小学奥数题汇总及答案
- 格式:docx
- 大小:28.48 KB
- 文档页数:14
小学奥数题100道及答案1. 简单加法:3 + 7 = ()答案:102. 简单减法:9 5 = ()答案:43. 简单乘法:4 × 6 = ()答案:244. 简单除法:18 ÷ 3 = ()答案:65. 填空题:5 + ()= 12答案:76. 填空题:20 ()= 9答案:117. 填空题:8 × ()= 48答案:68. 填空题:36 ÷ ()= 6答案:69. 应用题:小明有10个苹果,吃掉了3个,还剩几个?答案:7个10. 应用题:小红有5个橘子,妈妈又买了8个,现在一共有多少个橘子?答案:13个11. 逻辑推理题:小华比小刚高,小刚比小明高,请问谁最高?答案:小华12. 逻辑推理题:小猫比小狗轻,小狗比小猪轻,请问谁最重?答案:小猪答案:选项A答案:选项B15. 数字排列题:将1、2、3、4四个数字排列,使它们组成的四位数最小。
答案:16. 数字排列题:将5、6、7、8四个数字排列,使它们组成的四位数最大。
答案:876517. 数字推理题:1、3、5、7、(),请填写下一个数字。
答案:918. 数字推理题:2、4、8、16、(),请填写下一个数字。
答案:3219. 时间计算题:如果现在是上午9点,再过3小时是几点?答案:中午12点20. 时间计算题:如果现在是下午3点,2小时前是几点?答案:下午1点答案:一组是水果(苹果、橘子),另一组是学习用品和体育用品(书本、铅笔、篮球)。
22. 重量比较题:一个西瓜重5千克,一个菠萝重2千克,哪个更重?答案:西瓜更重。
23. 长度比较题:一根绳子长10米,另一根绳子长15米,哪根绳子更长?答案:15米长的绳子更长。
答案:选项C25. 速度计算题:小明骑自行车,每小时行驶15公里,2小时能行驶多远?答案:30公里26. 温度转换题:摄氏度0度等于华氏度多少度?答案:32度27. 面积计算题:一个长方形的长是8厘米,宽是4厘米,它的面积是多少?答案:32平方厘米28. 体积计算题:一个正方体的边长是3厘米,它的体积是多少?答案:27立方厘米29. 平均数计算题:小明、小红、小华的年龄分别是8岁、10岁、12岁,他们的平均年龄是多少?答案:10岁答案:731. 因数分解题:将数字24分解成两个因数的乘积。
小学各题型奥数题及答案一.比例问题1.AB两人在河边钓鱼,A钓了三条,B钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,A、B怎么分?答案:A收8元,B收2元。
解:“三人将五条鱼平分,客人拿出10元”,可以理解为五条鱼总价值为30元,那么每条鱼价值6元。
又因为“A钓了三条”,相当于A吃之前已经出资3*6=18元,“B钓了两条”,相当于B吃之前已经出资2*6=12元。
而AB两人吃了的价值都是10元,所以A还可以收回18-10=8元B还可以收回12-10=2元刚好就是客人出的钱。
2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几?答案22/25最好画线段图思考:把去年原来成本看成20份,利润看成5份,则今年的成本提高1/10,就是22份,利润下降了2/5,今年的利润只有3份。
增加的成本2份刚好是下降利润的2份。
售价都是25份。
所以,今年的成本占售价的22/25。
