专题1.1 填空题的解法 -2017届高三数学三轮考点总动员(江苏版)(解析版)
- 格式:doc
- 大小:618.88 KB
- 文档页数:10
高三数学试题 第1页(共4页) 高三数学试题 第2页(共4页)绝密★启用前|2017年第三次全国大联考【江苏卷】数学试卷(Ⅰ卷考试时间:120分钟试卷满分:160分) (Ⅱ卷理科附加考试时间:30分钟 试卷满分:40分)注意事项:1.本试卷分第Ⅰ卷(必做题)和第Ⅱ卷(理科附加)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.答题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、填空题:(本大题共14个小题,每小题5分,共70分,将答案填在答题纸上) 1.已知集合2{20}A x x x =+=,2{|20}B x x x =-≤,则A B = _____________.2.已知复数122i(0),3i z a a z =+>=-,其中i 为虚数单位,若12||||z z =,则z =_____________. 3.已知样本7,8,9,,x y 的平均数为8,且60xy =,则此样本的方差为_____________.4.从甲、乙、丙、丁四个人中随机选取两人,则甲、乙两人有且仅有一人被选中的概率是_____________.5.若(mod )n N m ≡表示正整数除以正整数后的余数为,则执行该程序框图输出的n =____________.6.直线:210l y x =+过双曲线22221(0,0)x y a b a b-=>>一个焦点且与其一条渐近线平行,则双曲线方程为_____________. 7.将函数ππ()sin(2)()22f x x θθ=+-<<的图象向右平移(0π)ϕϕ<<个单位长度后得到函数()g x 的图象,若(),()f x g x 的图象都经过点P ,则ϕ的值为_____________.8.已知一个圆锥的底面半径为1值为_____________.9.四边形ABCD 中,O 为对角线,AC BD 的交点,若||4,12,,2AC BA BC AO OC BO OD =⋅===,则DA DC ⋅=_____________.10.平面四边形ABCD 中,,3,5,4,2====DA CD BC AB 则平面四边形ABCD 面积的最大值为_____________.11.已知()1980,()ln()xf x axg x a a=-=∈R ,若在*x ∈N 上恒有()()0f x g x ≥,则实数a 的取值范围是_____________.12.已知P 为单位圆O 上的点,,M N 为圆2216x y +=上两点,函数()||()f x MP xMN x =-∈R,若函数()f x 的最小值为t ,且当点P 在单位圆上运动时,t 的最大值为3,则线段MN 的长度为_____________. 13.已知21,,26x y x y x y+∈+++=R ,则2x y +的最大值为_____________. 14.已知等差数列}{n a 的首项,11-=a 若该数列恰有6项落在区间)8,21(内,则公差d 的取值范围是_____________.二、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)已知函数π()4cos sin()3f x x x a =-+的最大值为2. (1)求a 的值及函数()f x 的最小正周期;(2)在ABC △中,若A B <,且()()1f A f B ==,求BCAB的值. 16.(本小题满分14分)如图,平面PAC ⊥平面ABC ,,,AC BC PE BC M ⊥∥是AE 中点,N 是PA上一点.(1)若N 是PA 中点,求证:MN ⊥平面PAC ; (2)若MN ∥平面ABC ,求证:N 是PA 中点.高三数学试题 第3页(共4页) 高三数学试题 第4页(共4页)17.(本小题满分14分)已知两工厂,A B ,公路l 可看作一条直线,,20km AB lAB =∥,两直线,AB l 之间的距离为20km .现在两直线,AB l 之间建立一中转站P .(1)若3PA PB =,则P 建在何处,使P 点到公路距离最近?(2)若PA PB =,则P 建在何处,使P 点到两工厂的距离及到公路的距离之和最小? 18.(本小题满分16分)已知椭圆()2222:10x y C a b a b +=>>的离心率为2,上、下顶点分别为(0,1),(0,1)B C -.P 为直线2y =-上一个动点(与y 轴交点除外),直线PC 交椭圆于另一个点.M(1)求椭圆方程;(2)若直线,MB PB 的斜率分别为12,,k k 求证:12k k 为定值; (3)求PB PM ⋅的取值范围. 19.(本小题满分16分)已知函数()|2|ln f x x a a x =--,常数.a ∈R (1)若(1)0f =,求函数在点(e,(e))f 处切线方程;(2)若对1212,[3,4],x x x x ∀∈≠,恒有1212()(()())0x x f x f x --<,求a 的取值范围; (3)若函数()f x 有两个零点12,x x 且12x x <,求实数a 的取值范围. 20.(本小题满分16分)已知数列{}n b 是首项为2、公比为q 的等比数列,数列{}n a 满足13a q =,11n n n a qb a ++-=-*()n qb n ∈N .(1)求数列{}n a 的通项公式; (2)若1,2q =数列{}n b 前n 项和为n S ,求所有满足等式111n n m S m S m b +-=-+成立的正整数,m n ;(3)若0,q <且对任意*,,m n ∈N 都有1(,6)6m n a a ∈,求实数q 的取值范围.第Ⅱ卷21.【选做题】(本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.) A .【选修4-1:几何证明选讲】(本小题满分10分)如图,⊙O 的直径AB 的延长线与弦CD 的延长线相交于点P ,E为⊙O 上一点,AE AC =,求证:PDE POC ∠=∠.B .【选修4-2:矩阵与变换】(本小题满分10分)已知矩阵212x -⎡⎤=⎢⎥-⎣⎦M 的一个特征向量为12⎡⎤⎢⎥-⎣⎦,求1.-M C .【选修4-4:坐标系与参数方程】(本小题满分10分)在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.直线l 的极坐标方程为sin()4ρθπ-=直线l 与曲线2:sin 8cos C ρθθ=相交于不同的两点,A B ,求||AB 的值.D .