新教材高中数学集合与常用逻辑用语1.1集合1.1.3集合的基本运算第1课时集合的交集与并集课件人教B版必修一
- 格式:ppt
- 大小:5.83 MB
- 文档页数:32
课时分层作业(四) 交集和并集(建议用时:40分钟)一、选择题1.设集合A ={1,2,3},B ={2,3,4},则A ∪B =( ) A .{1,2,3,4} B .{1,2,3} C .{2,3,4}D .{1,3,4}A [∵A ={1,2,3},B ={2,3,4},∴A ∪B ={1,2,3,4}. 故选A.]2.设集合A ={-1,1,2,3,5},B ={2,3,4},C ={x ∈R |1≤x <3},则(A ∩C )∪B =( )A .{2}B .{2,3}C .{-1,2,3}D .{1,2,3,4}D [由条件可得A ∩C ={1,2},故(A ∩C )∪B ={1,2,3,4}.故选D.] 3.已知集合A ={x |x +1<0},B ={x |x -3<0},那么集合A ∪B 等于( ) A .{x |-1≤x <3} B .{x |x <3} C .{x |x <-1}D .{x |x >3}B [A ={x |x +1<0}={x |x <-1},B ={x |x -3<0}={x |x <3}, ∴A ∪B ={x |x <3},故选B.]4.已知集合A ={1,3},B ={1,2,m },若A ∩B ={1,3},则A ∪B =( ) A .{1,2} B .{1,3} C .{1,2,3}D .{2,3}C [∵A ∩B ={1,3},∴3∈B ,∴m =3, ∴B ={1,2,3},∴A ∪B ={1,2,3}.故选C.]5.设集合A ={(x ,y )|y =ax +1},B ={(x ,y )|y =x +b },且A ∩B ={(2,5)},则( ) A .a =3,b =2 B .a =2,b =3 C .a =-3,b =-2D .a =-2,b =-3 B [∵A ∩B ={(2,5)},∴⎩⎪⎨⎪⎧5=2a +1,5=2+b ,解得a =2,b =3,故选B.]二、填空题6.已知集合A ={1,2,3},B ={y |y =2x -1,x ∈A },则A ∩B =________.{1,3} [A ∩B ={1,2,3}∩{y |y =2x -1,x ∈A } ={1,2,3}∩{1,3,5}={1,3}.]7.(一题两空)若集合A ={x |-1<x <5},B ={x |x ≤1,或x ≥4},则A ∪B =________,A ∩B =________.R {x |-1<x ≤1,或4≤x <5} [借助数轴可知:A ∪B =R ,A ∩B ={x |-1<x ≤1,或4≤x <5}.]8.设集合M ={x |-2<x <5},N ={x |2-t <x <2t +1,t ∈R },若M ∪N =M ,则实数t 的取值X 围是________.(-∞,2] [由M ∪N =M 得N ⊆M ,当N =时,2t +1≤2-t ,即t ≤13,此时M ∪N =M 成立;当N ≠时,借助数轴可得⎩⎪⎨⎪⎧2-t <2t +1,2t +1≤5,2-t ≥-2,解得13<t ≤2.综上可知,实数t 的取值X 围是(-∞,2].] 三、解答题9.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎩⎪⎨⎪⎧3-x >03x +6>0,集合B ={x |2x -1<3},求A ∩B ,A ∪B . [解] 解不等式组⎩⎪⎨⎪⎧3-x >0,3x +6>0,得-2<x <3,即A ={x |-2<x <3}. 解不等式2x -1<3,得x <2, 即B ={x |x <2},在数轴上分别表示集合A ,B ,如图所示.则A ∩B ={x |-2<x <2},A ∪B ={x |x <3}. 10.已知集合A ={x |-2<x <4},B ={x |x -m <0}. (1)若A ∩B =,某某数m 的取值X 围;(2)若A ∪B =B ,某某数m 的取值X 围. [解](1)∵A ={x |-2<x <4},B ={x |x <m }, 又A ∩B =,∴m ≤-2.(2)∵A ={x |-2<x <4},B ={x |x <m },由A ∪B =B ,得A ⊆B ,∴m ≥4.11.若集合A ={0,1,2,x },B ={1,x 2},A ∪B =A ,则满足条件的实数x 有( ) A .1个 B .2个 C .3个D .4个B [∵A ∪B =A ,∴B ⊆A .