安徽省滁州市2017-2018学年高一上学期期末考试数学试题(解析版)
- 格式:doc
- 大小:2.15 MB
- 文档页数:9
2017-2018学年安徽省滁州市定远县西片三校联考高一(上)期末数学试卷一、选择题(本大题共12小题,共60.0分)1.已知集合A={0,2,4,6},B={x∈N|2x≤33},则集合A∩B的子集个数为()A. 6B. 7C. 8D. 42.若集合P={x|x2+x-6=0},T={x|mx+1=0},且T⊆P,则实数m的可取值组成的集合是()A. B. C. D.3.已知函数f(x)=|x-1|-1,且关于x方程f2(x)+af(x)-2=0有且只有三个实数根,则实数a的值为()A. 1B.C. 0D. 24.已知函数,∈,,∈,,若存在x1,x2,当0≤x1<x2<2时,f(x1)=f(x2),则x1f(x2)-f(x2)的取值范围为()A. B. C. D.5.如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆.垂直于x轴的直线l:x=t(0≤t≤a)经过原点O向右平行移动,l在移动过程中扫过平面图形的面积为y(图中阴影部分),若函数y=f(t)的大致图象如图,那么平面图形的形状不可能是()A. B.C. D.6.下列函数中,可以是奇函数的为()A. ,∈B. ,∈C. ,∈D. ,∈7.已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),且f(-1)=2,则f(2017)的值是()A. 2B. 0C.D.8.下列函数中,在(0,+∞)上为增函数的是()A. B. C. D.9.函数的定义域是:()A. B. C. D.10.偶函数f(x)在(0,+∞)上的解析式是f(x)=x(1+x),则在(-∞,0)上的函数解析式是()A. B. C.D.11.函数f(x)=的定义域为R,那么实数a的取值范围是()A. .B.C.D.12.设定义在R上的奇函数y=f(x),满足对任意t∈R都有f(t)=f(1-t),且x∈,时,f(x)=-x2,则f(3)+f(-的值等于()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.则当()时,.14.已知函数f(x)=,>,,则f[f()]的值为______.15.函数f(x)是定义域上的单调递减函数,且过点(-3,2)和(1,-2),则使|f(x)|<2的自变量x的取值范围是______.16.如图,矩形ABCD的三个顶点A、B、C分别在函数y=x,y=,y=()x的图象上,且矩形的边分别平行于两坐标轴,若点A的纵坐标为2,则点D的坐标为______.三、解答题(本大题共6小题,共70.0分)17.计算:0.0081+(4)2+()-16-0.75+2.18.设函数f(x)=,且f(-2)=3,f(-1)=f(1).(I)求f(x)的解析式;(II)画出f(x)的图象(不写过程)并求其值域.19.设二次函数f(x)=ax2+bx+c的图象过点(0,1)和(1,4),且对于任意的实数x,不等式f(x)≥4x恒成立.(1)求函数f(x)的表达式;(2)设g(x)=kx+1,若F(x)=log2[g(x)-f(x)]在区间[1,2]上是增函数,求实数k的取值范围.20.已知函数f(x)=,x∈[3,7].(1)判断函数f(x)的单调性,并用定义加以证明;(2)求函数f(x)的最大值和最小值.21.已知f(x)=log2.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并证明;(3)求使f(x)>0的x的取值范围.22.设函数f(x)=x2-2tx+2,g(x)=e x-1+e-x+1,且函数f(x)的图象关于直线x=1对称.(1)求函数f(x)在区间[0,4]上最大值;(2)设,不等式h(2x)-k•2x≥0在x∈[-1,1]上恒成立,求实数k的取值范围;(3)设F(x)=f(x)+ag(x)-2有唯一零点,求实数a的值.答案和解析1.【答案】C【解析】解:集合A={0,2,4,6},B={x∈N|2n<33}={0,1,2,3,4,5},则A∩B={0,2,4},∴A∩B的子集个数为23=8.故选:C.化简集合B,根据交集的运算写出A∩B,即可求出它的子集个数.本题考查了两个集合的交运算和指数不等式的解法以及运算求解能力.2.【答案】C【解析】解:∵A={x|x2+x-6=0},∴A={-3,2},又∵B⊆A∴当m=0时,B=∅,符合题意;当m≠0时,集合B中的元素可表示为x=-,若-=-3,则m=,若-=2,则m=-,∴实数m组成的集合是{0,-,}.故选:C.本题考查的是集合的包含关系判断及应用问题.在解答时,应先将集合A具体化,又B⊆A,进而分别讨论满足题意的集合B,从而获得问题的解答.本题考查的是集合的包含关系判断以及应用问题.在解答的过程当中充分体现了集合元素的特性、分类讨论的思想以及问题转化的思想.值得同学们体会反思.3.【答案】B【解析】解:作出f(x)=|x-1|-1的图象,令t=f(x),对于方程t2+at-2=0的两个根t1=-1,t2∈(-1,+∞),代入可得a=-1,检验得三个实数根为1,-2,4,满足题意,故选:B.作出f(x)=|x-1|-1的图象,令t=f(x),对于方程t2+at-2=0,有一个根为-1,即可得出结论.本题考查了方程的根与函数的图象的关系,同时考查了学生的作图能力,属于中档题.4.【答案】D【解析】解:作出函数的图象:∵存在x1,x2,当0≤x1<x2<2时,f(x1)=f(x2)∴0≤x1<,∵x+在[0,)上的最小值为;2x-1在[,2)的最小值为∴x1+≥,x1≥,∴≤x1<.∵f(x1)=x1+,f(x1)=f(x2)∴x1f(x2)-f(x2)=x1f(x1)-f(x1)2=-(x1+)=x12-x1-,设y=x12-x1-=(x1-)2-,(≤x1<),则对应抛物线的对称轴为x=,∴当x=时,y=-,当x=时,y=,当x=时,y=-,即x1f(x2)-f(x2)的取值范围为[-,-).故选:D.先作出函数图象然后根据图象,根据f(x1)=f(x2),确定x1的取值范围然后再根据x1f(x2)-f(x2),转化为求在x1的取值范围即可.本题主要考查分段函数的应用,以及函数零点和方程之间的关系,利用二次函数的单调性是解决本题的关键,综合性强,难度较大.5.【答案】C【解析】解:由函数的图象可知,几何体具有对称性,选项A、B、D,l在移动过程中扫过平面图形的面积为y,在中线位置前,都是先慢后快,然后相反.选项C,后面是直线增加,不满足题意;故选:C.直接利用图形的形状,结合图象,判断不满足的图形即可.本题考查函数的图象与图形面积的变换关系,考查分析问题解决问题的能力.6.【答案】A【解析】解:对于A.f(-x)=(-x-a)|-x|=(-x-a)|x|,若f(-x)+f(x)=(-2a)|x|=0,则a=0,则A 满足;对于B.f(-x)=(-x)2-ax+1,若f(-x)+f(x)=2x2+2=0,则方程无解,则B不满足;对于C.由ax-1>0,不管a取何值,定义域均不关于原点对称,则C不满足;对于D.f(-x)=-ax+cos(-x)=-ax+cosx,若f(-x)+f(x)=2cosx=0,则不满足x为故选:A.首先判断函数的定义域是否关于原点对称,再计算f(-x)+f(x)=0,观察方程是不是对定义域内的任意的x都成立,即可判断为奇函数的函数.本题考查函数的奇偶性的判断,考查定义法的运用,考查运算能力,属于基础题和易错题.7.【答案】D【解析】解:定义在R上的奇函数f(x)满足f(x+2)=-f(x),且f(-1)=2,可得f(x+4)=-f(x+2)=f(x),T=4,f(2017)=f(1)=-f(-1)=-2.故选:D.求出函数的周期,然后利用周期性以及函数的奇偶性求解即可.本题考查函数的奇偶性以及函数的周期性的应用,考查计算能力.8.【答案】C【解析】解:对于A:函数在(0,+∞)递减,不合题意;对于B:对称轴x=,在(0,)递减,在(,+∞)递增,不合题意;对于C:根据指数函数的性质,函数在(0,+∞)递增,符合题意;对于D:根据对数函数的性质,函数在(0,+∞)递减,不合题意;故选:C.根据二次函数的性质判断A、B,根据指数函数的性质判断C,根据对数函数的性质判断D即可.本题考查了函数的单调性问题,考查二次函数、指数函数以及对数函数的性质,是一道基础题.9.【答案】D【解析】解:要使函数有意义:≥0,即:解得x∈故选:D.无理式被开方数大于等于0,对数的真数大于0,解答即可.本题考查对数函数的定义域,考查学生发现问题解决问题的能力,是基础题.10.【答案】D【解析】解:设x<0,则-x>0,f(-x)=-x(1-x),而f(-x)=f(x),故当x<0时,f(x)=x(x-1).故选:D.设x>0,则-x<0,代入函数的表达式,结合函数的奇偶性,从而得到答案.本题考查了函数的奇偶性,考查了求函数的解析式问题,是一道基础题.11.【答案】A【解析】解:由f(x)=,得到ax2+4ax+3≠0,当a=0时,不等式等价为3≠0,满足条件;当a≠0时,要使不等式恒成立,则△<0,即16a2-4×3a<0,∴4a2-3a<0,即0<a<,综上,a的范围为[0,),故选:A.根据分母不为0,转化为ax2+4ax+3≠0,然后解不等式即可.此题考查了函数的定义域及其求法,将函数定义域转化为求不等式是解决本题的关键.12.【答案】C【解析】解:∵定义在R上的奇函数y=f(x),满足对任意t∈R都有f(t)=f(1-t),∴f(3)=f(1-3)=f(-2)=-f(2)=-f(1-2)=f(1)=f(1-1)=f(0),=.∵x时,f(x)=-x2,∴f(0)=0,,∴f(3)+f(-=0.故选C.利用奇函数的性质和对任意t∈R都有f(t)=f(1-t),即可分别得到f(3)=f(0),.再利用x时,f(x)=-x2,即可得出答案.熟练掌握函数的奇偶性和对称性是解题的关键.13.【答案】3【解析】解:由表格可知:f(1)=2,∵f[g(x)]=2,∴g(x)=1,而g(3)=1,∴x=3.故答案为3.利用函数的定义即可得出.本题考查了函数的定义,属于基础题.14.【答案】9【解析】解:∵函数f(x)=,∴f()==-2,则f[f()]=f(-2)==9.故答案为:9.利用分段函数定义得f()==-2,由此能求出f[f()]的值.本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数定义的合理运用.15.【答案】(-3,1)【解析】解:∵f(x)是定义域上的减函数,f(-3)=2,f(1)=-2,∴当x>-3时,f(x)<2,当x<1时,f(x)>-2,∴当-3<x<1时,|f(x)|<2.故答案为:(-3,1).根据函数的单调性得出答案.本题考查了函数单调性与不等式的解,属于中档题.16.【答案】(,)【解析】解:由题意可得,A、B、C点坐标分别为,(4,2),,设D(m,n),再由矩形的性质可得=,故(m-,n-2)=(0,-),∴m-=0,n-2=-.解得m=,n=,故点D的坐标为(,),故答案为(,).先求出A、B、C的坐标,设出点D的坐标,再根据=,求出点D的坐标.本题主要考查幂、指、对函数的图象与性质以及基本运算能力,向量相等的条件,属于基础题.17.【答案】解:原式=.++-24×(-0.75)+5=0.3++-+5=5.55【解析】根据指数幂和对数的运算性质化简即可.本题考查了指数幂和对数的运算性质,属于基础题.18.【答案】解:(I)函数f(x)=,由f(-2)=3,f(-1)=f(1).则有,解得:则f(x)=,(Ⅱ)f(x)的图象如图:通过函数f(x)的图象可知值域为[1,+∞).【解析】(I)根据定义域的范围带值计算求出a,b即可得f(x)的解析式.(II)根据一次函数和指数函数的性质画图象,通过图象得结论.本题考查了分段函数的解析式的求法和函数的画法.通过图象读性质.属于基础题.19.【答案】解:(1)f(0)=1⇒c=1,f(1)=4⇒a+b+c=4(2)F(x)=log2(g(x)-f(x))=log2(-x2+(k-2)x)由F(x)在区间[1,2]上是增函数得h(x)=-x2+(k-2)x在[1,2]上为增函数且恒正⇒,故>实数k的取值范围k≥6.【解析】(1)先利用图象过点(0,1)和(1,4),将点的坐标代入函数解析式得到关于a,b,c的关系式,再结合不等式f(x)≥4x对于任意的x∈R均成立,移项后变成二次函数的一般形式,只需△≤0即可求得a,b,c的值,最后写出函数f(x)的表达式.(2)由于F(x)=log2(g(x)-f(x))=log2(-x2+(k-2)x),设h(x)=-x2+(k-2)x,由二次函数的性质,比较对称轴和区间端点的关系即可.本题考查二次函数在R中的恒成立问题,可以通过判别式法予以解决,二次函数的单调区间有开口方向和对称轴的位置共同决定,在没说明开口方向时一定要注意比较对称轴和区间端点的关系.20.【答案】解:(1)函数f(x)在区间[3,7]内单调递减,证明如下:在[3,7]上任意取两个数x1和x2,且设x1>x2,∵f(x1)=,f(x2)=,∴f(x1)-f(x2)=-=.∵x1,x2∈[3,7],x1>x2,∴x1-2>0,x2-2>0,x2-x1<0,∴f(x1)-f(x2)=<0.即f(x1)<f(x2),由单调函数的定义可知,函数f(x)为[3,7]上的减函数.(2)由单调函数的定义可得f(x)max=f(3)=4,f(x)min=f(7)=.