通用单片机通讯协议(ASCII)
- 格式:doc
- 大小:151.00 KB
- 文档页数:10
基于51单片机的智能仪表与组态王的通讯圈子类别:嵌入式系统(未知) 2009-8-10 23:01:00[我要评论] [加入收藏] [加入圈子]1、引言随着工业自动化进程的不断加快,现场仪器、仪表、设备正不断向数字化、智能化和网络化方向推进。
单片机以其强大的现场数据处理能力,低廉的价格,紧凑的系统结构、高度的灵活性,微小的功耗等一系列优良特性成为构建智能化现场仪器仪表、设备的重要手段,现已广泛应用于工业测量和控制系统中。
组态王Kingview工控组态软件以其工作性能稳定可靠、人机界面友善、硬件配置方便以及编程简单易用同时其驱动程序较为丰富,如支持DDE、板卡、OPC服务器、PLC、智能仪表、智能模块等;支持ActiveX控件、配方管理、数据库访问、网络功能、冗余功能。
其扩展性强,配有加密锁,支持工程加密;可方便与管理计算机或控制计算机联网通信等优良特性,提供了对工业控制现场大量数据进行采集、监控、处理的解决方案。
在各种工业控制领域中得到了大量使用[1-2]。
将单片机和组态王优良的特性结合起来,使它们实现“强强联合”,成为改造传统工业,提升企业技术竞争力的重要趋势。
目前许多测控系统是由通用机或工控机和底层单片机控制装置组成,通用机或工控机通过组态软件控制现场仪器设备,单片机采集数据和现场状态通过串行口传送到通用机或工控机,由组态软件对采集到的现场数据进行分析、存储或显示,并将命令和控制通过串行口传到单片机以监控现场设备的运转。
可靠地实现它们之间的通讯是实现各种测控任务必须解决的首要问题。
对于一些重要名家厂商的板卡和模块,一般组态王可直接提供为数据采集和控制所需的底层硬件设备的驱动程序。
但对于绝大多数一般用户自行设计开发的采集、控制装置则没有驱动程序提供。
因此实现它们“强强联合”,必须解决它们之间之间的通信问题。
迄今为止,人们对单片机与组态王的通信问题进行了广泛的研究[1-2]。
目前,单片机与组态王的通讯方法有主要有3种[3]:①利用组态的驱动程序开发包进行驱动开发自己的通讯驱动程序,该方法适用于专业厂商;②通过动态数据交换(DDE)方式进行通讯,该方法带来一些额外的开销,如会降低系统实时性,增加系统的不可靠性等,对开发人员的要求也更高。
M o d b u s通讯协议R T U A S C I I T C P详细介绍集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]Modbus通讯协议RTU ASCII TCP详细介绍Modbus协议最初由Modicon公司开发出来,在1979年末该公司成为施耐德自动化(Schneider Automation)部门的一部分,现在Modbus已经是工业领域全球最流行的协议。
此协议支持传统的RS-232、RS-422、RS-485和以太网设备。
许多工业设备,包括PLC,DCS,智能仪表等都在使用Modbus协议作为他们之间的通讯标准。
有了它,不同厂商生产的控制设备可以连成工业网络,进行集中监控。
当在网络上通信时,Modbus协议决定了每个控制器须要知道它们的设备地址,识别按地址发来的消息,决定要产生何种行动。
如果需要回应,控制器将生成应答并使用Modbus协议发送给询问方。
Modbus协议包括ASCII、RTU、TCP等,并没有规定物理层。
此协议定义了控制器能够认识和使用的消息结构,而不管它们是经过何种网络进行通信的。
标准的Modicon控制器使用RS232C实现串行的Modbus。
Modbus的ASCII、RTU 协议规定了消息、数据的结构、命令和就答的方式,数据通讯采用Maser/Slave方式,Master端发出数据请求消息,Slave端接收到正确消息后就可以发送数据到Master端以响应请求;Master端也可以直接发消息修改Slave端的数据,实现双向读写。
Modbus协议需要对数据进行校验,串行协议中除有奇偶校验外,ASCII模式采用LRC校验,RTU模式采用16位CRC校验,但TCP模式没有额外规定校验,因为TCP协议是一个面向连接的可靠协议。
另外,Modbus采用主从方式定时收发数据,在实际使用中如果某Slave站点断开后(如故障或关机),Master端可以诊断出来,而当故障修复后,网络又可自动接通。