∵A ={0,1,2,x },B ={1,x 2},∴x 2=0或x 2=2或x 2=x ,解得x =0或2或-2或1.经检验,当x =2或-2时满足题意,故选B.]12.设集合A ={-1,0,1},集合B ={0,1,2,3},定义A *B ={(x ,y )|x ∈A ∩B ,y ∈A ∪B },则A *B 中元素的个数是( )A .7B .10C .32D .25B [因为A ={-1,0,1},B ={0,1,2,3}, 所以A ∩B ={0,1},A ∪B ={-1,0,1,2,3}. 经x ∈A ∩B ,可知x 可取0,1;由y ∈A ∪B ,可知y 可取-1,0,1,2,3. 所以元素(x ,y )的所有结果如下表所示:yx-10 1 2 3 0 (0,-1) (0,0) (0,1) (0,2) (0,3) 1(1,-1)(1,0)(1,1)(1,2)(1,3)所以A *B 中的元素共有10个.故选B.]13.设S ={x |x <-1或x >5},T ={x |a <x <a +8},若S ∪T =R ,则实数a 应满足________.-3<a <-1 [在数轴上表示集合S ,T 如图所示.因为S ∪T =R ,由数轴可得⎩⎪⎨⎪⎧a <-1,a +8>5,解得-3<a <-1.]14.(一题两空)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种.则该网店(1)第一天售出但第二天未售出的商品有________种;(2)这三天售出的商品最少有________种.(1)16 (2)29[(1)设第一天售出的商品为集合A,则A中有19个元素,第二天售出的商品为集合B,则B中有13个元素.由于前两天都售出的商品有3种,则A∩B中有3个元素.如图所示,所以该网店第一天售出但第二天未售出的商品有19-3=16(种).(2)由(1)知,前两天售出的商品为19+13-3=29(种),当第三天售出的18种都是前两天售出的商品时,这三天售出的商品种类最少,售出的商品最少为29种.]15.已知集合A={x|x2-(a+3)x+a2=0},B={x|x2-x=0},是否存在实数a,使A,B 同时满足下列三个条件:①A≠B;②A∪B=B;③(A∩B)?若存在,求出a的值;若不存在,请说明理由.[解]假设存在实数a使A,B满足题设条件,易知B={0,1}.因为A∪B=B,所以A⊆B,即A=B或A B.由条件①A≠B,知A B.又(A∩B),所以A≠,即A={0}或{1}.当A={0}时,将x=0代入方程x2-(a+3)x+a2=0,得a2=0,解得a=0.经检验,当a=0时,A={0,3},与A={0}矛盾,舍去.当A={1}时,将x=1代入方程x2-(a+3)x+a2=0,得a2-a-2=0,解得a=-1或a=2.经检验,当a=-1时,A={1},符合题意;当a=2时,A={1,4},与A={1}矛盾,舍去.综上所述,存在实数a=-1,使得A,B满足条件.。
第1课时并集和交集课标解读课标要求核心素养1.理解两个集合之间的并集和交集的含义.(重点)2.能求两个集合的并集与交集.(重点、难点)1.借助Venn图培养直观想象的核心素养.2.通过集合并集、交集的运算提升数学运算的核心素养.某班有学生20人,他们的学号分别是1,2,3,…,20,现有a,b两本新书,已知学号是偶数的同学读过新书a,学号是3的倍数的同学读过新书b.问题1:至少读过一本书的有哪些同学?答案至少读过一本书的有学号为2,3,4,6,8,9,10,12,14,15,16,18,20的同学.问题2:同时读了a,b两本书的有哪些同学?答案同时读了a,b两本书的有学号为6,12,18的同学.1.并集思考1:“x∈A或x∈B”包含哪几种情况?提示“x∈A或x∈B”这一条件包括下列三种情况:x∈A,但x∉B;x∈B,但x∉A;x∈A,且x∈B.用Venn图表示如图所示.思考2:集合A∪B的元素个数是否等于集合A与集合B的元素个数之和?提示不等于,A∪B的元素个数小于或等于集合A与集合B的元素个数之和.2.交集特别提醒并集的运算性质:A∪B=B∪A;A∪A=A;A∪⌀=A;A∪B=A⇔B⊆A.交集的运算性质:A∩B=B∩A;A∩A=A;A∩⌀=⌀;A∩B=A⇔A⊆B.探究一并集的运算例1 (1)设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=()A.