【解析】(1)函数f(x)在区间[3,7]内单调递减,根据取值、作差、变形定号、下结论的步骤,可得结论;(2)根据函数的单调性,即可得到结论.本题考查函数的单调性,考查函数的最值,考查学生分析解决问题的能力,属于中档题.21.【答案】解:(1)根据题意,已知,则>,即<,解得-1<x<1,故f(x)的定义域为(-1,1).(2)由(1)的结论:f(x)的定义域关于原点对称,,故函数f(x)是奇函数.(3)由f(x)>0可得>,即<,解得0<x<1,故求使f(x)>0的x的取值范围是(0,1).【解析】(1)根据题意,由对数函数的定义域可的,解可得x的取值范围,即可得答案;(2)根据题意,由函数的解析式分析可得f(-x)=-f(x),结合函数奇偶性的定义即可得结论;(3)根据题意,分析可得,即,解可得x的取值范围,即可得答案.本题考查函数的奇偶性与单调性的判断,涉及不等式的解法,属于基础题.22.【答案】解析:(1)因为f(x)关于直线x =1对称,所以t =1,故f(x)=x2-2x+2=(x-1)2+1,所以,函数f(x)在[0,1]上单调递减,在[1,4]上单调递增,又f(0)=2,f(4)=10,所以当x =4时,即f(x)max=f(4)=10所以f(x)在区间[0,4]上的最大值为10.(2)由,可得h(x)=x+,那么:h(2x)-k•2x≥0可化得:,即1-2+2≥k,令,则2t2-2t+1≥k.因x∈[-1,1]故t∈,,记G(t)=2t2-2t+1,因为t∈,,故G(t)min=G()=,所以的取值范围是( ,](3)由题意得:F(x)=f(x)+ag(x)-2=x2-2x+a(e x-1+e-x+1)所以F(2-x)=(2-x)2-2(2-x)+a(e x-1+e-x+1)=x2-2x+a(e x-1+e-x+1)故F(2-x)=F(x),可知F(x)关于x=1对称因为F(x)有唯一的零点,所以F(x)的零点只能为x=1,即F(1)=12-2+a(e1-1+e-1+1)=0解得a=.a=时,F(x)=x2-2x+(e x-1+e-x+1)令x1>x2≥1,则x1-x2>0x1+x2-2>0,>,>从而可证F(x1)-F(x2)=(x1-x2)(x1+x2-2)+>0.即函数F(x)是[1,+∞)上的增函数,而F(1)=0,所以,函数F(x)只有唯一的零点,满足条件.故实数a的值为.【解析】(1)因为f(x)关于直线x=1对称,所以t=1,可得f(x)的解析式,利用二次函数的性质可得函数f(x)在区间[0,4]上最大值;(2)由,求解h(x)的解析式,分离参数法求解不等式h(2x)-k•2x≥0在x∈[-1,1]上的最小值,可得实数k的取值范围;(3)F(x)=f(x)+ag(x)-2有唯一零点,转化为二次函数问题求解求实数a的值.本题考查了函数的对称性,单调性的综合应用,最值的问题,也考查了转化思想,是综合题目,比较综合,属于中档题.。
2017-2018学年天一大联考(安徽版)高一期末考试数学试题一、单选题1.()A. B. C. D.【答案】B【解析】分析:将角度制转化为弧度制即可.详解:由角度制与弧度制的转化公式可知:.本题选择B选项.点睛:本题主要考查角度值转化为弧度制的方法,意在考查学生的转化能力和计算求解能力.2.下列选项中,与向量垂直的单位向量为()A. B. C. D.【答案】D【解析】分析:由题意逐一考查所给的选项即可.详解:逐一考查所给的选项:,选项A错误;,选项B错误;,选项C错误;,且,选项D正确;本题选择D选项.点睛:本题主要考查向量垂直的充分必要条件,单位向量的概念及其应用等知识,意在考查学生的转化能力和计算求解能力.3.某高校大一新生中,来自东部地区的学生有2400人、中部地区学生有1600人、西部地区学生有1000人.从中选取100人作样本调研饮食习惯,为保证调研结果相对准确,下列判断正确的有()①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人;②用简单随机抽样的方法从新生中选出100人;③西部地区学生小刘被选中的概率为;④中部地区学生小张被选中的概率为A. ①④B. ①③C. ②④D. ②③【答案】B【解析】分析:由题意逐一考查所给的说法是否正确即可.详解:逐一考查所给的说法:①由分层抽样的概念可知,取东部地区学生48人、中部地区学生32人、西部地区学生20人,题中的说法正确;②新生的人数较多,不适合用简单随机抽样的方法抽取人数,题中的说法错误;③西部地区学生小刘被选中的概率为,题中的说法正确;④中部地区学生小张被选中的概率为,题中的说法错误;综上可得,正确的说法是①③.本题选择B选项.点睛:本题主要考查分层抽样的概念,简单随机抽样的特征,古典概型概率公式等知识,意在考查学生的转化能力和计算求解能力.4.将小王6次数学考试成绩制成茎叶图如图所示,则这些数据的中位数是()A. 81B. 83C. 无中位数D. 84.5【答案】D【解析】分析:由题意结合茎叶图首先写出所有数据,然后求解中位数即可.详解:由茎叶图可知,小王6次数学考试的成绩为:,则这些数据的中位数是.本题选择D选项.点睛:茎叶图的绘制需注意:(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一;(2)重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置的数据.5.一个盒子中装有红、黄、蓝三种颜色的球各5个,从中任取3个球.事件甲:3个球都不是红球;事件乙:3个球不都是红球;事件丙:3个球都是红球;事件丁:3个球中至少有1个红球,则下列选项中两个事件互斥而不对立的是()A. 甲和乙B. 甲和丙C. 乙和丙D. 乙和丁【答案】B【解析】分析:由题意逐一考查事件之间的关系即可.详解:由题意逐一考查所给的两个事件之间的关系:A.甲和乙既不互斥也不对立;B.甲和丙互斥而不对立;C.乙和丙互斥且对立;D.乙和丁既不互斥也不对立;本题选择B选项.点睛:“互斥事件”与“对立事件”的区别:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.6.已知在边长为2的正方形内,有一月牙形图形,向正方形内随机地投射100个点,恰好有15个点落在了月牙形图形内,则该月牙形图形的面积大约是()A. 3.4B. 0.3C. 0.6D. 0.15【答案】C【解析】分析:由题意结合蒙特卡洛模拟的方法整理计算即可求得最终结果.详解:设该月牙形图形的面积大约是,由题意结合蒙特卡洛模拟方法可知:,解得:.本题选择C选项.点睛:本题主要考查几何概型的应用,古典概型的应用等知识,意在考查学生的转化能力和计算求解能力.7.若锐角满足,则()A. B. C. D. 3【答案】A【解析】分析:由题意结合三角函数的性质整理计算即可求得最终结果.详解:由同角三角函数基本关系可知:结合题意可得:.本题选择A选项.点睛:本题主要考查切化弦的方法,二倍角公式及其应用等知识,意在考查学生的转化能力和计算求解能力.8.已知满足(其中是常数),则的形状一定是()A. 正三角形B. 钝角三角形C. 等腰三角形D. 直角三角形【答案】C【解析】分析:由题意结合向量的运算法则和平面几何的结论确定△ABC的形状即可.详解:如图所示,在边(或取延长线)上取点,使得,在边(或取延长线)上取点,使得,由题意结合平面向量的运算法则可知:,,而,据此可得:,从而:,结合平面几何知识可知:,而,故.即△ABC为等腰三角形.本题选择C选项.点睛:用平面向量解决平面几何问题时,有两种方法:基向量法和坐标系法,利用基向量的时候需要针对具体的题目选择合适的基向量,建立平面直角坐标系时一般利用已知的垂直关系,或使较多的点落在坐标轴上,这样便于迅速解题.9.如图所示的程序框图,若输入的的值为,则输出()A. B. C. D.【答案】D【解析】分析:由题意结合流程图分类讨论输出的值即可.详解:结合流程图分类讨论:若,则,输出值,若,则,输出值,即输出值为:.本题选择D选项.点睛:识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.10.函数在区间上的所有零点之和等于()A. -2B. 0C. 3D. 2【答案】C【解析】分析:首先确定函数的零点,然后求解零点之和即可.详解:函数的零点满足:,解得:,取可得函数在区间上的零点为:,则所有零点之和为.本题选择C选项.点睛:本题主要考查三角函数的性质,函数零点的定义及其应用等知识,意在考查学生的转化能力和计算求解能力.11.设非零向量夹角为,若,且不等式对任意恒成立,则实数的取值范围为()A. B. C. D.【答案】A【解析】分析:由题意首先利用平面向量数量积的运算法则进行化简,然后结合一次函数的性质整理计算即可求得最终结果.详解:不等式等价于:,即,①其中,,将其代入①式整理可得:,由于是非零向量,故:恒成立,将其看作关于的一次不等式恒成立的问题,由于,故:,解得:;且:,解得:;综上可得,实数的取值范围为.本题选择A选项.点睛:本题主要考查平面向量数量积的运算法则,恒成立问题的处理,函数思想的应用等知识,意在考查学生的转化能力和计算求解能力.12.A. B. C. D. 1【答案】A【解析】分析:由题意结合切化弦公式和两角和差正余弦公式整理计算即可求得最终结果.详解:由题意可得:.点睛:本题主要考查两角和差正余弦公式,二倍角公式及其应用等知识,意在考查学生的转化能力和计算求解能力.二、填空题13.从这十个自然数中任选一个数,该数为质数的概率为__________.【答案】0.4【解析】分析:由题意结合古典概型计算公式整理计算即可求得最终结果.详解:由质数的定义可知:这十个自然数中的质数有:等4个数,结合古典概型计算公式可知该数为质数的概率为.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用. 14.数据,,…,的平均数是3,方差是1,则数据,,…,的平均数和方差之和是__________.【答案】3【解析】分析:由题意结合平均数、方差的性质整理计算即可求得最终结果.详解:由题意结合平均数和方差的性质可知:数据,,…,的平均数为:,方差为:,则平均数和方差之和是.点睛:本题主要考查均值的性质、方差的性质等知识,意在考查学生的转化能力和计算求解能力.15.下图是出租汽车计价器的程序框图,其中表示乘车里程(单位:),表示应支付的出租汽车费用(单位:元).有下列表述:①在里程不超过的情况下,出租车费为8元;②若乘车,需支付出租车费20元;③乘车的出租车费为④乘车与出租车费的关系如图所示:则正确表述的序号是__________.【答案】①②【解析】分析:结合流程图逐一考查所给的说法是否正确即可.详解:逐一考查所给的说法:①在里程不超过的情况下,,则,即出租车费为8元,该说法正确;②由流程图可知,超出的部分的计费方式为向上取整后每公里元,若乘车,,需支付出租车费为:元,该说法正确.当乘车里程为和时,出租车车费均为元,据此可知说法③④错误.综上可得,正确表述的序号是①②.点睛:本题主要考查流程图知识的应用,生活实际问题解决方案的选择等知识,意在考查学生的转化能力和计算求解能力.16.如图为函数的部分图象,对于任意的,,若,都有,则等于__________.【答案】【解析】分析:由题意结合三角函数的性质和函数图象的对称性整理计算即可求得最终结果.详解:由三角函数的最大值可知,不妨设,则,由三角函数的性质可知:,则:,则,结合,故.点睛:本题主要考查三角函数图象的对称性,诱导公式及其应用等知识,意在考查学生的转化能力和计算求解能力.三、解答题17.已知向量,.(1)若实数满足,求的值;(2)若,求实数的值.【答案】(1)2;(2)【解析】分析:(1)由题意得,据此求解关于m,n的方程组有所以.(2)由题意可得,,结合向量平行的充分必要条件得到关于的方程,解方程可知.详解:(1)由题意得所以解得所以.(2),,·因为,所以解得.点睛:本题主要考查平面向量的坐标运算,向量平行的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.18.某企业根据供销合同生产某种型号零件10万件,规定:零件长度(单位:毫米)在区间内,则为一等品;若长度在或内,则为二等品;否则为不合格产品.现从生产出的零件中随机抽取100件作样本,其长度数据的频率分布直方图如图所示.(1)试估计该样本的平均数;(2)根据合同,企业生产的每件一等品可获利10元,每件二等品可获利8元,每件不合格产品亏损6元,若用样本估计总体,试估算该企业生产这批零件所获得的利润.【答案】(1)100.68;(2)68万元【解析】分析:(1)由频率分布直方图结合平均数计算公式可估计该样本的平均数为100.68.(2)由题意知,一等品的频率为0.38,二等品的频率为0.48,不合格产品的频率为0.14.据此可估计该企业生产这批零件所获得的利润为万元.详解:(1)由频率分布直方图可得各组的频率分别为0.02,0.18,0.38,0.30,0.10,0.02.平均数估计值是.(2)由题意知,一等品的频率为0.38,二等品的频率为0.48,不合格产品的频率为0.14.用样本估计总体,一等品约有3.8万件,二等品约有4.8万件,不合格产品约有1.4万件.故该企业生产这批零件预计可获利润万元.点睛:频率分布直方图问题需要注意:在频率分布直方图中,小矩形的高表示,而不是频率;利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即是众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和. 19.