组态王通用单片机协议(ASCII)说明概述通用单片机ASCII协议支持单片机与组态王通讯,用户只要按照我们的协议编写单片机通讯程序就可实现与组态王的通讯.组态王设置1、定义组态王设备定义组态王定义设备时请选择:智能模块\单片机\通用单片机ASCII\串口组态王的设备地址定义格式:##.#前面的两个字符是设备地址,范围为0-255,此地址为单片机的地址,由单片机中的程序决定;后面的一个字符是用户设定是否打包,"0"为不打包、"1"为打包,用户一旦在定义设备时确定了打包,组态王将处理读下位机变量时数据打包的工作,与单片机的程序无关.2、组态王通讯通讯方式:RS-232,RS-485,RS-422均可。
波特率:由单片机决定(2400,4800,9600and19200bps)。
注意:在组态王中设置的通讯参数如波特率,数据位,停止位,奇偶校验必须与单片机编程中的通讯参数一致3.组态王数据词典--变量定义在组态王中定义的寄存器数据格式(类型):由单片机决定。
斜体字dd代表数据地址,此地址与单片机的数据地址相对应.注意:在组态王中定义变量时,一个X寄存器根据所选数据类型(BYTE,USHORT,FLOAT)的不同,分别占用一个、两个,四个字节,定义不同的数据类型要注意寄存器后面的地址,同一数据区内不可交叉定义不同数据类型的变量。
为提高通讯速度建议用户使用连续的数据区。
例如,1、在单片机中定义从地址0开始的数据类型为BYTE型的变量: 则在组态王中定义相应的变量的寄存器为X0、X1、X2、X3、X4。
,数据类型为BYTE,每个变量占一个字节2、在单片机中定义从地址100开始的数据类型为USHORT型的变量: 则在组态王中定义相应的变量的寄存器为X100、X102、X104、X106、X108。
数据类型USHORT,每个变量占两个字节3、在单片机中定义从地址200开始的数据类型为FLOAT型的变量: 则在组态王中定义相应的变量的寄存器为X200、X204、X208、X212。
自己对单片机的modbus RTU的详细解释Modbus一个工业上常用的通讯协议、一种通讯约定。
Modbus协议包括RTU、ASCII、TCP。
其中MODBUS-RTU最常用,比较简单,在单片机上很容易实现。
虽然RTU比较简单,但是看协议资料、手册说得太专业了,起初很多内容都很难理解。
所谓的协议是什么?就是互相之间的约定嘛,如果不让别人知道那就是暗号。
现在就来定义一个新的最简单协议。
例如,协议:“A”--“LED灭”“B”--“报警”“C”--“LED亮”单片机接收到“A”控制一个LED灭,单片机接收到“B”控制报警,单片机接收到“A”控制一个LED亮。
那么当收到对应的信息就执行相应的动作,这就是协议,很简单吧。
先来简单分析一条MODBUS-RTU报文,例如:01060001001798040106000100179804从机地址功能号数据地址数据CRC校验这一串数据的意思是:把数据0x0017(十进制23)写入1号从机地址0x0001数据地址。
先弄明白下面的东西。
1、报文一个报文就是一帧数据,一个数据帧就一个报文:指的是一串完整的指令数据,就像上面的一串数据。
2、CRC校验意义:例如上面的9804是它前面的数据(010*********)通过一算法(见附录2,很简单的)计算出来的结果,其实就像是计算累加和那样。
(累加和:就是010*********加起来的值,然后它的算法就是加法)。
作用:在数据传输过程中可能数据会发生错误,CRC检验检测接收的数据是否正确。
比如主机发出0106000100179804,那么从机接收到后要根据010*********再计算CRC校验值,从机判断自己计算出来的CRC校验是否与接收的CRC校验(9804主机计算的)相等,如果不相等那么说明数据传输有错误这些数据不能要。
3、功能号意义:modbus定义。
见附录1。
作用:指示具体的操作。
MODBUS-RTU一、一个报文分析先声明下我们的目的,我们是要两个设备通讯,用的是MODBUS协议。
《单片机应用技术》填空题题库x《单片机应用技术》习题库答案一、填空题第一、二章1.计算机中最常用的字符信息编码是(ASCII码)。
2.MCS-51系列单片机为( 8 )位单片机。
3.计算机三总线分别为:(数据)总线;(地址)总线;(控制)总线。
4.单片机与普通计算机的不同之处在于其将CPU 、存储器和I/O 三部分集成于一块芯片上。
5.能在紫外线照射下擦除和重写的存储器是(EPROM )型存储器,能够直接在线路中快速写入和读出的存储器是(EEPROM)型存储器。