{0}B.{0,2}C.{-2,0}D.{-2,0,2}(2)已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N=()A.{x|x<-5或x>-3}B.{x|-5<x<5}C.{x|-3<x<5}D.{x|x<-3或x>5}答案(1)D (2)A解析(1)M={x|x2+2x=0,x∈R}={0,-2},N={x|x2-2x=0,x∈R}={0,2},故M∪N={-2,0,2},故选D.(2)在数轴上表示集合M,N(图略),则M∪N={x|x<-5或x>-3}.思维突破求两个集合的并集的方法(1)两个集合用列举法给出:①依定义,直接观察求并集;②借助Venn图写并集.(2)两个集合用描述法给出:①直接观察,写出并集;②借助数轴,求出并集.1.(1)设集合A={-1,0,-2},B={x|x2-x-6=0},则A∪B等于( )A.{-2}B.{-2,3}C.{-1,0,-2}D.{-1,0,-2,3}(2)已知集合A={x|x≥1},B={x|2x-3>0},则A∪B=()A.{x|x≥0}B.{x|x≥1}C. D.答案(1)D (2)B解析(1)因为A={-1,0,-2},B={x|x2-x-6=0}={-2,3},所以A∪B={-1,0,-2,3}.故选D.(2)因为B={x|2x-3>0}=,所以A∪B={x|x≥1}.故选B.探究二交集的运算例2 (1)若A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},则图中阴影部分表示的集合为( )A.{2}B.{3}C.{-3,2}D.{-2,3}(2)已知集合A={x|x>-1},B={x|x<2},则A∩B=()A.{x|x>-1}B.{x|x<2}C.{x|-1<x<2}D.⌀答案(1)A (2)C解析(1)易知A={1,2,3,4,5,6,7,8,9,10},B={-3,2},题图中阴影部分表示的集合为A∩B={2},故选A.(2)在数轴上标出集合A,B,如图所示,故A∩B={x|-1<x<2}.思维突破求两个集合的交集的方法(1)对于元素个数有限的集合,逐个挑出两个集合的公共元素即可.(2)对于元素个数无限的集合,一般借助数轴求交集,两个集合的交集等于两个集合在数轴上的相应图形所覆盖的公共范围,要注意端点值的取舍.2.(1)设集合A={1,2,6},B={2,4},C={1,2,3,4},则(A∪B)∩C=( )A.{2}B.{1,2,4}C.{1,2,4,6}D.{1,2,3,4,6}(2)若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=()A.{x|-2<x<-1}B.{x|-2<x<3}C.{x|-1<x<1}D.{x|1<x<3}答案(1)B (2)A解析(1)由题意可得A∪B={1,2,4,6},∴(A∪B)∩C={1,2,4}.故选B.(2)∵A={x|-2<x<1},B={x|x<-1或x>3},∴A∩B={x|-2<x<-1},故选A.探究三集合交、并运算的性质及综合应用例3 (易错题)已知集合A={x|-3<x≤4},集合B={x|k+1≤x≤2k-1},且A∪B=A,试求k 的取值范围.易错辨析:因为⌀是任何集合的子集,所以当作为子集的集合中含有字母时,要考虑该集合是否可以为⌀.解析①当B=⌀,即k+1>2k-1时,k<2,满足A∪B=A.②当B≠⌀时,要使A∪B=A,只需解得2≤k≤.综合①②可知k≤.易错点拨利用集合交集、并集的性质解题的依据及关注点(1)依据:A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.(2)关注点:当集合A⊆B时,若集合A不确定,则运算时要考虑A=⌀的情况,否则易漏解.3.(1)(变条件)把例3中的条件“A∪B=A”改为“A∩B=A”,试求k的取值范围;(2)(变条件)把例3中的条件“A∪B=A”改为“A∪B={x|-3<x≤5}”,求k的值.解析(1)由A∩B=A可知A⊆B,所以即此时k无解,所以k的取值范围是⌀.(2)由题意可知解得k=3,所以k的值为3.1.已知集合A={1,6},B={5,6,8},则A∪B等于( )A.{1,6,5,6,8}B.{1,5,6,8}C.{6,6}D.{6}答案 B 求集合的并集时,要注意集合中元素的互异性.2.