某中学每周定期举办一次数学沙龙,前5周每周参加沙龙的人数如下表:参加人数(1)假设与线性相关,求关于的回归直线方程;(2)根据(1)中的方程预测第8周参加数学沙龙的人数.附:对于线性相关的一组数据,其回归方程为.其中,.【答案】(1);(2)33【解析】分析:(1)由题意结合回归方程计算公式可得,,则线性回归方程为.(2)利用(1)中求得的回归方程结合回归方程的预测作用可得第8周参加数学沙龙的人数预计为33人.详解:(1),,所以关于的回归直线方程是.(2)当时,由回归方程可得,即第8周参加数学沙龙的人数预计为33人.点睛:一是回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.二是根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.20.函数的最小正周期为,点为其图象上一个最高点.(1)求的解析式;(2)将函数图象上所有点都向左平移个单位,得到函数的图象,求在区间上的值域【答案】(1);(2)【解析】分析:(1)由最小正周期公式可得.由最大值可知,结合三角函数的性质可得,则.(2)由题意得,结合三角函数的性质可知函数在区间上的值域为.详解:(1)因为最小正周期为,得,.点为其图象上一个最高点,得,,又因为,所以.所以.(2)由题意得,当时,.因为在区间上单调递增,在区间上单调递减,且,,,所以在区间上的值域为.点睛:本题主要考查三角函数解析式的求解,函数的平移变换,三角函数值域的求解等知识,意在考查学生的转化能力和计算求解能力.21.甲乙两人玩卡片游戏:他们手里都拿着分别标有数字1,2,3,4,5,6的6张卡片,各自从自己的卡片中随机抽出1张,规定两人谁抽出的卡片上的数字大,谁就获胜,数字相同则为平局.(1)求甲获胜的概率.(2)现已知他们都抽出了标有数字6的卡片,为了分出胜负,他们决定从手里剩下的卡片中再各自随机抽出1张,若他们这次抽出的卡片上数字之和为偶数,则甲获胜,否则乙获胜.请问:这个规则公平吗,为什么?【答案】(1);(2)见解析【解析】分析:(1)由题意列出所有可能的事件,结合古典概型计算公式可知甲获胜的概率为.(2)由古典概型计算公式可知甲获胜的概率为,则乙获胜的概率为,则这个规则不公平.详解:(1)两人各自从自己的卡片中随机抽出一张,所有可能的结果为:,,,共36种,其中事件“甲获胜”包含的结果为:,有15种.所以甲获胜的概率为.(2)两人各自从于里剩下的卡片中随机抽出一张,所有可能的结果为:,共25种.其中卡片上的数字之和为偶数的结果为:,共13种.根据规则,甲获胜的概率为,则乙获胜的概率为,所以这个规则不公平.点睛:本题主要考查古典概型计算公式及其应用,意在考查学生的转化能力和计算求解能力.22.如图所示,扇形中,,,矩形内接于扇形.点为的中点,设,矩形的面积为.(1)若,求;(2)求的最大值.【答案】(1);(2)【解析】分析:(1)设与,分别交于,两点,由几何关系可得,.由矩形面积公式可得,结合三角函数的性质可知时,.(2)结合(1)中矩形的面积表达式可知当时,取得最大值.详解:(1)如图所示,设与,分别交于,两点,由已知得,.,,所以.故,所以,当时,.(2)因为,所以,当且仅当,即时,取得最大值.点睛:本题主要考查三角函数的应用,三角函数的性质,利用三角函数求最值等知识,意在考查学生的转化能力和计算求解能力.。
2017-2018学年安徽省滁州市高二(上)期末数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若函数f(x)=x+cos x,则f(x)的导数f'(x)=()A.1﹣cos x B.1+cos x C.1﹣sin x D.1+sin x2.(5分)高二(2)班男生36人,女生18人,现用分层抽样方法从中抽出n人,若抽出的男生人数为12,则n等于()A.16B.18C.20D.223.(5分)双曲线的焦点到渐近线的距离为()A.B.3C.2D.4.(5分)下列函数是偶函数的是()A.y=x+cos x B.y=x+sin2x C.y=x2+cos x D.y=x2+sin2x 5.(5分)若正方形ABCD的边长为1,则在正方形ABCD内任取一点,该点到点A的距离小于1的概率为()A.B.C.D.6.(5分)“函数f(x)=(x+2a)(x﹣a+1)是偶函数”是“a=﹣1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)曲线f(x)=(x+1)e x在点(0,f(0))处的切线方程为()A.y=x+1B.y=2x+1C.y=x+1D.y=x+1 8.(5分)执行如图所示的程序框图,则输出的结果为()A.2B.3C.4D.59.(5分)设命题p:∃x∈R,x2﹣x+2=0;命题q:若m>1,则方程+=1表示焦点在x轴上的椭圆.那么,下列命题为真命题的是()A.p∨(¬q)B.(¬p)∨(¬q)C.p∧q D.p∧(¬q)10.(5分)若P为抛物线C:y2=4x上一点,F是抛物线的焦点,点A的坐标(3,0),则当|P A|最小时,直线PF的方程为()A.x﹣2y﹣3=0B.x﹣2y﹣1=0C.x=3D.x=111.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,且b(3﹣cos A)=3a cos C+a cos B,则sin A=()A.B.C.D.12.(5分)已知函数f(x)是定义在R上的偶函数,当x>0时,xf'(x)>f(x),若f(2)=0,则不等式>0的解集为()A.{x|﹣2<x<0或0<x<2}B.{x|x<﹣2或x>2}C.{x|﹣2<x<0或x>2}D.{x|x<﹣2或0<x<2}二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知向量=(﹣1,3),=(3,t),若⊥,则|2+|=.14.(5分)已知一个算法的程序框图如图所示,当输入的x=﹣1与x=1时,则输出的两个y值的和为.15.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,点E,F分别为CD,DD1的中点,点G在棱AA1上,若CG∥平面AEF,则四棱锥G﹣ABCD的外接球的体积为.16.(5分)已知双曲线C:﹣(a>0,b>0)的左顶点为M,右焦点为F,过左顶点且斜率为1的直线l与双曲线C的右支交于点N,若△MNF的面积为b2,则双曲线C的离心率为.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(10分)甲乙两人同时生产内径为25.41 mm的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各抽出5件(单位:mm),甲:25.44,25.43,25.41,25.39,25.38乙:25.41,25.42,25.41,25.39,25.42.从生产的零件内径的尺寸看、谁生产的零件质量较高.18.(12分)已知抛物线C:y2=2x,过点P(1,0)的直线l与抛物线相交于A,B两点,若|AB|=2,求直线l的方程.19.(12分)某高校进行社会实践,对[25,55]岁的人群随机抽取1000人进行了一次是否开通“微博”的调查,开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查得到到各年龄段人数的频率分布直方图如图所示,其中在(30,35]岁,[35,40)岁年龄段人数中,“时尚族”人数分别占本组人数的80%、60%.(1)求[30,35)岁与[35,40)岁年龄段“时尚族”的人数;(2)从[30,45)岁和[45,50)岁年龄段的“时尚族”中,采用分层抽样法抽取6人参加网络时尚达人大赛,其中两人作为领队.求领队的两人年龄都在[30,45)岁内的概率.20.(12分)已知S n为等差数列{a n}的前n项和,已知S2=2,S3=﹣6.(1)求数列{a n}的通项公式和前项和S n;(2)是否存在n,使S n,S n+2+2n,S n+3成等差数列,若存在,求出n,若不存在,说明理由.21.(12分)已知椭圆C:+=1(a>b>0)的离心率e=,且过点(,).(1)求椭圆C的方程;(2)设过点P(1,1)的直线与椭圆C交于A,B两点,当P是AB中点时,求直线AB 方程.22.(12分)已知函数f(x)=x2﹣2x+alnx(a∈R).(1)当a=﹣4时,求函数f(x)的单调区间;(2)若函数f(x)有两个极值点x1,x2(x1<x2),不等式f(x1)≥mx2恒成立,求实数m的取值范围.2017-2018学年安徽省滁州市高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:f′(x)=1﹣sin x,故选:C.2.【解答】解:性别比为2:1,现用分层抽样方法从中抽出n人,若抽出的男生人数为12,则n==18,故选:B.3.【解答】解:双曲线的焦点坐标为(4,0)或(﹣4,0),渐近线方程为y=±x,则焦点到渐近线的距离d==2,故选:C.4.【解答】解:根据题意,依次分析选项:对于A,f(x)=x+cos x,f(﹣x)=(﹣x)+cos(﹣x)=﹣x+cos x,f(﹣x)≠f(x),f(x)不是偶函数,不符合题意;对于B,f(x)=x+sin2x,f(﹣x)=(﹣x)+sin(﹣2x)=﹣(x+sin2x)=﹣f(x),f(x)为奇函数,不符合题意;对于C,f(x)=x2+cos x,f(﹣x)=(﹣x)2+cos(﹣x)=x2+cos x=f(x),则f(x)是偶函数,符合题意;对于D,f(x)=x2+sin2x,f(﹣x)=(﹣x)2+sin(﹣2x)=x2﹣sin2x,f(﹣x)≠f(x),f(x)不是偶函数,不符合题意;故选:C.5.【解答】解:如图:满足动点P到定点A的距离|P A|<1的平面区域如图中阴影所示:则正方形的面积S正方形=1,阴影部分的面积S=,故动点P到定点A的距离|P A|<1的概率P=,故选:A.6.【解答】解:∵“函数f(x)=(x+2a)(x﹣a+1)是偶函数”,f(x)=(x+2a)(x﹣a+1)=x2+(a+1)x﹣2a2+2a,∴a+1=0,解得a=﹣1,即“函数f(x)=(x+2a)(x﹣a+1)是偶函数”⇒“a=﹣1”;当a=﹣1时,f(x)=(x+2a)(x﹣a+1)=(x﹣2)(x+2)=x2﹣4是偶函数,即“a=﹣1”⇒“函数f(x)=(x+2a)(x﹣a+1)是偶函数”,∴“函数f(x)=(x+2a)(x﹣a+1)是偶函数”是“a=﹣1”的充分必要条件.故选:C.7.【解答】解:∵f(x)=e x(x+1),∴f′(x)=e x(x+1)+e x=e x(x+2),∴f′(0)=e0•(0+2)=2,又f(0)=1,∴曲线曲线y=f(x)在点(0,f(0))处的切线方程为:y﹣1=2(x﹣0),即2x﹣y+1=0;故选:B.8.【解答】解:第一次进行循环,S=20,i=2,不满足退出循环的条件;第二次进行循环,S=10,i=3,不满足退出循环的条件;第三次进行循环,S=,i=4,不满足退出循环的条件;第四次进行循环,S=,i=5,满足退出循环的条件;故输出的i值为5,故选:D.9.【解答】解:由x2﹣x+2=0,∵△=12﹣8=﹣7<0,即此方程无解,即命题p:∃x∈R,x2﹣x+2=0;为假命题,即¬p为真命题,当m>1时,2m﹣1>m>0,即方程+=1表示焦点在x轴上的椭圆.即命题q为真命题,¬q为假命题,即(¬p)∨(¬q)为真命题,故选:B.10.【解答】解:设P(x,y),抛物线C:y2=4x,F是抛物线的焦点(1,0),点A的坐标(3,0),|P A|===,当x=1时,|P A|最小,此时P(1,±2),所以直线PF的方程为:x=1.故选:D.11.【解答】解:∵b(3﹣cos A)=3a cos C+a cos B,∴由正弦定理可得:3sin B=3sin A cos C+sin A cos B+sin B cos A,可得:3sin B=3sin A cos C+sin C,∴由正弦定理可得:3b=3a cos C+c,∴3b=3a•+c,可得:3b2+3c2﹣3a2=2bc,∴cos A==,∴sin A=.故选:A.12.【解答】解:∵f(x)是定义在R上的偶函数,当x>0时,>0,∴为增函数,f(x)为偶函数,为奇函数,∴在(﹣∞,0)上为增函数,∵f(﹣2)=f(2)=0,若x>0,=0,所以x>2;若x<0,=0,在(﹣∞,0)上为增函数,可得﹣2<x<0,综上得,不等式>0的解集是(﹣2,0)∪(2,+∞)故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.【解答】解:∵向量=(﹣1,3),=(3,t),⊥,∴=﹣3+3t=0,解得t=1,∴=(3,1),2=(1,7),|2+|==5.故答案为:.14.【解答】解:由程序框图知:算法的功能是求y=的值,输入的x=﹣1时,y=,输入的x=1时,y=1,则输出的两个y值的和为.故答案为:.15.【解答】解:如图,取AB中点H,连接CH,HG,则CH∥AE,CH∥平面AEF,又CG∥平面AEF,∴平面CGH∥平面AEF,可得EF∥GH,则G为AA1的中点,∴AG=1,则四棱锥G﹣ABCD的外接球的直径为以AB,AD,AH为棱的长方体的对角线,长为,半径为,则四棱锥G﹣ABCD的外接球的体积为.故答案为:.16.