3.AB两车分别从甲乙两地出发,相向而行,出发时,A.B的速度比是5:4,相遇后,A的速度减少20%,B的速度增加20%,这样,当A到达乙地时,B离甲地还有10千米,那么甲乙两地相距多少千米?解:原来A.B乙的速度比是5:4现在的A:5×(1-20%)=4现在的B:4×(1+20%)4.8A到乙地后,B离甲地还有:5-4.8=0.2总路程:10÷0.2×(4+5)=450千米4.一个圆柱的底面周长减少25%,要使体积增加1/3,现在的高和原来的高度比是多少?答案为64:27解:根据“周长减少25%”,可知周长是原来的3/4,那么半径也是原来的3/4,则面积是原来的9/16。
根据“体积增加1/3”,可知体积是原来的4/3。
体积÷底面积=高现在的高是4/3÷9/16=64/27,也就是说现在的高是原来的高的64/27或者现在的高:原来的高=64/27:1=64:275.某市场运来香蕉、苹果、橘子和梨四种水果其中橘子、苹果共30吨香蕉、橘子和梨共45吨。
小学生奥数题及答案1.小学生奥数题及答案篇一1、晶晶用围棋子摆成一个三层空心方阵,最外一层每边有围棋子14个。
晶晶摆这个方阵共用围棋子多少个?分析:方阵每向里面一层,每边的个数就减少2个。
知道最外面一层每边放1 4个,就可以求第二层及第三层每边个数。
知道各层每边的个数,就可以求出各层总数。
解:最外边一层棋子个数:(14-1)×4=52(个)第二层棋子个数:(14-2-1)×4=44(个)第三层棋子个数:(14-2×2-1)×4=36(个)。
摆这个方阵共用棋子:52+44+36=132(个)还可以这样想:中空方阵总个数=(每边个数一层数)×层数×4进行计算。
解:(14-3)×3×4=132(个)答:摆这个方阵共需132个围棋子。
2、用个同样的杯子装水,水面高度分别是4厘米、5厘米、7厘米和8厘米,这4个杯子水面平均高度是多少厘米?解:分析求4个杯子水面的平均高度,就相当于把4个杯子里的水合在一起,再平均倒入4个杯子里,看每个杯子里水面的高度。
解:(4+5+7+8)÷4=6(厘米)答:这4个杯子水面平均高度是6厘米。
2.小学生奥数题及答案篇二一个房间中有100盏灯,用自然数1,2,…,100编号,每盏灯各有一个开关。
开始时,所有的灯都不亮。
有100个人依次进入房间,第1个人进入房间后,将编号为1的倍数的灯的开关按一下,然后离开;第2个人进入房间后,将编号为2的倍数的灯的开关按一下,然后离开;如此下去,直到第100个人进入房间,将编号为100的倍数的灯的开关按一下,然后离开。
问:第100个人离开房间后,房间里哪些灯还亮着?答案与解析:对于任何一盏灯,由于它原来不亮,那么,当它的开关被按奇数次时,灯是开着的;当它的开关被按偶数次时,灯是关着的;根据题意可知,当第100个人离开房间后,一盏灯的开关被按的次数,恰等于这盏灯的编号的因数的个数;要求哪些灯还亮着,就是问哪些灯的编号的因数有奇数个。
小学奥数题及答案
小学奥数题及答案
小学奥数题及答案一
小学六年级奥数练习题:隧道
习题:某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?
答案与解析:
根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),
某列车的'速度为:(250-210)÷(25-23)=40÷2=20(米/秒)
某列车的车长为:20×25-250=500-250=250(米),
两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒) 小学奥数题及答案二
A、B、C、D四个同学猜测他们之中谁被评为三好学生。
A说:“如果我被评上,那么B也被评上。
”B说:“如果我被评上,那么C 也被评上。
”C说:“如果D没评上,那么我也没评上。
”实际上他们之中只有一个没被评上,并且A、B、C说的都是正确的。
问:谁没被评上三好学生?