已知集合A={1,2,3},B={x|(x+1)(x-2)=0,x∈Z},则A∩B=()A.{1}B.{2}C.{-1,2}D.{1,2,3}答案 B ∵B={x|(x+1)(x-2)=0,x∈Z}={-1,2},A={1,2,3}∴A∩B={2}.3.已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B=.答案{1,4}解析由题意得,B={1,4,7,10},所以A∩B={1,4}.4.已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为.答案 5解析并集中重复的元素只能取一个,集合A与B中重复的元素是2,其他不重复,所以A∪B={1,2,3,4,5},共有5个元素.5.已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<3或x≥7},求:(1)A∪B;(2)C∩B.解析(1)把集合A={x|3≤x<7},B={x|2<x<10}表示在同一数轴上如图所示:则A∪B={x|2<x<10}.(2)把集合B={x|2<x<10},C={x|x<3或x≥7}表示在同一数轴上如图所示:则C∩B={x|2<x<3或7≤x<10}.数学运算——利用集合运算求参数问题已知集合M={1,2,a2-3a-1},N={-1,a,3},M∩N={3},求实数a的值.审:集合M与集合N交集中的元素为3,即3是两个集合的公共元素,由此可以列出方程求参数a的值.联:当已知两个集合的运算结果求参数的值时,一般要根据集合的运算性质列出方程(组)求解,同时注意验证所求得的参数值是否满足集合中元素的互异性.解:∵M∩N={3},∴3∈M,∴a2-3a-1=3,即a2-3a-4=0,解得a=-1或a=4.当a=-1时,不满足集合中元素的互异性,舍去;当a=4时,M={1,2,3},N={-1,3,4},符合题意.∴a=4.思:解答此类题目的思路是将集合中的运算结果转化为集合与元素之间的关系.若集合中的元素能一一列举,则可用观察法得到其关系;与不等式有关的集合,可利用数轴得到不同集合之间的关系.若集合A={0,1,2,x},B={1,x2},A∪B=A,则满足条件的实数x有( )A.1个B.2个C.3个D.4个答案 B ∵A∪B=A,∴B⊆A,∴x2=0或x2=2或x2=x,解得x=0或x=或x=-或x=1.经检验,当x=或x=-时满足题意,故选B.1.已知集合M={-1,0,1},N={0,1,2},则M∪N=()A.{-1,0,1}B.{-1,0,1,2}C.{-1,0,2}D.{0,1}答案 B2.已知集合A={x∈R|x≤5},B={x∈R|x>1},那么A∩B等于( )A.{x∈R|x>1}B.{x∈R|x≤5}C.{2,3,4}D.{x∈R|1<x≤5}答案 D3.已知A,B两个集合分别用圆表示,则集合{x|x∈A,且x∈B}可用阴影表示为( ) 答案 D 集合{x|x∈A,且x∈B}=A∩B,故D正确.4.设集合A={x|x是参加自由泳的运动员},B={x|x是参加蛙泳的运动员},对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示为( )A.A∩BB.A⊇BC.A∪BD.A⊆B答案 A5.集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为( )A.0B.1C.2D.4答案 D ∵A∪B={0,1,2,a,a2},又A∪B={0,1,2,4,16},∴{a,a2}={4,16},∴a=4.6.满足{1}∪B={1,2}的集合B的个数是.答案 2解析由{1}∪B={1,2},知B={2}或B={1,2},共2个.7.已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=.答案{x|-1<x<3}8.已知集合A={(0,1),(1,1),(-1,2)},B={(x,y)|x+y-1=0,x,y∈Z},则A∩B=.答案{(0,1),(-1,2)}解析A,B都表示点集,A∩B是由集合A中在直线x+y-1=0上的所有点组成的集合,代入验证即可.9.已知集合A={x|-2<x<3},B={x|2m+1<x<m+7},若A∪B=B,求实数m的取值范围.解析因为A∪B=B,所以A⊆B,所以解得-4≤m≤-,故实数m的取值范围为.10.