【解答】解:双曲线C:﹣(a>0,b>0)的左顶点为M(﹣a,0),右焦点为F (c,0),过左顶点且斜率为1的直线l:y=x+a,直线l与双曲线C的右支交于点N,,可得:(b2﹣a2)y2﹣2ab2y=0,解得N的纵坐标为:﹣.又因为△MNF的面积为b2,所以:﹣=,﹣4ac=3a2﹣3(c2﹣a2)所以3e2﹣2e﹣8=0,e>1解得e=2,故答案为:2.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.【解答】解:甲的平均数.乙的平均数.甲的方差,乙的方差.∵甲、乙平均数相同,乙的方差较小,∴乙生产的零件比甲的质量高.18.【解答】解:设直线l的方程为:my=x﹣1,整为:x=my+1,代入方程y2=2x整理为:y2﹣2my﹣2=0,故有y1+y2=2m,y1y2=﹣2,.故有.整理为m4+3m2﹣4=0,解得m=±1.故直线l的方程为:x+y﹣1=0或x﹣y﹣1=0.19.【解答】解:(1)[30,35)岁年龄段“时尚族”的人数为1000×0.06×5×80%=240.[35,40)岁年龄段“时尚族”的人数为1000×0.04×5×60%=120.(2)由(1)知[30,35)岁中抽4人,记为a、b、c、d,[35,40)岁中抽2人,记为x、y,则领队两人是:ab、ac、ad、ax、ay、bc、bd、bx、by、cd、cx、cy、dx、dy、xy共l5种可能,其中两人都在[30,35)岁内的有6种,所以领队的两人年龄都在[30,45)岁内的概率为P=.20.【解答】解:(1)设等差数列{a n}的公差为d,∵S2=2,S3=﹣6.∴2a1+d=2,3a1+3d=﹣6,联立解得a1=4,d=﹣6.∴a n=4﹣6(n﹣1)=10﹣6n.S n==7n﹣3n2.(2)假设存在n,使S n,S n+2+2n,S n+3成等差数列,则2(S n+2+2n)=S n+S n+3,∴2[7(n+2)﹣3(n+2)2+2n]=7n﹣3n2+7(n+3)﹣3(n+3)2,化为:n=5.因此存在n=5,使S n,S n+2+2n,S n+3成等差数列.21.【解答】解:(1)设椭圆的焦距为2c,则∴∴椭圆C的方程为:.(2)设A(x1,y1),B(x2,y2).则,,∴又x1+x2=y1+y2=2,∴.∴直线AB方程为.3x+4y﹣7=0.22.【解答】解:(1)a=﹣4时,f(x)=x2﹣2x﹣4lnx,定义域为(0,+∞),.∴0<x<2时:f'(x)<0,x>2时,f'(x)>0,∴f(x)的单调增区间为[2,+∞),单调减区间为[0,2](2)函数f(x)在(0,+∞)上有两个极值点,.由f'(x)=0.得2x2﹣2x+a=0,当△=4﹣8a>0,时,x1+x2=1,,,则x1>0,∴a>0.由,可得,,,令,则,因为.,,又2lnx<0.所以h'(x)<0,即时,h(x)单调递减,所以,即,故实数m的取值范围是.。
滁州市2017-2018学年第一学期高一期末考试数学试卷第I 卷(选择题共60分)一、选择题:本大题共 12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一 项是符合题目要求的•1. 设集合.;.:丨二丨:丨;:,则占:「一 ( )A. :B.C. 、D.【答案】D【解析】并集由两个集合公共元素构成,故A u B = {1.2.3.4}.42. 已知角 的始边是 轴的正半轴,终边经过点:-<-:,且、I ,则I .、E ()4 3 43A. B. ——C. 一 D.3 434【答案】A3Sinn 4【解析】依题意可知,故'■■■■ = =.5coaa 35.若幕函数[文=叮的图象过点 ,则满足 的实数 的取值范围是()A.B. C. D.【答案】BA. 3B. 2C.D. I 十 ':•【答案】D1 I14若」卅打二1=()—;:-/<-<■?...;.-二,故I 口〕巧|【解析】原式4.已知向量匕一―二■' 一、 A. .. B. 9 C. 13 D.【答案】C【解析】由于两个向量垂直,故斗1 L【解析】依题意有〒x- 1 > l,x > 2f(x- i)=(x- iy> 1“6.函数il\iS..-!:■■.:「丰|弋I 的最大值是( )4 2 1 A. B.C. 1D.333【答案】B122 【解析】..,故最大值为-.3337.下列函数是奇函数,且在上是增函数的是( )十 1X —1….A. -------------B.------ C. [:=八:D. ■- - : IXX【答案】B【解析】选项为偶函数,选项为非奇非偶函数.选项 > ='在为减函数,在为x增函数.」.•选项:.=•:在:* - ■- ■上为增函数,符合题意.X【点睛】本题主要考查函数的奇偶性和单调性 .判断函数的奇偶性,首先判断函数的定义域是否关于原点对称, 选项定义域显然不关于原点对称,故为非奇非偶函数简后看等于还是..函数的单调性中< = •::"是对钩函数,在不是递增函数.x8.若•.,是第二象限角,则【答案】C.21 — . f 珂忑一&与帀•:. - .JJ ■■.:■: u ,故-n i| 2'.' |、 -...12 .." J I【点睛】本题主要考查同角三角函数的基本关系式,考查二倍角公式和两角差的正弦公式 先根据角的正弦值和所在的象限,求得角的余弦值,然后利用二倍角公式求得 的正弦值和余弦值,最后利用两角差的正弦公式展开所求式子,代入已知数值即可求得最后结果10. 在平行四边形中,是TC 中点,是三三中点,若\i.然后计算,化A.B.161616D.16【解析】由于角为第二象限角,故-',所以-I 门..."一厂48162a H)=34V °【答案】CD.【解析】,故函数的零点在区间in.\'-: : 则()A.B.C.D. I" i'42442224【答案】A 【解析】连接,由于0为;山中点,故.222) 4 2ii.曲线厂?二:w ,曲线;二;:心,下列说法正确的是 ()JEA.将 上所有点横坐标扩大到原来的2倍,纵坐标不变,再将所得曲线向左平移•个单位,得41兀到 B. 将 上所有点横坐标缩小到原来的 ,纵坐标不变,再将所得曲线向左平移个单2 4位,得到C.将 上所有点横坐标扩大到原来的2倍,纵坐标不变,再将所得曲线向左平移•个单位,得2一 1 一、JI到 D. 将 上所有点横坐标缩小到原来的 「,纵坐标不变,再将所得曲线向左平移 ;个单位,得到 【答案】B即h] /兀,故首先横坐标缩小到原来 得到 ,再向左平移 个单位得到 .故选.12.若不等式-■<..:: I ■▼对任意的巴:心+ 恒成立,则的取值范围是 ()【答案】D 【解析】当时,原不等式化为,不恒成立,排除,故选.HC. I-. - ■- 'D.-I GO第n卷(非选择题共90分)【答案】01 J【点睛】本题主要考查三角函数降次公式・考查AsirKsx + Q )- ACOStUJX +(D )的单调区间的求法•由 于题目给定明数是二次的形式,故首先利用降次公式将原函数化为次数为一次的形式•然后求出函数所 有的单调递减区间•再结合题目所给定的区间,列不等式组,可求得U )的取值范围+二、填空题:本大题共 4小题,每小题5分,满分20分,将答案填在答题纸上…卄cosfi m13.右,^ 9|.:口「『—- 【答案】3【解析】分子分母同时除以/ tancx 、:、得 ---tana + 12tana 1=、,解得心:二故」:◎:=.=l-tan _a 3【答案】10g^(l I x),x > 0l-x,x<0ii ' : 1八,二十故原式=.15.若函数J 二I 「::•在|…:|是单调函数,则实数的取值范围是【答案】(y 弓【解析】由于函数为二次函数,对称轴为 ' ,只需对称轴不在区间3 2a 31-,解得V 、:《上..2 2 2【点睛】本题主要考查二次函数单调区间的知识.对于二次函数来说,它的单调区间主要由开口方向和对称轴来决定.当开口向上时,左减右增,当开口向下是,左增右减 .本题中由于题 目只需要区间上的单调函数,不需要递增还是递减,故只需对称轴不在给定区间内即可16.已知函数.=oos 2(rox-5 在区间 内单调递减,则 的最大值为【解析】f(x) COS 2tOX ——,,、,,,,3T3/,根据单调性有2k?i < 2ox — < 2戲+兀,-------------- 327CkTC ~l ---解得--------- < x<2兀k?c +T ,故©OT7T,kjt + -67Um 62兀k^ +3 2?r,解得 H (O > 6k+ 13,, 当 k = 0 时 oo= I o><-k+I ,当时,2三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知集合 ::i ::(1) 求i m(2) 若■- z ,求实数的取值范围.【答案】(1)I ; 「UP ; (2)[【解析】【试题分析】(1)首先求得-.:■<:,由此求得.二门三.―二的值.(2)— 由于.1…丨匸| 「,故:.,解得发乙【试题解析】 解::•: I 、..;;丨;:■- ■:(1) 2 门丨; 「 •. : U 丨-:: (2)T 二-J :.宀•-H ,••• =心 r r : J已知向量 I'. ■ I- 1 I ' 1 - < I 1 ■•-,二,• .18. (1) 若与共线,求的值;(2) 记I 卜,求「I ,啲最大值和最小值,及相应的的值.兀兀【答案】(1)〔 = (2)当1 =时,ii”取得最大值2;当飞-:时,取得最小值-1 .【解析】【试题分析】(1)利用两个向量共线,则有 v ;m ,解方程求得 的值.(2)利用向量坐标运算化简 ,进而求得「I"的最大值和最小值,及相应的 的值.【试题解析】解:(1):与共线,二「冷-「心门7T4 —■ / Kv(2) Z ;.卜I -"-I!..】-i --< sin x + -2 I 6.J7T,二 ,J C 7CJL当^一 -即时, 取得最大值2;当,即 时,取得最小值-1 .6 23663x I 119.已知函数i 「':的图象过点 -.x -I- a(1)若H = w ,求实数的值;(2)当::二|「.I |时,求函数的取值范围. 【答案】(1)• - (2)-【解析】【试题分析】(1)将点 •代入函数,由此求得的值,进而得出的表达式•解方程ii 、;;,可求得实数 的值•( 2)将:;I 分离常数,得到,它在I 「.1|上为减函数,x -2在区间端点取得最小值和最大值.由此求得函数的值域• 【试题解析】 解: ( 1)『:!,「• 一 ,1 + a弓/ + 1- ', X 2-2显然 在 与.上都是减函数, 「T ,「. 在上是减函数,7 7 :-••三• 「-7- 120.函数'■.:.; : ■. ': >■.- ■' 的部分图象如图所示.(1) 求•-•二4的值; (2)求图中的值及函数 的递增区间.JC ?7C【答案】(1)「= ”( 2) •: = !.【解析】【试题分析】(1)根据图像最大值求得.,根据;:]可求得,在根据图f 兀 \兀像上一个点I 石厂习,可求得舉的值• (2)利用此。
滁州市2017-2018学年第一学期高一期末考试数学试卷第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}1,2,4,1,2,3A B ==,则A B = ( )A .{}3,4B .{}1,2C .{}2,3,4D .{}123,4,, 2. 已知角α的始边是x 轴的正半轴,终边经过点()3,4-,且4sin 5α=,则tan α=( ) A .43-B .34-C .43D .343. 计算:114333122x x x -⎛⎫+= ⎪⎝⎭( )A . 3B . 2C .2x +D .12x +4. 已知向量()()3,2,2,a b x ==,若a b ⊥ ,则23a b -= ( )A ..9 C. 13 D .5. 若幂函数()af x x =的图象过点()4,2,则满足()11f x ->的实数x 的取值范围是( )A .()0,1B .()2,+∞ C.()1,1- D .(),2-∞ 6.函数()()1sin cos 32f x x x ππ⎛⎫=++- ⎪⎝⎭的最大值是 ( ) A .43 B .23 C. 1 D .137.下列函数是奇函数,且在()0,+∞上是增函数的是 ( )A .21x y x +=B .21x y x-= C. 22x x y -=+ D .lg 1y x =+8. 若3sin 4α=,α是第二象限角,则sin 24πα⎛⎫-= ⎪⎝⎭( )A .16.16- C. 16 D .116-9.函数33xy x =+的零点为0x ,则 ( )A .031,4x ⎛⎫∈--⎪⎝⎭ B .031,42x ⎛⎫∈-- ⎪⎝⎭ C. 011,24x ⎛⎫∈-- ⎪⎝⎭ D .01,04x ⎛⎫∈- ⎪⎝⎭10. 在平行四边形ABCD 中,E 是CD 中点,F 是BE 中点,若AF mAB nAD =+,则( )A .31,42m n == B .13,44m n == C. 11,22m n == D .13,24m n ==11.曲线1:sin C y x =,曲线2:cos2C y x =,下列说法正确的是 ( ) A .将1C 上所有点横坐标扩大到原来的2倍,纵坐标不变,再将所得曲线向左平移4π个单位,得到2C B .将1C 上所有点横坐标缩小到原来的12,纵坐标不变,再将所得曲线向左平移4π个单位,得到2C C. 将1C 上所有点横坐标扩大到原来的2倍,纵坐标不变,再将所得曲线向左平移2π个单位,得到2C D .将1C 上所有点横坐标缩小到原来的12,纵坐标不变,再将所得曲线向左平移2π个单位,得到2C 12.