答案与解析:A没有评上三好学生。
由C说可推出D必被评上,否则如果D没评上,则C也没评上,与“只有一人没有评上”矛盾。
再由A、B所说可知:
假设A被评上,则B被评上,由B被评上,则C被评上。
这样四人全被评上,矛盾。
因此A没有评上三好学生。
小学适用的奥数题100道及答案1. 在统计学年级水平考试中,班上有80位学生。
根据调查,80% 的学生会打乒乓球,60% 的学生会踢足球,40% 的学生既会打乒乓球又会踢足球。
那么至少会打乒乓球或踢足球的学生人数是几人?解答:既会打乒乓球又会踢足球的学生人数为80×40% = 32人,所以至少会打乒乓球或踢足球的学生人数为80 - 32 = 48人。
2. 小明从家到学校一共要经过3个红绿灯。
他观察到第1个红绿灯是每2分钟变换一次,第2个红绿灯是每3分钟变换一次,第3个红绿灯是每5分钟变换一次。
那么小明在一次通行中不会遇到红灯的概率是多少?解答:第1个红绿灯每2分钟变换一次,所以小明不会遇到红灯的概率为2/2 = 1/2。
同理,第2个红绿灯的概率为3/3 = 1/3,第3个红绿灯的概率为5/5 = 1/5。
按照概率相乘的原理,小明在一次通行中不会遇到红灯的概率为(1/2) × (1/3) × (1/5) = 1/30。
3. 将一些相同大小的正方形铺满一个边长为4cm的大正方形区域,每个小正方形的边长为0.5cm。
那么一共需要多少个小正方形?解答:大正方形的面积为4 × 4 = 16cm²,小正方形的面积为0.5 ×0.5 = 0.25cm²。
所以一共需要16 / 0.25 = 64个小正方形。
4. 在一个数列中,每个数都比前一个数大2。
如果第8个数是10,那么第1个数是多少?解答:根据题意,第8个数比第1个数大了7 × 2 = 14。
所以第1个数是10 - 14 = -4。
5. 一辆车以每小时60千米的速度行驶,行驶2小时后停下来休息。
之后每小时以每小时50千米的速度继续行驶。
那么车行驶了多少千米?解答:前两小时行驶了60 × 2 = 120千米。
之后每小时行驶50千米,所以再行驶的距离为50 × (2 + 1) = 150千米。
小学奥数题库全部题型100道及答案(完整版)题目1:有一串数1,4,7,10,…,301,求这串数的平均数。
答案:这是一个等差数列,公差为3,首项为1,末项为301。
项数= (301 - 1)÷3 + 1 = 101 。
总和= (1 + 301)×101÷2 = 15251 ,平均数= 15251÷101 = 151 。
题目2:在一个减法算式里,被减数、减数与差的和等于120,而减数是差的 3 倍,那么差等于多少?答案:因为被减数= 减数+ 差,所以被减数+ 减数+ 差= 2×被减数= 120,被减数= 60。
又因为减数是差的3 倍,所以差= 60÷(3 + 1)= 15 。
题目3:两个数的和是682,其中一个加数的个位是0,如果把这个0 去掉,就得到另一个加数。
这两个加数各是多少?答案:一个加数是另一个加数的10 倍。
较小的加数= 682÷(10 + 1)= 62 ,较大的加数= 62×10 = 620 。
题目4:一桶油连桶重16 千克,用去一半后,连桶重9 千克,桶重多少千克?答案:油重= (16 - 9)× 2 = 14 千克,桶重= 16 - 14 = 2 千克。
题目5:某班有40 名学生,其中有15 人参加数学小组,18 人参加航模小组,有10 人两个小组都参加。
那么有多少人两个小组都不参加?答案:参加了至少一个小组的人数= 15 + 18 - 10 = 23 人,两个小组都不参加的人数= 40 - 23 = 17 人。
题目6:有一根木材长8 米,要把它锯成8 段,每锯一段要用3 分钟,共锯了多少分钟?答案:锯成8 段需要锯7 次,共锯了7×3 = 21 分钟。
题目7:已知9 个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是多少?答案:9 个数的总和= 9×72 = 648 ,余下8 个数的总和= 8×78 = 624 ,去掉的数= 648 - 624 = 24 。
小学奥数解题方法大全100道及答案(完整版)题目1:计算1 + 2 + 3 + 4 + …+ 100 的和。
解题方法:使用等差数列求和公式,首项为1,末项为100,公差为1,项数为100。
求和公式为:(首项+ 末项)×项数÷2 。
答案:(1 + 100) ×100 ÷2 = 5050题目2:鸡兔同笼,共有30 个头,88 只脚,求鸡兔各有多少只?解题方法:假设全是鸡,共有脚30×2 = 60 只,比实际少88 - 60 = 28 只。
因为每把一只兔当成鸡,就少算4 - 2 = 2 只脚,所以兔有28÷2 = 14 只,鸡有30 - 14 = 16 只。
答案:鸡16 只,兔14 只。
题目3:一条路长100 米,从头到尾每隔10 米栽1 棵梧桐树,共栽多少棵树?解题方法:因为两端都栽树,所以棵数= 间隔数+ 1 ,间隔数为100÷10 = 10 ,则棵数为10 + 1 = 11 棵。
答案:11 棵。
