汽轮机的工作原理和结构-附图
- 格式:doc
- 大小:78.50 KB
- 文档页数:3
汽轮机工作原理什么是汽轮机?汽轮机是将蒸汽的热能转换成机械能的一种旋转式原动机,有转子(即转动部分的总称,包括:转轴、叶轮、叶片、联轴器及其附件)和静子(即不转动部分的总称,包括:汽缸、进汽机构、排汽机构、汽封、滑销系统、轴承和盘车装置等)组成,如图:就凝汽式汽轮机而言,从锅炉产生的新蒸汽经由主阀门进入高压缸,再进入中压缸,再进入低压缸,最终进入凝汽器。
蒸汽的热能在汽轮机内消耗,变为蒸汽的动能,然后推动装有叶片的汽轮机转子,最终转化为机械能。
汽轮机本体结构详解图(示意图):汽轮机本体主要由转子、静子、轴承及轴承箱、盘车装置四大部分构成,如图:1、转子:汽轮机通流中的转动部分,是汽轮机作功的关键部件,由主轴,叶轮,叶片,联轴器等主要零部件组成。
2、静子:汽轮机通流中的静止部分及汽轮机的外壳部分,由汽缸、隔板及隔板套、进汽部分、排汽部分、端汽封等主要零部件组成。
3、轴承及轴承箱:支持轴承用来承受转子的重量并保持转子的径向位置,推力轴承用来固定转子的轴向位置,轴承箱用来安装轴承和轴承座。
4、盘车装置:在进汽冲转前及停汽停机后使汽轮机继续保持低速旋转的装置,由电动机、减速器、离合器、操纵机构构成。
汽轮机的工作原理:汽轮机是用蒸汽做功的旋转式原动机,它将蒸汽的热能转变成透平转子旋转的机械能,这一转变过程需要经过两次能量转换,即蒸汽通过透平喷嘴(静叶片)时,将蒸汽的热能转换成蒸汽高速流动的动能,然后高速气流通过工作叶片时,将蒸汽的动能转换成透平转子旋转的机械能。
汽轮机工作原理分为两类:冲动式和反动式。
冲动式汽轮机的蒸汽热能转变成动能的过程,仅在喷嘴中进行,而工作叶片只是把蒸汽的动能转换成机械能,即蒸汽在喷嘴中膨胀,速度增大,温度压力降低,而在叶片中仅将其动能部分转变为机械能(汽体流速降低),而由于叶片沿流动方向的间槽道截面不变,因而蒸汽不再膨胀,压力也不再降低;反动式汽轮机中的蒸汽在静叶片中膨胀,压力温度均下降,流速增大,然后进入动叶片(工作叶片),由于动叶片沿流动方向的间槽道截面形状与静叶片间槽道截面变化相同,所以蒸汽在动叶片中继续膨胀,压力也要降低,由于汽流沿着动叶片内弧流动时方向是改变的,因此,叶片既受到冲击力的作用,同时又受到蒸汽在动叶片中膨胀,高速喷离动叶片产生反动力的作用,冲动力和反动力的合力就是动叶片所承受的力,这就是说,在反动式汽轮机中,蒸汽热能转变成动能的过程,不仅在静叶片中进行,也在动叶片中进行。
汽轮机工作原理和结构一、汽轮机工作原理汽轮机是将蒸汽的热能转换成机械能的蜗轮式机械。
在汽轮机中,蒸汽在喷嘴中发生膨胀,压力降低,速度增加,热能转变为动能。
如图1所示.高速汽流流经动叶片3时,由于汽流方向改变,产生了对叶片的冲动力,推动叶轮2旋转做功,将蒸汽的动能变成轴旋转的机械能。
图1 冲动式汽轮机工作原理图1—轴;2—叶轮;3—动叶片;4-喷嘴二、汽轮机结构汽轮机主要由转动部分(转子)和固定部分(静体或静子)组成。
转动部分包括叶栅、叶轮或转子、主轴和联轴器及紧固件等旋转部件。
固定部件包括气缸、蒸汽室、喷嘴室、隔板、隔板套(或静叶持环)、汽封、轴承、轴承座、机座、滑销系统以及有关紧固零件等。