若不等式()2log 14x a x +≥对任意的()0,x ∈+∞恒成立,则a 的取值范围是 ( ) A .(],0-∞ B .1,4⎛⎤-∞ ⎥⎝⎦ C.[)0,+∞ D .1,4⎡⎫+∞⎪⎢⎣⎭第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上.13.若cos 2sin cos ααα=+,则tan 2α=.14.()()4log 1,01,0x x f x x x ⎧+≥=⎨-<⎩,则()()11f f -+=.15.若函数()2231y x a x =+-+在[]1,3是单调函数,则实数a 的取值范围是. 16.已知函数()()2cos 06f x x πωω⎛⎫=-> ⎪⎝⎭在区间2,63ππ⎡⎤⎢⎥⎣⎦内单调递减,则ω的最大值为.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知集合{}{}{}|2318,|215,|1A x x B x x C x x a x a =≤-≤=-<=≤≥+或. (1)求,A B A B ;(2)若()R C C A ⊆,求实数a 的取值范围.18.已知向量()([]cos ,sin ,,0,a x x b x π==∈.(1)若a 与b共线,求x 的值;(2)记()f x a b =,求()f x 的最大值和最小值,及相应的x 的值.19.已知函数()31x f x x a+=+的图象过点()1,4-. (1)若()210f x =,求实数x 的值;(2)当[]5,1x ∈-时,求函数()f x 的取值范围. 20.函数()()cos 20,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示. (1)求,,A ωϕ的值;(2)求图中,a b 的值及函数()f x 的递增区间.21.已知,αβ都是锐角,()14sin ,sin 235ααβ=-=. (1)求cos β的值; (2)求()sin αβ-的值.22. 已知函数()3131x x f x +=-.(1)求证:()f x 是奇函数; (2)判断()f x 的单调性,并证明;(3)已知关于t 的不等式()()222310f t t f t -++--<恒成立,求实数t 的取值范围.试卷答案一、选择题1-5: DADCB 6-10:BBCCA 11、12:BD二、填空题13. 13-14.52 15.31,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭16.1 三、解答题17.解:{}{}|13,|3A x x B x x =≤≤=<, (1){}{}|13,|3A B x x A B x x =≤<=≤ ;(2)∵{}|,1C x x a x a =≤≥+或,∴{}|1R C C x a x a =<<+, ∵()R C C A ⊆,∴113a a ≥⎧⎨+≤⎩,∴[]1,2a ∈.18.解:(1)∵a 与bsin 0x x -=,∴tan x =[]0,x π∈,∴3x π=;(2)()cos 2sin 6f x a b x x x π⎛⎫==+=+ ⎪⎝⎭ ,∵[]0,x π∈,∴7,666x πππ⎡⎤+∈⎢⎥⎣⎦,∴1sin 126x π⎛⎫-≤+≤ ⎪⎝⎭,∴()12f x -≤≤, 当62x ππ+=即3x π=时,()f x 取得最大值2;当766x ππ+=,即x π=时,()f x 取得最小值-1.19.解:(1)()1141f a==-+,∴2a =-, ()222223110,3110202x f x x x x +==+=--,∴22721,3x x ==,∴x =(2)()()3273173222x x f x x x x -++===+---, 显然()f x 在[)2,+∞与(),2-∞上都是减函数, ∵[](]5,1,2-⊆-∞,∴()f x 在[]5,1-上是减函数, ∵()()77532,13471f f -=+==+=---,∴()[]4,2f x ∈-. 20.解:(1)由图知2452,23123A T πππω⎛⎫===+ ⎪⎝⎭,∴1ω=,∴()()2cos 2f x x ϕ=+, 又52,0312f f ππ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭, ∴5cos 1,cos 036ππϕϕ2⎛⎫⎛⎫-+=-+= ⎪ ⎪⎝⎭⎝⎭,且2πϕ<,∴3πϕ=-;(2)由(1)知()2cos 23f x x π⎛⎫=-⎪⎝⎭,由512a T ππ-==, ∴()7,02cos 1123a b f ππ⎛⎫=-==-= ⎪⎝⎭, 由()2223k x k k Z ππππ-≤-≤∈得()36k x k k Z ππππ-≤≤+∈,∴()f x 的单调增区间为(),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 21.解:因为,αβ都是锐角()14sin ,sin 235ααβ=-=,所以cos 3α==,且()30,2,cos 24225πππααβαβ<<-<-<-=,所以227sin 22sin cos 2cos sin 99αααααα===-=, (1)()()()cos cos 22cos 2cos 2sin 2sin 2βααβααβααβ=--=-+-=⎡⎤⎣⎦;(2)()()()()3sin sin 2sin 2cos cos 2sin 15αβαβααβααβα-=--=---=⎡⎤⎣⎦. 22.(1)证明:由310x -≠,得0x ≠,∵()()31133113x xxxf x f x --++-===---, ∴()f x 是奇函数;(2)解:()f x 的单调减区间为(),0-∞与()0,+∞没有增区间, 设120x x <<,则()()()()()()()21121221121212121212233313133313331313131313131x x x x x x x x x x x x x x x x xx f x f x --+++----++-=-==------ .∵120x x <<,∴21331x x>>, ∴2112330,31,310x x x x->-->,∴()()120f x f x ->,∴()()12f x f x >, ∴()f x 在()0,+∞上是减函数, 同理,()f x 在(),0-∞上也是减函数;(3)()f x 是奇函数,∴()()2211f t f t --=-+,∴()()222310f t t f t -++--<化为()()22231f t t f t -+<+,又()()22223120,10,t t t t f x -+=-+>+>在()0,+∞上是减函数,∴22231t t t -+>+,∴1t <,即(),1t ∈-∞.。
滁州市2017-2018学年第一学期高一期末考试数学试卷第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}1,2,4,1,2,3A B ==,则A B = ( )A .{}3,4B .{}1,2C .{}2,3,4D .{}123,4,,2. 已知角α的始边是x 轴的正半轴,终边经过点()3,4-,且4si n 5α=,则t a n α=( ) A .43-B .34-C .43D .343. 计算:114333122x x x -⎛⎫+= ⎪⎝⎭( )A . 3B . 2C .2x +D .12x +4. 已知向量()()3,2,2,a b x ==,若a b ⊥ ,则23a b -= ( )A ..9 C. 13 D .5. 若幂函数()af x x =的图象过点()4,2,则满足()11f x ->的实数x 的取值范围是( )A .()0,1B .()2,+∞ C. ()1,1- D .(),2-∞ 6.函数()()1sin cos 32f x x x ππ⎛⎫=++- ⎪⎝⎭的最大值是 ( ) A .43 B .23 C. 1 D .137.下列函数是奇函数,且在()0,+∞上是增函数的是 ( )A .21x y x +=B .21x y x-= C. 22x x y -=+ D .lg 1y x =+8. 若3sin 4α=,α是第二象限角,则sin 24πα⎛⎫-= ⎪⎝⎭( )A .16.16- C. 16 D .116-9.函数33x y x =+的零点为0x ,则 ( ) A .031,4x ⎛⎫∈--⎪⎝⎭ B .031,42x ⎛⎫∈-- ⎪⎝⎭ C. 011,24x ⎛⎫∈-- ⎪⎝⎭ D .01,04x ⎛⎫∈- ⎪⎝⎭10. 在平行四边形ABCD 中,E 是CD 中点,F 是BE 中点,若AF mAB nAD =+,则( )A .31,42m n == B .13,44m n == C. 11,22m n == D .13,24m n ==11.曲线1:sin C y x =,曲线2:cos2C y x =,下列说法正确的是 ( ) A .将1C 上所有点横坐标扩大到原来的2倍,纵坐标不变,再将所得曲线向左平移4π个单位,得到2C B .将1C 上所有点横坐标缩小到原来的12,纵坐标不变,再将所得曲线向左平移4π个单位,得到2C C. 将1C 上所有点横坐标扩大到原来的2倍,纵坐标不变,再将所得曲线向左平移2π个单位,得到2C D .将1C 上所有点横坐标缩小到原来的12,纵坐标不变,再将所得曲线向左平移2π个单位,得到2C 12.若不等式()2log 14x a x +≥对任意的()0,x ∈+∞恒成立,则a 的取值范围是 ( ) A .(],0-∞ B .1,4⎛⎤-∞ ⎥⎝⎦ C. [)0,+∞ D .1,4⎡⎫+∞⎪⎢⎣⎭第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上.13.若cos 2sin cos ααα=+,则tan 2α= .14. ()()4log 1,01,0x x f x x x ⎧+≥=⎨-<⎩,则()()11f f -+= .15.若函数()2231y x a x =+-+在[]1,3是单调函数,则实数a 的取值范围是 .16.已知函数()()2cos 06f x x πωω⎛⎫=-> ⎪⎝⎭在区间2,63ππ⎡⎤⎢⎥⎣⎦内单调递减,则ω的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知集合{}{}{}|2318,|215,|1A x x B x x C x x a x a =≤-≤=-<=≤≥+或. (1)求,A B A B ;(2)若()R C C A ⊆,求实数a 的取值范围.18.已知向量()([]cos ,sin ,,0,a x x b x π==∈.(1)若a 与b共线,求x 的值;(2)记()f x a b =,求()f x 的最大值和最小值,及相应的x 的值.19.已知函数()31x f x x a+=+的图象过点()1,4-. (1)若()210f x =,求实数x 的值;(2)当[]5,1x ∈-时,求函数()f x 的取值范围. 20.函数()()cos 20,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示. (1)求,,A ωϕ的值;(2)求图中,a b 的值及函数()f x 的递增区间.21.已知,αβ都是锐角,()14sin ,sin 235ααβ=-=. (1)求cos β的值;(2)求()sin αβ-的值.22. 已知函数()3131x x f x +=-.(1)求证:()f x 是奇函数; (2)判断()f x 的单调性,并证明;(3)已知关于t 的不等式()()222310f t t f t -++--<恒成立,求实数t 的取值范围.试卷答案一、选择题1-5: DADCB 6-10:BBCCA 11、12:BD二、填空题13. 13-14. 52 15. 31,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭16.1 三、解答题17.解:{}{}|13,|3A x x B x x =≤≤=<, (1){}{}|13,|3A B x x A B x x =≤<=≤ ;(2)∵{}|,1C x x a x a =≤≥+或,∴{}|1R C C x a x a =<<+, ∵()R C C A ⊆,∴113a a ≥⎧⎨+≤⎩,∴[]1,2a ∈.18.解:(1)∵a 与bsin 0x x -=,∴tan x =[]0,x π∈,∴3x π=;(2)()cos 2sin 6f x a b x x x π⎛⎫===+ ⎪⎝⎭ ,∵[]0,x π∈,∴7,666x πππ⎡⎤+∈⎢⎥⎣⎦,∴1sin 126x π⎛⎫-≤+≤ ⎪⎝⎭,∴()12f x -≤≤, 当62x ππ+=即3x π=时,()f x 取得最大值2;当766x ππ+=,即x π=时,()f x 取得最小值-1.19.解:(1)()1141f a==-+,∴2a =-, ()222223110,3110202x f x x x x +==+=--,∴22721,3x x ==,∴x = (2)()()3273173222x x f x x x x -++===+---, 显然()f x 在[)2,+∞与(),2-∞上都是减函数, ∵[](]5,1,2-⊆-∞,∴()f x 在[]5,1-上是减函数, ∵()()77532,13471f f -=+==+=---,∴()[]4,2f x ∈-. 20.