6.8031、8051的主要区别是8051有 4 k内部ROM。
7.MCS-51单片机片内共有128 字节单元的RAM。
8.8031内部有RAM( 128 )字节、8751内部有ROM( 4K )。
9.MCS-51系列单片机8031、8051、89S52在内部存储器的设置上主要区别是:8031内部(无)程序存储器,8051内部( 4K )程序存储器,89C52内部( 8K )程序存储器。
10.8031构成的单片机应用系统必须扩展程序存储器。
11.M CS-51单片机片内RAM区中有128 个可寻址位。
12.8051单片机片内RAM区80H-0FFH属于特殊功能寄存器(SFR)区。
13.M CS-51单片机存储器结构的主要特点是程序存储器与数据存储器的寻址空间是分开的。
14.M CS-51单片机的存储器配置在物理结构上有4 个存储空间。
15.M CS-51单片机的存储器在逻辑上分为 3 个存储器地址空间16.当MCS-51单片机的EA引脚保持低电平时,CPU只访问片外的程序存贮器17.当EA接地时,MCS-51单片机将从外部程序存储器的地址0000H开始执行程序。
18.在只使用外部程序存储器时,51系列单片机的EA 管脚必须接地。
第1页共9页19.在只使用内部程序存储器时,51系列单片机的EA 管脚必须接高电平。
20.当使用8031单片机时,需要扩展外部程序存储器,此时/EA 应接低电平。
MCS-51有 4 个并行I\O口,其中P0~P3是准双向口,所以由输出转输入时必须先写入1 ,P0口做输出口时需要外接上拉电阻。
设计8031系统时, P0、P2 口不能用作一般I\O口,其原因是8031没有片内程序存储器。
MCS-51串行接口有4种工作方式,这可在初始化程序中用软件填写特殊功能寄存器SCON 加以选择。
当使用慢速外设时,最佳的传输方式是中断。
当定时器T0工作在方式 3 时,要占定时器T1的TR1和TF1_两个控制位。
MCS-51有 5 个中断源,有 2 个中断优先级,优先级由软件填写特殊功能寄存器 IP 加以选择。
用串口扩展并口时,串行接口工作方式应选为方式 0 。
在串行通信中,有数据传送方向单工、半双工、全双工三种方式。
单片微型机CPU、存储器和I\O接口三部分组成.若不使用MCS-51片内存器引脚EA必须接地。
输入输出设备是计算机与外部世界交换信息的载体。
计算机中最常用的字符信息编码是ASCII。
单片机是将微处理器、一定容量的 RAM 和ROM以及 I/O 口、定时器等电路集成在一块芯片上而构成的微型计算机。
单片机MCS8051片内集成了 4 KB的ROM,共有 5 个中断源,这5个中断源查询顺序由高到低分别是外部中断0 ,定时器/计数器T0,外部中断1 ,定时器/计数器T1,串行口中断。
两位十六进制数最多可以表示 256 个存储单元。
在MCS8051中,片内RAM分为地址为 00H~7FH 的真正RAM区,和地址为80H~FFH的特殊功能寄存器(SFR) 区两个部分。
在MCS8051中,只有当EA引脚接高电平时,CPU才访问片内的Flash ROM。
MCS-51单片机的存储器配置方式把程序存储器和数据存储器分开,各有自己的寻址系统、控制信号和功能,属于哈佛结构。
MCS-51具有 64 KB的字节寻址能力。
51单片机中,通用寄存器区共分为 4 组,每组 8 个工作寄存器,当CPU 复位时,第 0 组寄存器为当前的工作寄存器。
关于51单片机上实现modbus协议你找一个MODBUS的协议详细资料好好看看,就是一种通讯约定,你按照它规定的格式通讯就可以了协议发送给询问方。
Modbus协议包括ASCII、RTU、TCP等,并没有规定物理层。
此协议定义了控制器能够认识和使用的消息结构,而不管它们是经过何种网络进行通信的。
标准的Modicon控制器使用RS232C实现串行的Modbus。
Modbus的ASCII、RTU协议规定了消息、数据的结构、命令和就答的方式,数据通讯采用Maser/Slave方式,Master端发出数据请求消息,Slave端接收到正确消息后就可以发送数据到Master端以响应请求;Master端也可以直接发消息修改Slave端的数据,实现双向读写。
Modbus协议需要对数据进行校验,串行协议中除有奇偶校验外,ASCII模式采用LRC校验,RTU模式采用16位CRC校验,但TCP模式没有额外规定校验,因为TCP协议是一个面向连接的可靠协议。