题目4:某班有40 名学生,其中有15 人参加数学小组,18 人参加航模小组,有10 人两个小组都参加。
那么有多少人两个小组都不参加?解题方法:参加数学或航模小组的人数为15 + 18 - 10 = 23 人,所以两个小组都不参加的人数为40 - 23 = 17 人。
答案:17 人。
题目5:甲乙两数的和是32,甲数的3 倍与乙数的5 倍的和是122,求甲、乙二数各是多少?解题方法:设甲数为x,乙数为y,则x + y = 32 ,3x + 5y = 122 。
将第一个式子乘以3 得到3x + 3y = 96 ,用第二个式子减去这个式子得到2y = 26 ,y = 13 ,则x = 19 。
答案:甲数19,乙数13 。
题目6:一列火车通过530 米的桥需40 秒钟,以同样的速度穿过380 米的山洞需30 秒钟。
求这列火车的速度是每秒多少米?车长多少米?解题方法:火车40 秒走的路程= 桥长+ 车长,30 秒走的路程= 山洞长+ 车长。
最难小学奥数题100道及答案(完整版)题目1:有三个连续的自然数,它们的乘积是60。
这三个数分别是多少?解题方法:将60 分解质因数,60 = 2×2×3×5 = 3×4×5答案:3、4、5题目2:在一个减法算式里,被减数、减数与差的和是180,减数比差大10。
差是多少?解题方法:因为被减数= 减数+ 差,所以被减数+ 减数+ 差= 2×被减数= 180,被减数= 90。
又因为减数-差= 10,减数+ 差= 90,所以差= (90 - 10)÷2 = 40答案:40题目3:甲乙两人同时从A、B 两地相向而行,第一次在离A 地75 千米处相遇,相遇后继续前进,到达目的地后又立即返回,第二次相遇在离 B 地55 千米处。
A、B 两地相距多少千米?解题方法:第一次相遇时,甲走了75 千米,两人共走了一个全程。
从开始到第二次相遇,两人共走了三个全程,所以甲走了75×3 = 225 千米。
此时甲走了一个全程多55 千米,所以全程为225 - 55 = 170 千米答案:170 千米题目4:一个数除以5 余3,除以6 余4,除以7 余5。
这个数最小是多少?解题方法:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208答案:208题目5:有一堆苹果,平均分给5 个人多4 个,平均分给6 个人多5 个,平均分给7 个人多6 个。
这堆苹果最少有多少个?解题方法:如果这堆苹果再多1 个,就能正好平均分给5 个人、6 个人、7 个人。
5、6、7 的最小公倍数是210,所以这堆苹果最少有210 - 1 = 209 个答案:209 个题目6:一个长方体,如果高增加2 厘米,就变成一个正方体。
这时表面积比原来增加56 平方厘米。
原来长方体的体积是多少立方厘米?解题方法:增加的表面积是 4 个相同的长方形的面积,长方形的宽是2 厘米,长就是正方体的棱长,正方体棱长= 56÷4÷2 = 7 厘米,原长方体高= 7 - 2 = 5 厘米,体积= 7×7×5 = 245 立方厘米答案:245 立方厘米题目7:甲、乙、丙、丁四人拿出同样多的钱,合伙订购同样规格的若干件货物。
四年级数学奥数题100道及答案1. 有甲、乙两个数,甲数加上10等于乙数的两倍,如果甲数是20,那么乙数是多少?答案:乙数 = (20 + 10) / 2 = 152. 一个数的3倍加上15等于这个数的5倍,求这个数。
答案:设这个数为x,3x + 15 = 5x,解得 x = 15 / 2 = 7.53. 一个长方形的长是宽的3倍,如果长增加2米,宽增加1米,面积就增加了8平方米,求原长方形的长和宽。
答案:设原宽为x米,长为3x米。
(3x + 2)(x + 1) - 3x * x = 8,解得 x = 1,所以原长为3米,宽为1米。
4. 一个数的平方比这个数的两倍大21,求这个数。
答案:设这个数为x,x^2 = 2x + 21,解得 x = 6 或 x = -7。
5. 一个数的5倍比这个数的3倍多24,求这个数。
答案:设这个数为x,5x = 3x + 24,解得 x = 12。
6. 一个数加上它的一半等于30,求这个数。
答案:设这个数为x,x + x/2 = 30,解得 x = 20。
7. 一个数的4倍比这个数的3倍多36,求这个数。
答案:设这个数为x,4x = 3x + 36,解得 x = 36。
8. 一个数的平方与这个数的和等于121,求这个数。
答案:设这个数为x,x^2 + x = 121,解得 x = 10 或 x = -12。
答案:设这个数为x,8x = 3x + 51,解得 x = 17。
10. 一个数的3倍加上这个数的5倍等于45,求这个数。
答案:设这个数为x,3x + 5x = 45,解得 x = 5。
11. 一个数的平方比这个数的两倍多8,求这个数。
答案:设这个数为x,x^2 = 2x + 8,解得 x = 4 或 x = -2。
12. 一个数的6倍比这个数的4倍多12,求这个数。
答案:设这个数为x,6x = 4x + 12,解得 x = 6。
13. 一个数的一半加上这个数的两倍等于21,求这个数。