套装转子的结构如图2所示。
套装转子的叶轮、轴封套、联轴器等部件和主轴是分别制造的,然后将它们热套(过盈配合)在主轴上,并用键传递力矩。
图2 套装转子结构1—油封环2—油封套3—轴4—动叶槽5—叶轮6-平衡槽汽轮机主要用途是在热力发电厂中做带动发电机的原动机。
为了保证汽轮机正常工作,需配置必要的附属设备,如管道、阀门、凝汽器等,汽轮机及其附属设备的组合称为汽轮机设备。
图3为汽轮机设备组成图.来自蒸汽发生器的高温高压蒸汽经主汽阀、调节阀进入汽轮机。
由于汽轮机排汽口的压力大大低于进汽压力,蒸汽在这个压差作用下向排汽口流动,其压力和温度逐渐降低,部分热能转换为汽轮机转子旋转的机械能。
做完功的蒸汽称为乏汽,从排汽口排入凝汽器,在较低的温度下凝结成水,此凝结水由凝结水泵抽出送经蒸汽发生器构成封闭的热力循环。
为了吸收乏汽在凝汽器放出的凝结热,并保护较低的凝结温度,必须用循环水泵不断地向凝汽器供应冷却水。
由于汽轮机的尾部和凝汽器不能绝对密封,其内部压力又低于外界大气压,因而会有空气漏入,最终进入凝汽器的壳侧.若任空气在凝汽器内积累,凝汽器内压力必然会升高,导致乏汽压力升高,减少蒸汽对汽轮机做的有用功,同时积累的空气还会带来乏汽凝结放热的恶化,这两者都会导致热循环效率的下降,因而必须将凝汽器壳侧的空气抽出。
汽轮机构造及基本工作原理1.公司三大主要设备简介:我公司汽轮机设备为上海汽轮机有限公司生产CZK330-16.7/0.4/538/538型亚临界参数、单轴、一次中间再热、双缸双排汽、直接空冷、抽汽凝汽式汽轮机,产品编号:C153。
汽轮机排汽冷却方式为机力通风直接空冷。
与上海锅炉厂有限公司生产的SG-1170/17.5-M722型亚临界参数、一次中间再热、燃煤自然循环汽包炉及上海汽轮发电机有限公司生产的QFSN-330-2型的水氢氢冷却、机端自并励发电机配套,锅炉与汽轮机热力系统采用单元制布置。
本汽轮机可供热网抽汽,压力可在0.25MPa(a)~0.7MPa(a)间调整。
2.汽轮机组主要参数额定出力:330MW 主蒸汽压力:16.7Mpa主蒸汽温度:538℃额定背压:14.5 KPa额定转速:3000r/min 级数:36级旋转方向:从机头向发电机方向看为顺时针旋转汽轮机总重(不包括罩壳):约685t汽轮机全长(不包括罩壳):17500mm高中压外缸(上、下部):71.5 t 高压内缸:13.830t高压静叶持环(上、下部):6.750t中压#1静叶持环(上、下部):3.700t 中压#2静叶持环(上、下部):5.784t 中压#3静叶持环(上、下部):6.022t 喷嘴组:0.984t 高压排汽侧平衡活塞汽封体:2.060t低压外缸(调阀端):31.664t低压外缸(电机端):31.694t低压内缸(上、下部):44.5t 低压进、排汽导流环:1.486t、3.200t 高中压转子:26.891 t 低压转子:37.629 t前轴承座:4.875t 前轴承座台板:2.826t低压第五级隔板(左、右旋):1.070 t/1.070t低压第六级隔板(左、右旋):1.750t/1.750t主汽门(左、右侧):9.750t、9.750t再热主汽门(左侧、右侧):5.800t、5.800t3.汽轮机本体结构3.1高中压外缸本机组为双缸双排汽结构,高中压缸采用合缸结构,反向布置,缸体部分为双层缸。