另外,Modbus采用主从方式定时收发数据,在实际使用中如果某Slave站点断开后(如故障或关机),Master端可以诊断出来,而当故障修复后,网络又可自动接通。
因此,Modbus协议的可靠性较好。
下面我来简单的给大家介绍一下,对于Modbus的ASCII、RTU和TCP协议来说,其中TCP和RTU协议非常类似,我们只要把RTU协议的两个字节的校验码去掉,然后在RTU协议的开始加上5个0和一个6并通过TCP/IP网络协议发送出去即可。
所以在这里我仅介绍一下Modbus的ASCII和RTU协议。
下表是ASCII协议和RTU协议进行的比较:协议开始标记结束标记校验传输效率程序处理ASCII :(冒号)CR,LF LRC 低直观,简单,易调试RTU 无无CRC 高不直观,稍复杂通过比较可以看到,ASCII协议和RTU协议相比拥有开始和结束标记,因此在进行程序处理时能更加方便,而且由于传输的都是可见的ASCII字符,所以进行调试时就更加的直观,另外它的LRC校验也比较容易。
ASCII码对照表以及各个字符的解释(精华版)ASCII(American Standard Code for Information Interchange,美国信息互换标准代码)是⼀套基于拉丁字母的字符编码,共收录了 128 个字符,⽤⼀个字节就可以存储,它等同于国际标准 ISO/IEC 646。
ASCII 规范于 1967 年第⼀次发布,最后⼀次更新是在 1986 年,它包含了 33 个控制字符(具有某些特殊功能但是⽆法显⽰的字符)和 95 个可显⽰字符。
ASCII 码对照表⼆进制⼗进制⼗六进制缩写/字符解释00000000000NUL (NULL)空字符00000001101SOH (Start Of Headling)标题开始00000010202STX (Start Of Text)正⽂开始00000011303ETX (End Of Text)正⽂结束00000100404EOT (End Of Transmission)传输结束00000101505ENQ (Enquiry)请求00000110606ACK (Acknowledge)回应/响应/收到通知00000111707BEL (Bell)响铃00001000808BS (Backspace)退格00001001909HT (Horizontal Tab)⽔平制表符00001010100A LF/NL(Line Feed/New Line)换⾏键00001011110B VT (Vertical Tab)垂直制表符00001100120C FF/NP (Form Feed/New Page)换页键00001101130D CR (Carriage Return)回车键00001110140E SO (Shift Out)不⽤切换00001111150F SI (Shift In)启⽤切换000100001610DLE (Data Link Escape)数据链路转义000100011711DC1/XON (Device Control 1/Transmission On)设备控制1/传输开始000100101812DC2 (Device Control 2)设备控制2000100111913DC3/XOFF (Device Control 3/Transmission Off)设备控制3/传输中断000101002014DC4 (Device Control 4)设备控制4000101012115NAK (Negative Acknowledge)⽆响应/⾮正常响应/拒绝接收000101102216SYN (Synchronous Idle)同步空闲000101112317ETB (End of Transmission Block)传输块结束/块传输终⽌000110002418CAN (Cancel)取消000110012519EM (End of Medium)已到介质末端/介质存储已满/介质中断00011010261A SUB (Substitute)替补/替换00011011271B ESC (Escape)逃离/取消00011100281C FS (File Separator)⽂件分割符00011101291D GS (Group Separator)组分隔符/分组符00011110301E RS (Record Separator)记录分离符00011111311F