小学10道奥数题及答案1. 题目:小明有10个苹果,他给小华5个,然后又从妈妈那里得到了8个,接着又给小华3个,最后小明手里还有多少个苹果?答案:小明最初有10个苹果,给小华5个后剩下5个,从妈妈那里得到8个后共有13个,再给小华3个后剩下10个。
2. 题目:一个班级有40个学生,其中女生比男生多4人,问这个班级有多少男生?答案:设男生人数为x,则女生人数为x+4。
根据题意,x + (x+4) = 40,解得x=18,所以班级有18名男生。
3. 题目:一个数列的前三项分别为1, 1, 2,从第四项开始,每一项都是前三项的和。
求第10项的值。
答案:数列为1, 1, 2, 4, 7, 13, 24, 44, 81, 149。
第10项的值为149。
4. 题目:一个长方形的长是宽的两倍,如果长增加10厘米,宽增加5厘米,面积就增加了120平方厘米。
求原来的长方形的长和宽。
答案:设宽为x,则长为2x。
根据题意,(2x+10)(x+5) - 2x*x = 120,解得x=6,所以原来的长为12厘米,宽为6厘米。
5. 题目:一个数的3倍加上这个数的一半等于这个数的4倍,求这个数。
答案:设这个数为x,根据题意,3x + 0.5x = 4x,解得x=0。
6. 题目:一个数字,将它乘以3然后加上10,再将结果除以5,最后减去2,得到的结果为26。
求这个数字。
答案:设这个数字为x,根据题意,((3x + 10) / 5) - 2 = 26,解得x=40。
7. 题目:一个数的平方加上这个数的两倍等于2015,求这个数。
答案:设这个数为x,根据题意,x^2 + 2x = 2015,解得x=43或x=-45。
8. 题目:一个数的立方减去这个数等于60,求这个数。
答案:设这个数为x,根据题意,x^3 - x = 60,解得x=4。
9. 题目:一个数的5倍加上3等于这个数的7倍减去5,求这个数。
答案:设这个数为x,根据题意,5x + 3 = 7x - 5,解得x=4。
小学奥数题汇总及答案小学全部奥数题及答案工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。
只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
所以1-9/10=1/10表示乙做6-4=2小时的工作量。
1/10÷2=1/20表示乙的工作效率。
1÷1/20=20小时表示乙单独完成需要20小时。
答:乙单独完成需要20小时。
4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?解:由题意可知1/甲+1/乙+1/甲+1/乙+……+1/甲=11/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)得到1/甲=1/乙×2又因为1/乙=1/17所以1/甲=2/17,甲等于17÷2=8.5天5.师徒俩人加工同样多的零件。
当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?答案为300个120÷(4/5÷2)=300个可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。
6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。
单份给男生栽,平均每人栽几棵?答案是15棵算式:1÷(1/6-1/10)=15棵7.一个池上装有3根水管。
甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管, 30分钟可将满池水放完。
现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?答案45分钟。
1÷(1/20+1/30)=12 表示乙丙合作将满池水放完需要的分钟数。
1/12*(18-12)=1/12*6=1/2 表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水。
1/2÷18=1/36 表示甲每分钟进水最后就是1÷(1/20-1/36)=45分钟。
8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?答案为6天解:由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:乙做3天的工作量=甲2天的工作量即:甲乙的工作效率比是3:2甲、乙分别做全部的的工作时间比是2:3时间比的差是1份实际时间的差是3天所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期方程方法:[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1解得x=69.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?答案为40分钟。