汽輪機工作原理和結構
一、汽輪機工作原理
汽輪機是將蒸汽の熱能轉換成機械能の蝸輪式機械。
在汽輪機中,蒸汽在噴嘴中發生膨脹,壓力降低,速度增加,熱能轉變為動能。
如圖1所示。
高速汽流流經動葉片3時,由於汽流方向改變,產生了對葉片の衝動力,推動葉輪2旋轉做功,將蒸汽の動能變成軸旋轉の機械能。
圖1 衝動式汽輪機工作原理圖
1-軸;2-葉輪;3-動葉片;4-噴嘴
二、汽輪機結構
汽輪機主要由轉動部分(轉子)和固定部分(靜體或靜子)組成。
轉動部分包括葉柵、葉輪或轉子、主軸和聯軸器及緊固件等旋轉部件。
固定部件包括氣缸、蒸汽室、噴嘴室、隔板、隔板套(或靜葉持環)、汽封、軸承、軸承座、機座、滑銷系統以及有關緊固零件等。
套裝轉子の結構如圖2所示。
套裝轉子の葉輪、軸封套、聯軸器等部件和主軸是分別製造の,然後將它們熱套(過盈配合)在主軸上,並用鍵傳遞力矩。
圖2 套裝轉子結構
1-油封環2-油封套3-軸4-動葉槽5-葉輪6-平衡槽
汽輪機主要用途是在熱力發電廠中做帶動發電機の原動機。
為了保證汽輪機正常工作,需配置必要の附屬設備,如管道、閥門、凝汽器等,汽輪機及其附屬設備の組合稱為汽輪機設備。
圖3為汽輪機設備組成圖。
來自蒸汽發生器の高溫高壓蒸汽經主汽閥、調節閥進入汽輪機。
由於汽輪機排汽口の壓力大大低於進汽壓力,蒸汽在這個壓差作用下向排汽口流動,其壓力和溫度逐漸降低,部分熱能轉換為汽輪機轉子旋轉の機械能。
做完功の蒸汽稱為乏汽,從排汽口排入凝汽器,在較低の溫度下凝結成水,此凝結水由凝結水泵抽出送經蒸汽發生器構成封閉の熱力迴圈。
為了吸收乏汽在凝汽器放出の凝結熱,並保護較低の凝結溫度,必須用迴圈水泵不斷地向凝汽器供應冷卻水。
由於汽輪機の尾部和凝汽器不能絕對密封,其內部壓力又低於外界大氣壓,因而會有空氣漏入,最終進入凝汽器の殼側。
若任空氣在凝汽器內積累,凝汽器內壓力必然會升高,導致乏汽壓力升高,減少蒸汽對汽輪機做の有用功,同時積累の空氣還會帶來乏汽凝結放熱の惡化,這兩者都會導致熱迴圈效率の下降,因而必須將凝汽器殼側の空氣抽出。
凝汽設備由凝汽器、凝結水泵、迴圈水泵和抽氣器組成,它の作用是建立並保持凝汽器の真空,以使汽輪機保持較低の排汽壓力,同時回收凝結水迴圈使用,以減少熱損失,提高汽輪機設備運行の經濟性。
圖3 汽輪機設備組成圖
1-主汽閥2-調節閥3-汽輪機4-凝汽器5-抽汽器6-迴圈水泵
7-凝結水泵8-低壓加熱器9-除氧器10-除水泵11-高壓加熱器
為了調節汽輪機の功率和轉速,每臺汽輪機有一套由調節裝置組成の調節系統。
另外,汽輪機是高速旋轉設備,它の轉子和定子間隙很小,是既龐大又精密の設備。
為保證汽輪機安全運行,配有一套自動保護裝置,以便在異常情況下發出警報,在危急情況下自動關閉主汽閥,使之停運。
調節系統和保護裝置常用壓力油來傳遞信號和操縱有關部件。
汽輪機の各個軸承也需要油潤滑和冷卻,因而每臺汽輪機都配有一套潤滑油系統。
總之,汽輪機設備是以汽輪機為核心,包括凝汽設備、回熱加熱設備、調節和保護裝置及供油系統等附屬設備在內の一系列動力設備組合。
正是靠它們協調有序地工作,才得以完成能量轉換の任務。