US (Unit Separator)单元分隔符001000003220(Space)空格001000013321!001000103422"001000113523#001001003624$001001013725%001001103826&001001113927'001010004028(001010014129)00101010422A*00101011432B+ 00101100442C, 00101101452D-00101110462E. 00101111472F/ 0011000048300 0011000149311 0011001050322 0011001151333 0011010052344 0011010153355 0011011054366 0011011155377 0011100056388 0011100157399 00111010583A: 00111011593B; 00111100603C< 00111101613D= 00111110623E> 00111111633F? 010*********@ 010*********A 010*********B 010*********C 010*********D 010*********E 010*********F 010*********G 010*********H 010*********I 010********A J 010********B K 010********C L 010********D M 010********E N 010********F O 010*********P 010*********Q 010*********R 010*********S 010*********T 010*********U 010*********V 010*********W 010*********X 010*********Y 010********A Z 010********B[ 010********C\ 010********D] 010********E^010********F_011000009660`011000019761a011000109862b011000119963c0110010010064d0110010110165e0110011010266f0110011110367g0110100010468h0110100110569i011010101066A j011010111076B k011011001086C l011011011096D m011011101106E n011011111116F o0111000011270p0111000111371q0111001011472r0111001111573s0111010011674t0111010111775u0111011011876v0111011111977w0111100012078x0111100112179y011110101227A z011110111237B{011111001247C|011111011257D}011111101267E~011111111277F DEL (Delete)删除对控制字符的解释ASCII 编码中第 0~31 个字符(开头的 32 个字符)以及第 127 个字符(最后⼀个字符)都是不可见的(⽆法显⽰),但是它们都具有⼀些特殊功能,所以称为控制字符( Control Character)或者功能码(Function Code)。
组态王与单片机协议1.通讯口设置:通讯方式:RS-232,RS-485,RS-422均可。
波特率:由单片机决定(2400,4800,9600and19200bps)。
程中的通讯参数一致2.在组态王中定义设备地址的格式格式:##.#前面的两个字符是设备地址,范围为0-255,此地址为单片机的地址,由单片机中的程序决定;后面的一个字符是用户设定是否打包,“0”为不打包、“1”为打包,用户一旦在定义设备时确定了打包,组态王将处理读下位机变量时数据打包的工作。
注意:在组态王中定义变量时,一个X寄存器根据所选数据类型(BYTE,UINT,FLOAT)的不同分别占用一个、两个,四个字节,定义不同的数据类型要注意寄存器后面的地址,同一数据区内不可交叉定义不同数据类型的变量。
为提高通讯速度建议用户使用连续的数据区。