解:(1)由图知2452,23123A T πππω⎛⎫===+ ⎪⎝⎭,∴1ω=,∴()()2cos 2f x x ϕ=+, 又52,0312f f ππ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭, ∴5cos 1,cos 036ππϕϕ2⎛⎫⎛⎫-+=-+= ⎪ ⎪⎝⎭⎝⎭,且2πϕ<,∴3πϕ=-;(2)由(1)知()2cos 23f x x π⎛⎫=-⎪⎝⎭,由512a T ππ-==, ∴()7,02cos 1123a b f ππ⎛⎫=-==-= ⎪⎝⎭, 由()2223k x k k Z ππππ-≤-≤∈得()36k x k k Z ππππ-≤≤+∈,∴()f x 的单调增区间为(),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 21.解:因为,αβ都是锐角()14sin ,sin 235ααβ=-=,所以cos 3α==,且()30,2,cos 24225πππααβαβ<<-<-<-=,所以227sin 22sin cos 2cos sin 99αααααα===-=,(1)()()()21cos cos 22cos 2cos 2sin 2sin 215βααβααβααβ+=--=-+-=⎡⎤⎣⎦;(2)()()()()3sin sin 2sin 2cos cos 2sin 15αβαβααβααβα-=--=---=⎡⎤⎣⎦. 22.(1)证明:由310x-≠,得0x ≠,∵()()31133113x xxxf x f x --++-===---, ∴()f x 是奇函数;(2)解:()f x 的单调减区间为(),0-∞与()0,+∞没有增区间, 设120x x <<,则()()()()()()()21121221121212121212233313133313331313131313131x x x x x x x x x x x x x x x x xx f x f x --+++----++-=-==------ .∵120x x <<,∴21331x x>>, ∴2112330,31,310x x x x->-->,∴()()120f x f x ->,∴()()12f x f x >, ∴()f x 在()0,+∞上是减函数, 同理,()f x 在(),0-∞上也是减函数;(3)()f x 是奇函数,∴()()2211f t f t --=-+,∴()()222310f t t f t -++--<化为()()22231f t t f t -+<+,又()()22223120,10,t t t t f x -+=-+>+>在()0,+∞上是减函数,∴22231t t t -+>+,∴1t <,即(),1t ∈-∞.。
2017-2018学年安徽省滁州市高三(上)期末数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x>1},B={x|3x>2},则A∩B=()A.(0,1)B.(1,2)C.(1,+∞)D.(0,+∞)2.(5分)在正方形内任取一点,则该点在此正方形的内切圆外的概率为()A.B.C.D.3.(5分)复数z=,i是虚数单位,则下列结论正确的是()A.|z|=B.z的共轭复数为+iC.z的实数与虚部之和为1D.z在平面内的对应点位于第一象限4.(5分)若a=log3,b=log23,c=()3,则a,b,c的大小关系为()A.c>b>a B.b>c>a C.b>a>c D.c>a>b5.(5分)若执行如图所示的程序图,则输出S的值为()A.B.C.D.6.(5分)已知等差数列{a n}的前n项和为S n,若a6=3,S8=12,则{a n}的公差为()A.﹣1B.1C.2D.37.(5分)已知m,n是空间中两条不同的直线,α,β是两个不同的平面,则下列说法正确的是()A.若m⊂α,n⊂β,α∥β,则m∥nB.若m⊂α,α∥β,则m∥βC.若n⊥β,α⊥β,则n∥αD.若m⊂α,n⊂β,α∩β=l,且m⊥l,n⊥l,则α⊥β8.(5分)榫卯是中国古代建筑、家具及其他器械的主要结构方式,是在两个构建上采用凹凸部位相结合的一种连接方式,突出部分叫做“榫头”.若某“榫头”的三视图如图所示,则一个该“榫头”的体积为()A.10B.12C.14D.169.(5分)已知实数x,y满足,若z=x+my的最大值为10,则m=()A.1B.2C.3D.410.(5分)已知函数f(x)=sin(2x+φ)(|φ|<)的最小正周期为T,将曲线y=f(x)向左平移个单位之后,得到曲线y=sin(2x+),则函数f(x)的一个单调递增区间为()A.(﹣,)B.(﹣,)C.(,)D.(,)11.(5分)过双曲线﹣=1的右支上一点P,分别向圆C1:(x+5)2+y2=4和圆C2:(x﹣5)2+y2=r2(r>0)作切线,切点分别为M,N,若|PM|2﹣|PN|2的最小值为58,则r=()A.1B.C.D.212.(5分)已知函数f(x)=在[﹣2,2]上的最大值为5,则实数a 的取值范围是()A.[﹣2ln2,+∞)B.[0,ln2]C.(﹣∞,0]D.[﹣ln2,+∞)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知向量=(﹣k,k+2),=(2,﹣3),若∥(+2),则实数k=.14.(5分)(x+2y)(x﹣y)6的展开式中,x4y3的系数为(用数字作答).15.(5分)若在各项都为正数的等比数列{a n}中,a1=2,a9=a33,则a2018=.16.(5分)已知抛物线C:y2=2px(p>0)的焦点为F,准线l:x=﹣,点M在抛物线C上,点A在准线l上,若MA⊥l,直线AF的倾斜角为,则|MF|=.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)在△ABC,角A,B,C所对的边分别为a,b,c,且b cos A﹣c cos B=(c﹣a)cos B.(1)求角B的值;(2)若△ABC的面积为3,b=,求a+c的值.18.(12分)随着雾霾的日益严重,中国部分省份已经实施了“煤改气”的计划来改善空气质量指数.2017年支撑我国天然气市场消费增长的主要资源是国产常规气和进口天然气,资源每年的增量不足以支撑天然气市场连续300亿立方米的年增量.进口LNG和进口管道气受到接收站、管道能力和进口气价资源的制约.未来,国产常规气产能释放的红利将会逐步减弱,产量增量将维持在80亿方以内.为了测定某市是否符合实施煤改气计划的标准,某监测站点于2016年8月某日起连续200天监测空气质量指数(AQI),数据统计如下:(1)根据上图完成下列表格(2)若按照分层抽样的方法,从空气质量指数在101~150以及151~200的等级中抽取14天进行调研,再从这14天中任取4天进行空气颗粒物分析,记这4天中空气质量指数在101~150的天数为X,求X的分布列;(3)以频率估计概率,根据上述情况,若在一年365天中随机抽取5天,记空气质量指数在150以上(含150)的天数为Y,求Y的期望.19.(12分)已知三棱锥D﹣ABC中,BE垂直平分AD,垂足为E,△ABC是面积为的等边三角形,∠DAB=60°,CD=,CF⊥平面ABD,垂足为F,O为线段AB的中点.(1)证明:AB⊥平面DOC;(2)求CF与平面BCD所成的角的正弦值.20.(12分)已知椭圆C:+=1(a>b>0)的左右焦点分别为F1,F2,若椭圆上一点P满足|PF1|+|PF2|=4,且椭圆C过点(﹣1,﹣),过点R(4,0)的直线l与椭圆C 交于两点E、F.(1)求椭圆C的方程;(2)过点E作x轴的垂线,交椭圆C于N,求证:N,F2,F三点共线.21.(12分)已知函数f(x)=x2﹣x﹣lnx.(1)求函数f(x)的极值;(2)若x1,x2是方程ax+f(x)=x2﹣x(a>0)的两个不同的实数根,求证:lnx1+lnx2+2lna <0.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分[选修4-4:坐标系与参数方程]22.(12分)在平面直角坐标系xOy中,曲线C1的参数方程为(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴且取相同的单位长度建立极坐标系,曲线C2的极坐标方程为ρcos(θ+)=.(1)求曲线C1的普通方程和曲线C2的普通方程;(2)若曲线C1,C2相交于A,B两点,求线段AB的长度.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|+2018.(1)解关于x的不等式f(x)>|x|+2018;(2)若f(|a﹣4|+3)>f((a﹣4)2+1),求实数a的取值范围.2017-2018学年安徽省滁州市高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:∵集合A={x|x>1},B={x|3x>2}={x|x>log32},∴A∩B={x|x>1}.故选:C.2.【解答】解:设圆的半径为r,则正方形的边长为2r;∴圆的面积为πr2,正方形的面积为4r2;以面积为测度,可得点P落在⊙O外的概率为P=1﹣=.故选:A.3.【解答】解:复数z===+i,∴|z|==,A错误;z的共轭复数为﹣i,B错误;z的实数与虚部之和为+=2,C错误;z在平面内的对应点是(,),位于第一象限,D正确.故选:D.4.【解答】解:∵a=log3<log31=0,b=log23>log22=1,0<c=()3<()0=1,∴a,b,c的大小关系为b>c>a.故选:B.5.【解答】解:模拟程序的运行,该程序的功能是利用循环结构计算并输出变量S=log32•log43•log54•log65•log76•log87的值,可得:S=log32•log43•log54•log65•log76•log87====.故选:A.6.【解答】解:∵等差数列{a n}中,a6=3,S8=12,∴,解方程可得,a1=﹣2,d=1,故选:B.7.【解答】解:由m,n是空间中两条不同的直线,α,β是两个不同的平面,知:在A中,若m⊂α,n⊂β,α∥β,则m与n相交、平行或异面,故A错误;在B中,若m⊂α,α∥β,则由面面平行的性质定理得m∥β,故B正确;在C中,若n⊥β,α⊥β,则n∥α或n⊂α,故C错误;在D中,若m⊂α,n⊂β,α∩β=l,且m⊥l,n⊥l,则α与β不一定垂直,故D错误.故选:B.8.【解答】解:如图所示,该几何体为一个3×2×3的长方体,去掉四个角(棱长为1的正方体)余下的几何体.∴该“榫头”体积=3×2×3﹣4×13=14.故选:C.9.【解答】解:由实数x,y满足,作出可行域如图,联立,解得A(2,4),化目标函数z=x+my为y=﹣x+,由图可知,当直线y=﹣x+过A时,直线在y轴上的截距最大,z有最大值为:10,即2+4m=10.解得m=2.故选:B.10.【解答】解:函数f(x)=sin(2x+φ)(|φ|<)的最小正周期为T==π,将曲线y=f(x)向左平移=个单位之后,得到曲线y=sin(2x++φ)的图象,又因为得到曲线y=sin(2x+)的图象,∴φ=﹣,f(x)=sin(2x﹣).令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,故函数的增区间为[kπ﹣,kπ+],k∈Z.结合所给的选项,故选:A.11.【解答】解:圆C1:(x+5)2+y2=4的圆心为(﹣5,0),半径为r1=2;圆C2:(x﹣5)2+y2=1的圆心为(5,0),半径为r,设双曲线﹣=1的左右焦点为F1(﹣5,0),F2(5,0),连接PF1,PF2,F1M,F2N,可得|PM|2﹣|PN|2=(|PF1|2﹣r12)﹣(|PF2|2﹣r2)=(|PF1|2﹣4)﹣(|PF2|2﹣r2)=|PF1|2﹣|PF2|2﹣4+r2=(|PF1|﹣|PF2|)(|PF1|+|PF2|)﹣4+r2=2a(|PF1|+|PF2|﹣4+r2=6(|PF1|+|PF2|)﹣4+r2≥6•2c﹣4+r2≥60﹣4+r2=58,当且仅当P为右顶点时,取得等号,即r2=2,则r=故选:B.12.【解答】解:当x∈[0,2]时,f(x)=2x3﹣3x2+1,f′(x)=6x2﹣6x=6x(x﹣1),∴f′(x)在(0,1)为负,在(1,2)为正,∴f(x)在[0,1]递减,在[1,2]递增,又f(0)=1,f(2)=5,故f(x)在[0,2]上最大值为5;当x∈[﹣2,0)时,f(x)=e ax+1,f′(x)=ae ax,若a>0,则f′(x)>0,f(x)递增,此时,f(x)<f(0)=2,符合题意;若a=0,f(x)=2,符合题意;若a<0,则f′(x)<0,f(x)递减,此时,f(x)≤f(﹣2)=e﹣2a+1,由题意,e﹣2a+1≤5,解得a≥﹣ln2.综上可知,a的取值范围为[﹣ln2,+∞).故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【解答】解:∵=(﹣k,k+2),=(2,﹣3),∴+2=(4﹣k,k﹣4),又∥(+2),∴﹣k(k﹣4)﹣(k+2)(4﹣k)=0,解得:k=4.故答案为:4.14.【解答】解:∵(x+2y)(x﹣y)6=(x+2y)•(x6﹣6x5•y+15x4•y2﹣20x3•y3+15x2•y4﹣6x •y5+y6),∴x4y3的系数为﹣20+2×15=10,故答案为:10.15.【解答】解:设,∵,∴,∴q6(q2﹣4)=0,∵在各项都为正数的等比数列{a n}中q>0,∴q=2,∴=22018.