1、向量的表示方法;2、相等向量.54.已知是非零向量,则,,,,中,与向量相等的个数为()A.5B.4C.3D.2【答案】A【解析】由于平面向量的加法满足交换律和结合律,因此向量,,,,与向量都是相等的向量,故选A.【考点】向量加法的交换律、结合律.【方法点晴】本题是一个关于平面向量加法的交换律与结合律方面的综合性问题,属于容易题.解决本题的基本思路及切入点是,要正确理解、掌握平面向量的加法运算律,也就是交换律与结合律,由于平面向量的加法满足交换律和结合律,因此向量,,,,与向量都是相等的向量.55.如下图所示,在平行四边形中,,,用向量,表示,,并回答下面几个问题:(1)当满足什么条件时,与垂直?(2)当满足什么条件时,?(3)与有可能是相等向量吗?【答案】(1);(2)矩形;(3)不可能.【解析】根据向量加法的平行四边性法则,即可用向量,表示出,;对问题(1)如果平行四边形是菱形,则其对角线互相垂直,进而可得与垂直;对问题(2),如果平行四边形是矩形,则有;对问题(3),可根据两条对角线与不可能平行,故对应向量不可能相等.试题解析:由平行四边形法则可得,.(1)当时,与垂直.(2)当为矩形时,.(3)不可能.因为中两条对角线与不可能平行,故对应向量不可能相等.【考点】1、向量加法的及其几何意义;2、向量的垂直;3、相等向量.56.已知,,对于任意点,点关于点的对称点为,点关于点的对称点为.(1)用表示向量;(2)设,,,求与的夹角的取值范围.【答案】(1);(2).【解析】(1)根据点关于点的对称点为,点关于点的对称点为,首先将向量用向量表示出来,进而用表示向量;(2)根据的模,以及,再结合向量夹角的余弦公式先求出的夹角余弦值的范围,进而求出与的夹角的取值范围. 试题解析:(1)依题意,为的中点,为的中点,∴,.∴.(2)∵,∴.由(1)得,∴,∴,∴.∵,∴.∵,∴.【考点】1、向量的加减法;2、向量的模;3、向量的夹角.【方法点晴】本题是一个关于向量的表示法、向量的模、向量的夹角方面的综合性问题,属于中档题.解决本题的基本思路及切入点是,对问题(1)根据点关于点的对称点为,点关于点的对称点为,首先将向量用向量表示出来,进而用表示向量;对问题(2)根据的模,以及的取值范围,再结合向量夹角的余弦公式,先求出的夹角余弦值的范围,进而求出与的夹角的取值范围.57.已知平面向量,,且,则()A.B.C.D.【答案】C【解析】由于向量,,且,从而,即,所以,故答案选C.【考点】1、向量的平行;2、向量的模.58.已知向量,且,,,则一定共线的三点是()A.B.C.D.【答案】A【解析】由,,可得,又因为,所以,从而可知共线,进而可知三点共线,故选A.【考点】向量的共线.【方法点晴】本题是一个利用平面向量的平行判断平面内三点共线的问题,属于容易题.解决本题的基本思路及切入点是,首先先判定两个向量平行,一般的如果是平面内的两个向量,并且,那么向量平行(共线)的充要条件是存在唯一实数,使得.其次是如果非零向量共线,则三点共线.59.如图所示,在正五边形中,,,,,,求作向量.【答案】作法见解析.【解析】根据向量加法的三角形法则,可以先求向量向量的和,然后再求出向量、向量、向量的和,并分别作出向量向量的和所对应的和向量的有向线段,同理再作出向量、向量、向量的和所对应的有向线段,进而可以作出向量所对应的有向线段.试题解析:.如图,连接,并延长到,使,则向量,即向量就是所求作的向量.【考点】平面向量的几何加法与减法.【方法点晴】本题是一个关于平面向量的几何加法、减法的综合性问题,属于中档题.解决本题的基本思路及切入点是,根据向量加法的三角形法则,可以先求向量向量的和,然后再求出向量、向量、向量的和,并分别作出向量向量的和所对应的和向量的有向线段,同理再作出向量、向量、向量的和所对应的有向线段,进而可以作出向量所对应的有向线段.60.已知,,向量与垂直,则的最大值为.【答案】【解析】因为向量与垂直,所以,即,所以,当且仅当时取等号,所以的最大值为,故答案为.【考点】平面向量数量积的运算;基本不等式.61.如图在空间四边形中,点在上,且,为中点,则等于A.B.C.D.【答案】B【解析】如图,连接为中点,在中,可得,由,则,那么.故本题答案选.点睛:进行向量的运算时,要尽可能转化到平行四边形或三角形中,选用从同一点出发的基本量或首尾相接的向量,运用向量的加减运算及数乘来求解,充分利用相等的向量,相反的向量和线段的比例关系,把未知向量转化为与已知向量有直接关系的向量来解决.62.已知向量,则()A.B.C.D.【答案】C【解析】因为,所以,因为向量所以,所以。