例如,1、在单片机中定义从地址0开始的数据类型为BYTE型的变量:则在组态王中定义相应的变量的寄存器为X0、X1、X2、X3、X4。
,数据类型为BYTE,每个变量占一个字节2、在单片机中定义从地址100开始的数据类型为UINT型的变量:则在组态王中定义相应的变量的寄存器为X100、X102、X104、X106、X108。
,数据类型UINT,每个变量占两个字节3、在单片机中定义从地址200开始的数据类型为FLOAT型的变量:则在组态王中定义相应的变量的寄存器为X200、X204、X208、X212。
,数据类型FLOAT,每个变量占四个字节3.组态王与单片机通讯的命令格式:说明;字头:1字节1个ASCII码,40H设备地址:1字节2个ASCII码,0—255(即0---0x0ffH)标志:1字节2个ASCII码,bit0~bit7,bit0= 0:读,bit0= 1:写。
bit1= 0:不打包。
bit3bit2 = 00,数据类型为字节。
bit3bit2 = 01,数据类型为字。
bit3bit2 = 1x,数据类型为浮点数。
数据地址:2字节4个ASCII码,0x0000~0xffff数据字节数:1字节2个ASCII码,1—100,实际读写的数据的字节数。
数据…:为实际的数据转换为ASCII码,个数为字节数乘2。
异或:异或从设备地址到异或字节前,异或值转换成2个ASCII码CR:0x0d。
通讯尝试恢复命令(COMERROR),请求地址为0的一个BYTE数据100,数据类型为字节,不打包。
组态王所发,数据类型为字节,打包。
组100,数据类型为字,不打包。
组态王所发数65535,数据类型为浮点型,打包。
组态王所4字节浮点数= 第一字节高4位ASCII码+第一字节低4位ASCII码+第二字节高4位ASCII码+第二字节低4位ASCII码+第三字节高4位ASCII码+第三字节低4位ASCII码+第四字节高4位ASCII 码+第四字节低4位ASCII 码第1字节低4位 第2字节低4位第3字节低4位 第4字节低4位第四字节浮点数格式:(1)第一字节 (2)第二字节(3)第三字节(4)第四字节注:数符=0——正,数符=1——负阶符=0——正,阶符=1——负D7 D6 D5 ~ D0 ★ 浮点数可表示范围:-1×232~1×232★ 数符:1位 阶符:1位 阶码:6位 例:流量积算控制仪表瞬时流量测量值数据=100.210转换成浮点数:100.210=27⨯0.7828125=0716+C816+6616+6616=30ASCII +37ASCII +43ASCII +38ASCII +36ASCII +36ASCII +36ASCII +36ASCII小数部份:0.7828125 ⇒ 0.7828125⨯256=200.4⇒ 0.4⨯256=102.4⇒0.4⨯256=102.410进制: 第一字节 第二字节 第三字节 第四字节十六进制: ASCII 码: 第一字节 第二字节 第三字节小数部分乘以256 整数部份为第二字节(200) 第二字节小数部分乘以256整数部份为第三字节(102)第三字节小数部分乘以256 整数部份为第四字节(102)第四字节传输格式如下:第1字节低4位第2字节低4位第3字节低4位第4字节低4位第1字节高4位第2字节高4位第3字节高4位第4字节高4位3、注:仪表内部数据为十六进制表示的十进制数。
如:实时测量值为500,则用十六进制表示为1F4H。
仪表通讯传输是将上述十六进制数据转化为标准ASCII码(即一字节的16进制数转化为2个ASCII码──高4位ASCII码+低4位ASCII码)。
如:上述数据1F4H(16进制),传输时,转化为ASCII码则为30H、31H、46H、34H。
6.此浮点数格式的转换:1)ASCII码到浮点数:/*in:char* c要转化的ASII码字符,应为4个字符。
Return :转换后的浮点数。