故答案为:22018.16.【解答】解:抛物线C:y2=2px(p>0)的焦点为F,准线l:x=﹣,抛物线C:y2=5x,点M在抛物线C上,点A在准线l上,若MA⊥l,且直线AF的倾斜角为,直线AF 的斜率k AF=﹣,准线与x轴的交点为N,则AN=tan =,A(﹣,),|AF|==5.故答案为:5.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【解答】解:(1)∵b cos A﹣c cos B=(c﹣a)cos B.∴由正弦定理,得:sin B cos A﹣sin C cos B=(sin C﹣sin A)cos B.∴sin A cos B+cos A sin B=2sin C cos B.∴sin(A+B)=2sin C cos B.又A+B+C=π,∴sin(A+B)=sin C.又∵0<C<π,∴cos B=.又B∈(0,π),∴B=.(2)据(1)求解知B=,∴b2=a2+c2﹣2ac cos B=a2+c2﹣ac.①又S=ac sin B=3,∴ac=12,②又∵b=,∴据①②解,得a+c=7.18.【解答】解:(1)所求表格数据如下:(2)依题意,从空气质量指数在101~150以及151~200的天数分别是10,4,故X的可能取值为0,1,2,3,4,P(X=0)==,P(X=2)=,P(X=3)==,P(X=4)==.故X的分布列为:(3)依题意,任取1天空气质量指数在150以上的概率为.由二项分布知识可知,Y~B(5,),故B(Y)=5×=.19.【解答】证明:(1)∵BE垂直平分AD,垂足为E,∴AB=DB.∵∠DAB=60°,∴△ABD是等边三角形.又△ABC是等边三角形.∴O是AB中点,DO⊥AB,CO⊥AB.∵DO∩CO=O,DO,CO⊂平面DOC,∴AB⊥平面DOC.解:(2)由(1)知OC=OD,平面DOC⊥平面ABD.∵平面DOC与平面ABD的交线为OD.∵CF⊥平面ABD.∴F∈CD.又等边△ABC面积为,∴OC=,又CD=,∴F是OD中点.如图建立空间直角坐标系O﹣xyz,B(1,0,0),C(0,,0),D(0,,),F(0,,),∴=(0,﹣,),=(﹣1,,0),=(﹣1,,),设平面BDC的法向量为=(x,y,z),则,取y=,则x=3,z=1.即平面BCD的一个法向量为=(3,,1).∴CF与平面BCD所成角的正弦值为==.20.【解答】解:(1)依题意,|PF1|+|PF2|=4=2a,故a=2.将(﹣1,﹣)代入C:+=1中,解得b2=3,故椭圆C:+=1.证明(2)由题知直线l的斜率必存在,设l的方程为y=k(x﹣4).点E(x1,y1),F(x2,y2),则N(x1,﹣y1),联立可得(4k2+3)x2﹣32k2x+64k2﹣12=0.可得x1+x2=,x1x2=由题可得直线FN方程为y﹣y2=(x﹣x2),又∵y1=k(x1﹣4),y2=k(x2﹣4)代入∴直线FN方程为y+k(x1﹣4)=(x﹣x1),令y=0,整理得x====1,即直线FN过点(1,0).又∵椭圆C的左焦点坐标为F2(1,0),∴N,F2,F三点共线21.【解答】解:(1)依题意,f′(x)=2x﹣1﹣==.故当x∈(0,1)时,f′(x)<0,当x∈(1,+∞)时,f′(x)>0.故当x=1时,函数f(x)有极小值f(1)=0,无极大值;证明:(2)∵x1,x2是方程ax+f(x)=x2﹣x(a>0)的两个不同的实数根.∴,两式相减得,解得a=.要证:lnx1+lnx2+2lna<0,即证:x1x2<,即证:x1x2<,即证<=,不妨设x1<x2,令>1.只需证ln2t.设,则;令h(t)=2lnt﹣t+,则h′(t)=<0,∴h(t)在(1,+∞)上单调递减,∴h(t)<h(1)=0,即g′(t)<0,∴g(t)在(1,+∞)上为减函数,则g(t)<g(1)=0.即ln2t<在(1,+∞)上恒成立,∴原不等式成立,即lnx1+lnx2+2lna<0.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分[选修4-4:坐标系与参数方程]22.【解答】解:(1)∵曲线C1的参数方程为(θ为参数),∴平方得曲线C1的普通方程为x2+y2=1,∵C2的极坐标方程为ρcos(θ+)=,∴ρ(cosθ+sinθ)=1,∴x+y=1,故曲线C2的普通方程为x﹣y﹣1=0;(2)据,得或,所以线段AB的长度为=.[选修4-5:不等式选讲]23.【解答】解:(1)f(x)>|x|+2018可化为|x﹣1|>|x|,∴(x﹣1)2>x2,∴x<,∴不等式的解集为{x|x<}.(2)∵f(x)=|x﹣1|+2017在[1,+∞)上单调递増,又|a﹣4|+3>1,(a﹣4)2+1≥1,∴只需要|a﹣4|+3>(a﹣4)2+1,化简为(|a﹣4|+1)(|a﹣4|﹣2)<0,∴|a﹣4|<2,解得2<a<6,即实数a的取值范围是(2,6).。
滁州市2017-2018学年第一学期高一期末考试数学试卷第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,则()A. B. C. D.【答案】D2. 已知角的始边是轴的正半轴,终边经过点,且,则()A. B. C. D.【答案】A【解析】依题意可知,故.3. 计算:()A. 3B. 2C.D.【答案】D【解析】原式.5. 若幂函数的图象过点,则满足的实数的取值范围是()A. B. C. D.【答案】B【解析】依题意有,,.6. 函数的最大值是()A. B. C. 1 D.【答案】B【解析】,故最大值为.7. 下列函数是奇函数,且在上是增函数的是()A. B. C. D.【答案】B【解析】选项为偶函数,选项为非奇非偶函数.选项在为减函数,在为增函数.选项在上为增函数,符合题意.【点睛】本题主要考查函数的奇偶性和单调性.判断函数的奇偶性,首先判断函数的定义域是否关于原点对称,选项定义域显然不关于原点对称,故为非奇非偶函数.然后计算,化简后看等于还是.函数的单调性中是对钩函数,在不是递增函数.8.9. 函数的零点为,则()A. B. C. D.【答案】C【解析】,,故函数的零点在区间.11. 曲线,曲线,下列说法正确的是()A. 将上所有点横坐标扩大到原来的2倍,纵坐标不变,再将所得曲线向左平移个单位,得到B. 将上所有点横坐标缩小到原来的,纵坐标不变,再将所得曲线向左平移个单位,得到C. 将上所有点横坐标扩大到原来的2倍,纵坐标不变,再将所得曲线向左平移个单位,得到D. 将上所有点横坐标缩小到原来的,纵坐标不变,再将所得曲线向左平移个单位,得到【答案】B【解析】由于,故首先横坐标缩小到原来得到,再向左平移个单位得到.故选.12. 若不等式对任意的恒成立,则的取值范围是()A. B. C. D.【答案】D【解析】当时,原不等式化为,不恒成立,排除,故选.第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上.13.14. ,则__________.【答案】【解析】,,故原式.15. 若函数在是单调函数,则实数的取值范围是__________.【答案】【解析】由于函数为二次函数,对称轴为,只需对称轴不在区间上即可,即或,解得.【点睛】本题主要考查二次函数单调区间的知识.对于二次函数来说,它的单调区间主要由开口方向和对称轴来决定.当开口向上时,左减右增,当开口向下是,左增右减.本题中由于题目只需要区间上的单调函数,不需要递增还是递减,故只需对称轴不在给定区间内即可.16.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知集合.(1)求;(2)若,求实数的取值范围.【答案】(1);(2)【解析】【试题分析】(1)首先求得,由此求得的值.(2),由于,故,解得.【试题解析】解:,(1);(2)∵,∴,∵,∴,∴.18.19. 已知函数的图象过点.(1)若,求实数的值;(2)当时,求函数的取值范围.【答案】(1)(2)【解析】【试题分析】(1)将点代入函数,由此求得的值,进而得出的表达式.解方程,可求得实数的值.(2)将分离常数,得到,它在上为减函数,在区间端点取得最小值和最大值.由此求得函数的值域.【试题解析】解:(1),∴,,∴,∴;(2),显然在与上都是减函数,∵,∴在上是减函数,∵,∴.20. 函数的部分图象如图所示.(1)求的值;(2)求图中的值及函数的递增区间.【答案】(1)(2)【解析】【试题分析】(1)根据图像最大值求得,根据可求得,在根据图像上一个点,可求得的值.(2)利用求出,利用周期为可求得的值.将代入余弦函数的单调递增区间,求得的范围即函数的递增区间.【试题解析】解:(1)由图知,∴,∴,又,∴,且,∴;(2)由(1)知,由,∴,由得,∴的单调增区间为.21.22. 已知函数.(1)求证:是奇函数;(2)判断的单调性,并证明;(3)已知关于的不等式恒成立,求实数的取值范围.【答案】(1)见解析(2)见解析(2)【解析】【试题分析】(1)定义域为关于原点对称,判断故函数为奇函数.(2)函数在定义域的两个区间上都是减函数.利用定义法,计算,由此判断出函数的单调性.(3)根据函数的单调性和奇偶性,将原不等式转化为即,解不等式得.【点睛】本题主要考查函数奇偶性的判断,考查利用定义法求函数单调性,考查利用函数的奇偶性和单调性求参数的取值范围.判断函数的奇偶性首先要求出函数的定义域,看定义域是否关于原点对称,然后再判断与的关系,进而判断函数的奇偶性.定义法判断函数的单调性,需计算的值来判断.【试题解析】(1)证明:由,得,∵,∴是奇函数;(2)解:的单调减区间为与没有增区间,设,则.∵,∴,∴,∴,∴,∴在上是减函数,同理,在上也是减函数;(3)是奇函数,∴,∴化为,又在上是减函数,∴,∴,即.。
安徽省滁州市高一上学期数学期末考试试卷姓名:________班级:________成绩:________一、 选择题 (共 12 题;共 24 分)1. (2 分) (2016 高二下·哈尔滨期末) 已知集合 A={x||x+1|<1},B={x|y= ()A . (﹣2,1) B . (﹣2,﹣1] C . (﹣1,0) D . [﹣1,0),y∈R},则 A∩∁RB=2. (2 分) (2016 高一上·吉林期中) 在同一坐标系中,函数 y=2x 与 y= A . 关于 y 轴对称 B . 关于 x 轴对称 C . 关于原点对称 D . 关于直线 y=x 对称的图象之间的关系是( )3. (2 分) (2017·广西模拟) 函数 f(x)= 的定义域是( )A.RB . {x|x≥0}C . {x|x>0}D . {x|x<0}4. (2 分) 函数 y=5+sin22x 的最小正周期为( )A . 2πB.π第 1 页 共 10 页C.D.5. (2 分) (2018 高一下·龙岩期中) 函数 最小值为( )在内至少出现 次最大值,则 的A.B.C.D.6. (2 分) (2017 高一上·海淀期中) 已知向量 =(1,0), =(﹣1,1),则( )A. ∥B. ⊥C.( )∥D.( ) ⊥7. (2 分) 将函数 f(x)= 称,则 m 的最小值为( )的图象向左平移 m 个单位(m>0),若所得的图象关于直线 x= 对A.B.C.D.8.(2 分)(2018 高一下·鹤壁期末) 设平面向量,第 2 页 共 10 页,若,则等于( )A.B.C.D.9. (2 分) (2016 高二上·淄川开学考) 下列函数为偶函数的是( )A . y=sinxB . y=cosxC . y=tanxD . y=sin2x10. (2 分) 某家具的标价为 则该家具的进货价是( )元,若降价以九折出售(即优惠),仍可获利(相对进货价),A.元B.元C.元D.元11. (2 分) (2017·茂名模拟) 已知定义域为 R 的偶函数 f(x)在(﹣∞,0]上是减函数,且 f(1)=2,则 不等式 f(log2x)>2 的解集为( )A . (2,+∞)B.C.第 3 页 共 10 页D.12. (2 分) (2019 高二下·哈尔滨月考) 已知函数数底数,若,是的导函数,函数在,其中, 为自然对内有两个零点,则 的取值范围是( )A.B.C.D.二、 填空题 (共 4 题;共 4 分)13. (1 分) (2019 高一下·上海月考) 若,则________.14. (1 分) 已知函数 f(x)=, 则 f(f(10))的值为________ .15. (1 分) (2018·重庆模拟) 已知向量,,且,则________.16. (1 分) (2017·南京模拟) 设常数 k>1,函数 y=f(x)= 2)上的取值范围为________.三、 解答题 (共 6 题;共 70 分),则 f(x)在区间[0,17. (10 分) 已知函数 f(x)=( sinx+cosx)( cosx﹣sinx). (1) 求 f(x)的最小正周期; (2) 求 f(x)的单调递增区间. 18. (10 分) (2016 高一下·东莞期中) 如图,在平行四边形 ABCD 中,AB=1,AD=2,∠BAD=60°,BD,AC 相交于点 O,M 为 BO 中点.设向量 = , = .第 4 页 共 10 页(1) 试用 , 表示和;(2) 证明: ⊥ .19. (10 分) (2012·陕西理) 函数 条对称轴之间的距离为 ,(1) 求函数 f(x)的解析式;(A>0,ω>0)的最大值为 3,其图象相邻两(2) 设,则,求 α 的值.20. (15 分) (2016 高一上·万州期中) 已知函数 f(x)=x﹣ . (1) 判断函数 f(x)的奇偶性,并加以证明; (2) 用定义证明函数 f(x)在区间[1,+∞)上为增函数;(3) 若函数 f(x)在区间[2,a]上的最大值与最小值之和不小于,求 a 的取值范围.21. (15 分) (2016 高一上·承德期中) 已知函数 f(x)= (1) 当 x≤0 时,解不等式 f(x)≥﹣1; (2) 写出该函数的单调区间; (3) 若函数 g(x)=f(x)﹣m 恰有 3 个不同零点,求实数 m 的取值范围. 22. (10 分) 已知集合 A={x∈R|ax2﹣3x﹣4=0}, (1) 若 A 中有两个元素,求实数 a 的取值范围; (2) 若 A 中至多有一个元素,求实数 a 的取值范围.第 5 页 共 10 页一、 选择题 (共 12 题;共 24 分)1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、 9-1、 10-1、 11-1、 12-1、二、 填空题 (共 4 题;共 4 分)13-1、 14-1、 15-1、参考答案第 6 页 共 10 页16-1、三、 解答题 (共 6 题;共 70 分)17-1、 17-2、18-1、18-2、第 7 页 共 10 页19-1、 19-2、 20-1、20-2、第 8 页 共 10 页20-3、 21-1、 21-2、21-3、第 9 页 共 10 页22-1、 22-2、第 10 页 共 10 页。