解:设停电了x分钟根据题意列方程1-1/120*x=(1-1/60*x)*2解得x=40二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?解:4*100=400,400-0=400 假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只。
400-28=372 实际鸡的脚数比兔子的脚数只少28只,相差372只,这是为什么?4+2=6 这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只(从400只变为396只),鸡的总脚数就会增加2只(从0只到2只),它们的相差数就会少4+2=6只(也就是原来的相差数是400-0= 400,现在的相差数为396-2=394,相差数少了400-394=6)372÷6=62 表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只100-62=38表示兔的只数三.数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?解:首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。
解题:1+2+3+4+5+6+7+8+9=45;45能被9整除依次类推:1~1999这些数的个位上的数字之和可以被9整除10~19,20~29……90~99这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+……+90=450 它有能被9整除同样的道理,100~900 百位上的数字之和为4500 同样被9整除也就是说1~999这些连续的自然数的各个位上的数字之和可以被9整除;同样的道理:1000~1999这些连续的自然数中百位、十位、个位上的数字之和可以被9整除(这里千位上的“1”还没考虑,同时这里我们少042005 从1000~1999千位上一共999个“1”的和是999,也能整除;042005的各位数字之和是27,也刚好整除。
最后答案为余数为0。
2.A和B是小于100的两个非零的不同自然数。
求A+B分之A-B 的最小值...解:(A-B)/(A+B) = (A+B - 2B)/(A+B) = 1 - 2 * B/(A+B)前面的1 不会变了,只需求后面的最小值,此时(A-B)/(A+B) 最大。
对于B / (A+B) 取最小时,(A+B)/B 取最大,问题转化为求(A+B)/B 的最大值。
(A+B)/B = 1 + A/B ,最大的可能性是A/B = 99/1(A+B)/B = 100(A-B)/(A+B) 的最大值是:98 / 1003.已知A.B.C都是非0自然数,A/2 + B/4 + C/16的近似值市6.4,那么它的准确值是多少?答案为6.375或6.4375因为A/2 + B/4 + C/16=8A+4B+C/16≈6.4,所以8A+4B+C≈102.4,由于A、B、C为非0自然数,因此8A+4B+C为一个整数,可能是102,也有可能是103。
当是102时,102/16=6.375当是103时,103/16=6.43754.一个三位数的各位数字之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.答案为476解:设原数个位为a,则十位为a+1,百位为16-2a根据题意列方程100a+10a+16-2a-100(16-2a)-10a-a=198解得a=6,则a+1=7 16-2a=4答:原数为476。
5.一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.答案为24解:设该两位数为a,则该三位数为300+a7a+24=300+aa=24答:该两位数为24。
6.把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少?答案为121解:设原两位数为10a+b,则新两位数为10b+a它们的和就是10a+b+10b+a=11(a+b)因为这个和是一个平方数,可以确定a+b=11因此这个和就是11×11=121答:它们的和为121。
7.一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数.答案为85714解:设原六位数为abcde2,则新六位数为2abcde(字母上无法加横线,请将整个看成一个六位数)再设abcde(五位数)为x,则原六位数就是10x+2,新六位数就是200000+x 根据题意得,(200000+x)×3=10x+2解得x=85714所以原数就是857142答:原数为8571428.有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.答案为3963解:设原四位数为abcd,则新数为cdab,且d+b=12,a+c=9根据“新数就比原数增加2376”可知abcd+2376=cdab,列竖式便于观察abcd2376cdab根据d+b=12,可知d、b可能是3、9;4、8;5、7;6、6。