*/float C4toD(char * c){BYTE Hd[30], Jiema[30];float DTc[30];float Decimal = 0;memset(Hd, 0, sizeof(Hd));memset(Jiema, 0, sizeof(Jiema));memset(DTc, 0, sizeof(DTc));float returnflo = 0;BOOL ShuFU = FALSE, JieFU = FALSE;if((c[7] > 0x40) && (c[7] < 0x47))Hd[7] = ((c[7] - 0x37) & 0x0f);else if((c[7] > 0x60) && (c[7] < 0x67))Hd[7] = ((c[7] - 0x57) & 0x0f);elseHd[7] = ((c[7] - 0x30) & 0x0f);if((c[6] > 0x40) && (c[6] < 0x47))Hd[6] = ((c[6] - 0x37) & 0x0f);else if((c[6] > 0x60) && (c[6] < 0x67))Hd[6] = ((c[6] - 0x57) & 0x0f);elseHd[6] = ((c[6] - 0x30) & 0x0f);DTc[2] = (float)(((float)(Hd[6] * 16.0) + (float)(Hd[7])) / 256.0);if((c[5] > 0x40) && (c[5] < 0x47))Hd[5] = ((c[5] - 0x37) & 0x0f);else if((c[5] > 0x60) && (c[5] < 0x67))Hd[5] = ((c[5] - 0x57) & 0x0f);elseHd[5] = ((c[5] - 0x30) & 0x0f);if((c[4] > 0x40) && (c[4] < 0x47))Hd[4] = ((c[4] - 0x37) & 0x0f);else if((c[4] > 0x60) && (c[4] < 0x67))Hd[4] = ((c[4] - 0x57) & 0x0f);elseHd[4] = ((c[4] - 0x30) & 0x0f);DTc[1] = (float)((((float)(Hd[4] * 16.0) + (float)Hd[5]) + DTc[2]) / 256.0); if((c[3] > 0x40) && (c[3] < 0x47))Hd[3] = ((c[3] - 0x37) & 0x0f);else if((c[3] > 0x60) && (c[3] < 0x67))Hd[3] = ((c[3] - 0x57) & 0x0f);elseHd[3] = ((c[3] - 0x30) & 0x0f);if((c[2] > 0x40) && (c[2] < 0x47))Hd[2] = ((c[2] - 0x37) & 0x0f);else if((c[2] > 0x60) && (c[2] < 0x67))Hd[2] = ((c[2] - 0x57) & 0x0f);elseHd[2] = ((c[2] - 0x30) & 0x0f);Decimal = (float)(((float)(Hd[2] * 16) + (float)(Hd[3]) + DTc[1])/ 256.0); if((c[1] > 0x40) && (c[1] < 0x47))Jiema[1] = ((c[1] - 0x37) & 0x0f);else if((c[1] > 0x60) && (c[1] < 0x67))Jiema[1] = ((c[1] - 0x57) & 0x0f);elseJiema[1] = ((c[1] - 0x30) & 0x0f);if((c[0] > 0x40) && (c[0] < 0x47))Jiema[0] = ((c[0] - 0x37) & 0x0f);else if((c[0] > 0x60) && (c[0] < 0x67))Jiema[0] = ((c[0] - 0x57) & 0x0f);elseJiema[0] = ((c[0] - 0x30) & 0x0f);ShuFU = ((Jiema[0] & 0x08) >> 3) > 0;JieFU = ((Jiema[0] & 0x04) >> 2) > 0;Jiema[2] = (Jiema[0] & 0x03) * 16 + Jiema[1];if(JieFU)returnflo = (float)pow(2, (-1) * Jiema[2]) * Decimal;elsereturnflo = (float)pow(2, Jiema[2]) * Decimal;if(ShuFU)returnflo = (-1) * returnflo;return returnflo;}2)浮点数到ASCII码:/*in:char * c:存储浮点数转换后的ASCII码字符。