安徽省滁州市高一上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2017高二上·汕头月考) 已知集合,,则 =()A .B .C .D .2. (2分) (2016高一上·厦门期中) 函数y= +lg(x+2)的定义域为()A . (﹣2,1)B . [﹣2,1]C . [﹣2,1)D . (﹣2,1]3. (2分)已知锐角的终边上一点,则锐角=()A .B .C .D .4. (2分)如图,为了得到这个函数的图象,只要将y=sinx(x∈R)的图象上所有的点()A . 向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变B . 向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C . 向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变D . 向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变5. (2分) (2018高一上·成都月考) 函数的零点所在的区间是()A .B .C .D .6. (2分) (2019高三上·海淀月考) 下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是()A . y=x2+2xB . y=x3C . y=lnxD . y=x27. (2分)下列各图中,不可能表示函数y=f(x)的图象的是()A .B .C .D .8. (2分)已知f(x)是以2为周期的偶函数,当x∈[0, 1]时,f(x)=x,那么在区间[-1,3]内关于x 的方程f(x)=kx+k+1(k∈R,k≠-1)的根的个数()A . 不可能有3个B . 最少有1个,最多有4个C . 最少有1个,最多有3个D . 最少有2个,最多有4个二、填空题 (共6题;共7分)9. (1分) (2019高二上·上海月考) 如图在平行四边形中,已知,,,,则的值是________.10. (1分) (2016高一下·宜春期中) 的值等于________.11. (2分) (2019高一下·杭州期中) 函数(,,是常数,,)的部分图象如图,则 ________, ________.12. (1分)(2018·滨海模拟) 在平行四边形中,,,,为的中点,若是线段上一动点,则的取值范围是________13. (1分) (2018高二下·定远期末) 设函数f(x)=,g(x)=x2f(x-1),则函数g(x)的递减区间是________.14. (1分) (2019高二上·柳林期末) 函数y=x3+x2﹣x的单调递增区间为________.三、解答题 (共6题;共55分)15. (10分) (2018高一上·鹤岗月考) 已知,(1)求的值(2)求;16. (10分) (2019高一下·杭州期中) 已知,,且与夹角为求(1);(2) .17. (10分)(2018·吉林模拟) 已知函数.(1)求的最小正周期;(2)当时,的最小值为5,求的值.18. (5分)(2020·聊城模拟) 在①acosB+bcosA= cosC;②2asinAcosB+bsin2A= a;③△ABC的面积为S,且4S= (a2+b2-c2),这三个条件中任意选择一个,填入下面的问题中,并求解,在锐角△ABC中,角A,B,C所对的边分别为a,b,c,函数 =2 sinωxcosωx+2cos2ωx的最小正周期为π,c为在[0, ]上的最大值,求a-b的取值范围.注:如果选择多个条件分别解答,那么按第一个解答计分.19. (10分) (2020高一下·重庆期末) 已知函数 .(1)当时,求不等式的解集;(2)若关于x的不等式的解集为R,求a的取值范围.20. (10分) (2017高一上·武汉期中) 经市场调查,东方百货超市的一种商品在过去的一个月内(以30天计算),销售价格f(t)与时间(天)的函数关系近似满足,销售量g(t)与时间(天)的函数关系近似满足g(t)= .(1)试写出该商品的日销售金额W(t)关于时间t(1≤t≤30,t∈N)的函数表达式;(2)求该商品的日销售金额W(t)的最大值与最小值.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共7分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共6题;共55分)15-1、15-2、16-1、16-2、17-1、17-2、19-1、19-2、20-1、20-2、。
滁州市2017-2018学年第一学期高一期末考试
数学试卷
第Ⅰ卷(选择题 共60分)
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合,则
( )
A.
B.
C.
D.
【答案】D 【解析】
并集由两个集合公共元素构成,故
. 2.已知角的始边是轴的正半轴,终边经过点,且
,则
( )
A.
B.
C. D.
【答案】A 【解析】 依题意可知
,故
.
3.计算:( )
A. 3
B. 2
C.
D.
【答案】D 【解析】 原式. 4.已知向量,若
,则
( )
A.
B. 9
C. 13
D.
【答案】C 【解析】
由于两个向量垂直,故
,故
.
5.若幂函数的图象过点,则满足的实数的取值范围是()
A. B. C. D.
【答案】B
【解析】
依题意有,,.
6.函数的最大值是()
A. B. C. 1 D.
【答案】B
【解析】
,故最大值为.
7.下列函数是奇函数,且在上是增函数的是()
A. B. C. D.
【答案】B
【解析】
选项为偶函数,选项为非奇非偶函数.选项在为减函数,在为增函数.选项在
上为增函数,符合题意.
【点睛】本题主要考查函数的奇偶性和单调性.判断函数的奇偶性,首先判断函数的定义域是否关于原点对称,选项定义域显然不关于原点对称,故为非奇非偶函数.然后计算,化简后看等于还是.函数的单调性中是对钩函数,在不是递增函数.
8.若,是第二象限角,则()
A. B. C. D.
【答案】C
【解析】
由于角为第二象限角,故,所以,,故
【点睛】本题主要考查同角三角函数的基本关系式,考查二倍角公式和两角差的正弦公式.首先根据角的正弦值和所在的象限,求得角的余弦值,然后利用二倍角公式求得的正弦值和余弦值,最后利用两角差的正弦公式展开所求式子,代入已知数值即可求得最后结果.
9.函数的零点为,则()
A. B. C. D.
【答案】C
【解析】
,,故函数的零点在区间.
10.在平行四边形中,是中点,是中点,若,则()
A. B. C. D.
【答案】A
【解析】
连接,由于为中点,故.
11.曲线,曲线,下列说法正确的是()
A. 将上所有点横坐标扩大到原来的2倍,纵坐标不变,再将所得曲线向左平移个单位,得到
B. 将
上所有点横坐标缩小到原来的,纵坐标不变,再将所得曲线向左平移个单位,得到
C. 将上所有点横坐标扩大到原来的2倍,纵坐标不变,再将所得曲线向左平移个单位,得到
D. 将
上所有点横坐标缩小到原来的,纵坐标不变,再将所得曲线向左平移个单位,得到
【答案】B
由于,故首先横坐标缩小到原来得到,再向左平移个单位得到.故选. 12.若不等式对任意的恒成立,则的取值范围是()
A. B. C. D.
【答案】D
【解析】
当时,原不等式化为,不恒成立,排除,故选.
第Ⅱ卷(非选择题共90分)
二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上.
13.若,则__________.
【答案】
【解析】
分子分母同时除以得,解得,故.
14.,则__________.
【答案】
【解析】
,,故原式.
15.若函数在是单调函数,则实数的取值范围是__________.
【答案】
【解析】
由于函数为二次函数,对称轴为,只需对称轴不在区间上即可,即或,解得. 【点睛】本题主要考查二次函数单调区间的知识.对于二次函数来说,它的单调区间主要由开口方向和对称轴来决定.当开口向上时,左减右增,当开口向下是,左增右减.本题中由于题目只需要区间上的单调函数,不需要递增还是递减,故只需对称轴不在给定区间内即可.
16.已知函数在区间内单调递减,则的最大值为__________.
【解析】
,根据单调性有,解得,故,解得
,当时,.
【点睛】本题主要考查三角函数降次公式,考查,的单调区间的求法.由于题目给定函数是二次的形式,故首先利用降次公式将原函数化为次数为一次的形式.然后求出函数所有的单调递减区间.再结合题目所给定的区间,列不等式组,可求得的取值范围.
三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)
17.已知集合.
(1)求;
(2)若,求实数的取值范围.
【答案】(1);(2)
【解析】
【分析】
(1)首先求得,由此求得的值.(2),由于,
故,解得.
【详解】解:,
(1);
(2)∵,∴,
∵,∴,∴.
18.已知向量.
(1)若与共线,求的值;
(2)记,求的最大值和最小值,及相应的的值.
【答案】(1)(2)当时,取得最大值2;当时,取得最小值-1.
【试题分析】(1)利用两个向量共线,则有,解方程求得的值.(2)利用向量坐标运算化简,进而求得的最大值和最小值,及相应的的值.
【试题解析】
解:(1)∵与共线,∴,
∴,∵,∴;
(2),
∵,∴,∴,∴,
当即时,取得最大值2;当,即时,取得最小值-1.
19.已知函数的图象过点.
(1)若,求实数的值;
(2)当时,求函数的取值范围.
【答案】(1)(2)
【解析】
【试题分析】(1)将点代入函数,由此求得的值,进而得出的表达式.解方程,可求得实
数的值.(2)将分离常数,得到,它在上为减函数,在区间端点取得最小值和最大值.由此求得函数的值域.
【试题解析】
解:(1),∴,
,
∴,∴;
(2),
显然在与上都是减函数,
∵,∴在上是减函数,
∵,∴.
20.函数的部分图象如图所示.
(1)求的值;
(2)求图中的值及函数的递增区间.
【答案】(1)(2)
【解析】
【试题分析】(1)根据图像最大值求得,根据可求得,在根据图像上一个点,可求得的值.(2)利用求出,利用周期为可求得的值.将代入余弦函数的单调递增区间,求得的范围即函数的递增区间.
【试题解析】
解:(1)由图知,∴,∴,
又,
∴,且,∴;
(2)由(1)知,由,
∴,
由得,
∴的单调增区间为.
21.已知都是锐角,.
(1)求的值;
(2)求的值.
【答案】(1)(2)
【解析】
【试题分析】先求得、、和的值.(1)利用求得的值;(2)利用求得的值.
【试题解析】
解:因为都是锐角,
所以,且,
所以,
(1);
(2).
【点睛】本题主要考查同角三角函数关系,考查两角和与差的正弦、余弦公式,考查化归与转化的数学思想方法.先根据题目所给定两个角是锐角和两个正弦值,求得相应的余弦值和倍角的余弦值和正弦值.然后将所求角转化为已知角,最后利用两角和与差的公式求解出结果.
22.已知函数.
(1)求证:是奇函数;
(2)判断的单调性,并证明;
(3)已知关于的不等式恒成立,求实数的取值范围.
【答案】(1)见解析(2)见解析(2)
【解析】
【试题分析】(1)定义域为关于原点对称,判断故函数为奇函数.(2)函数在定义域的两个区间上都是减函数.利用定义法,计算,由此判断出函数的单调性.(3)根据函数的单调性和奇偶性,将原不等式转化为即,解不等式得.
【点睛】本题主要考查函数奇偶性的判断,考查利用定义法求函数单调性,考查利用函数的奇偶性和单调性求参数的取值范围.判断函数的奇偶性首先要求出函数的定义域,看定义域是否关于原点对称,然后再判
断与的关系,进而判断函数的奇偶性.定义法判断函数的单调性,需计算的值来判断.
【试题解析】
(1)证明:由,得,
∵,
∴是奇函数;
(2)解:的单调减区间为与没有增区间,
设,则.
∵,∴,
∴,
∴,∴,
∴在上是减函数,
同理,在上也是减函数;
(3)是奇函数,∴,
∴化为,
又在上是减函数,
∴,∴,即.。