(多选)已知集合A={1,2},B={x|mx-1=0},若A∩B=B,则符合条件的实数m的值为( )A.0B.1C. D.2答案ABC 当m=0时,B=⌀,A∩B=B;当m≠0时,x=,若A∩B=B,则=1或=2,即m=1或m=.11.已知集合A={-2,3,4,6},集合B={3,a,a2},若B⊆A,则实数a= ;若A∩B={3,4},则实数a= .答案-2;2或4解析∵集合A={-2,3,4,6},集合B={3,a,a2},B⊆A,∴a=-2.∵A∩B={3,4},∴a=4或a2=4,∴a=2,a=-2(舍去)或a=4.12.设A,B是非空集合,定义A⊗B={x|x∈(A∪B)且x∉(A∩B)}.已知集合A={x|0<x<2},B={y|y≥0},则A⊗B= .答案{0}∪{x|x≥2}13.设集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},则使A⊆(A∩B)成立的a的取值集合为.答案{a|a≤9}解析由A⊆(A∩B)得A⊆B,则①当A=⌀时,2a+1>3a-5,解得a<6,满足条件.②当A≠⌀时,解得6≤a≤9.综合①②可知,使A⊆(A∩B)成立的a的取值集合为{a|a≤9}.14.已知集合A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=⌀,求实数a的取值范围. 解析①若A=⌀,则2a>a+3,解得a>3;②若A≠⌀,如图:∴解得-≤a≤2.综上所述,a的取值范围是.15.已知集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},是否存在实数a使A,B同时满足下列三个条件:(1)A≠B;(2)A∪B=B;(3)⌀⫋(A∩B).若存在,求出实数a的值;若不存在,请说明理由.解析假设存在a使得A,B同时满足条件.由题意得B={2,3},∵A∪B=B,∴A⊆B,即A=B或A⫋B.由条件(1)A≠B,可知A⫋B.又∵⌀⫋(A∩B),∴A≠⌀,即A={2}或{3}.当A={2}时,a2-2a-15=0,即a=-3或a=5.经检验:当a=-3时,A={2,-5},与A={2}矛盾,舍去;当a=5时,A={2,3},与A={2}矛盾,舍去.当A={3}时,a2-3a-10=0,即a=5或a=-2.经检验:当a=-2时,A={3,-5},与A={3}矛盾,舍去;当a=5时,A={2,3},与A={3}矛盾,舍去.综上所述,不存在实数a使得A,B同时满足条件.。
1.1。
3 集合的基本运算第1课时交集和并集学习目标核心素养1.理解两个集合交集与并集的含义,会求两个简单集合的交集和并集.(重点、难点) 2.能使用维恩图、数轴表达集合的关系及运算,体会图示对理解抽象概念的作用.(难点)1.通过理解集合交集、并集的概念,提升数学抽象的素养.2.借助维恩图培养直观想象的素养.某班有学生20人,他们的学号分别是1,2,3,…,20,有a,b两本新书,已知学号是偶数的读过新书a,学号是3的倍数的读过新书b。
问题(1)同时读了a,b两本书的有哪些同学?(2)问至少读过一本书的有哪些同学?1.交集自然语言一般地,给定两个集合A,B,由既属于A又属于B的所有元素(即A和B的公共元素)组成的集合,称为A与B的交集,记作A∩B,读作“A交B”符号语言A∩B={x|x∈A,且x∈B}图形语言错误!错误!(3)A B,则A∩B=A错误!错误对于“A∩B={x|x∈A,且x∈B}”,包含以下两层意思:①A∩B中的任一元素都是A与B的公共元素;②A与B 的公共元素都属于A∩B。
这就是文字定义中“所有"二字的含义,如A={1,2,3},B={2,3,4},则A∩B={2,3},而不是{2}或{3}.(2)任意两个集合并不是总有公共元素,当集合A与B没有公共元素时,不能说A与B没有交集,而是A∩B=。
(3)当A=B时,A∩B=A和A∩B=B同时成立.2.并集自然语言一般地,给定两个集合A,B,由这两个集合的所有元素组成的集合,称为A与B的并集,记作A∪B,读作“A并B”符号语言A∪B={x|x∈A,或x∈B}图形语言用维恩图表示有以下几种情况(阴影部分即为A与B 的并集):①A B,A∪B=B错误!错误!错误!错误!思考:(1)“x∈A或x∈B"包含哪几种情况?(2)集合A∪B的元素个数是否等于集合A与集合B的元素个数和?[提示](1)“x∈A或x∈B”这一条件包括下列三种情况:x∈A,但x B;x∈B,但x A;x∈A,且x∈B。