【选修4-5:不等式选讲】(本小题满分10分)设0,0,0,1x y z xyz >>>=,求证:333111111.x y y z z x x y z++≥++ 【必做题】(第22题、第23题,每题10分,共20分.解答时应写出文字说明、证明过程或演算步骤) 22.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为71.现有甲、乙两人从袋中轮流、不放回地摸取1球,甲先取,乙后取,然后甲再取……直到袋中的球取完即终止.若摸出白球,则记2分,若摸出黑球,则记1分.每个球在每一次被取出的机会是等可能的.用ξ表示甲、乙最终得分差的绝对值.(1)求袋中原有白球的个数;(2)求随机变量ξ的分布列及期望E ξ.23.已知每一项都是正数的数列{}n a 满足11a =,*11()12n n na a n a ++=∈N . (1)用数学归纳法证明:2121n n a a +-<;(2)记n S 为数列1{||}n n a a +-的前n 项和,证明:*6().n S n <∈N。
2017年江苏省高考数学试卷(含答案解析)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年江苏省高考数学试卷(含答案解析)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年江苏省高考数学试卷(含答案解析)(word版可编辑修改)的全部内容。
2017年江苏省高考数学试卷一.填空题1.(5分)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为 .2.(5分)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是 .(5分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100 3.件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件.4.(5分)如图是一个算法流程图:若输入x的值为,则输出y的值是 .5.(5分)若tan(α﹣)=.则tanα= .6.(5分)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是 .7.(5分)记函数f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则x∈D的概率是 .8.(5分)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是 .9.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8= .10.(5分)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是 .11.(5分)已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f(a﹣1)+f (2a2)≤0.则实数a的取值范围是 .12.(5分)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n= .13.(5分)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是 .(5分)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,14.其中集合D={x|x=,n∈N*},则方程f(x)﹣lgx=0的解的个数是 .二。
绝密★启用前【试卷点评】【命题特点】2017年江苏高考数学试卷,在保持稳定的基础上,进行适度的改革和创新,对数据处理能力、应用意识的要求比以往有所提高。
2017年江苏数学试卷在“稳中求进”中具体知识点有变化。
1.体现新课标理念,实现平稳过渡。
试卷紧扣江苏考试大纲,新增内容的考查主要是对基本概念、基本公式、基本运算的考查,难度不大。
对传统内容的考查在保持平稳的基础上进行了适度创新。
如第7题首次考查几何概型概率问题。
2.关注通性通法。
试卷淡化了特殊的技巧,全面考查通性通法,体现了以知识为载体,以方法为依托,以能力考查为目的的命题要求。
如第17题解析几何考查两直线交点以及点在曲线上。
第20题以极值为载体考查根与系数关系、三次方程因式分解。
第19题以新定义形式多层次考查等差数列定义。
3.体现数学应用,关注社会生活。
第10题以实际生活中运费、存储费用为背景的基本不等式求最值问题,第18题以常见的正四棱柱和正四棱台为背景的解三角形问题,体现试卷设计问题背景的公平性,对推动数学教学中关注身边的数学起到良好的导向。
4.附加题部分,前四道选做题对知识点的考查单一,方法清晰,学生入手较易。
两道必做题一改常规,既考查空间向量在立体几何中应用,又考查概率分布与期望值,既考查运算能力,又考查思维能力。
【试卷解析】参考公式:柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高. 球体积公式34π3R V =,其中R 是球的半径.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =则实数a 的值为 ▲ . 【答案】1【考点】元素的互异性【名师点睛】(1)认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误. (3)防范空集.在解决有关,A B A B =∅⊆等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.2. 已知复数(1i)(12i),z =++其中i 是虚数单位,则z 的模是 ▲ . 【答案】10【考点】复数的模【名师点睛】对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)+∈a bi a b R 的实部为a 、虚部为b 22+a b (,)a b 、共轭为.-a bi3. 某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 ▲ 件. 【答案】18【解析】所求人数为300601810000⨯=,故答案为18.【考点】分层抽样【名师点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N . 4. 右图是一个算法流程图,若输入x 的值为116,则输出的y 的值是 ▲ .【答案】2-【解析】由题意212log 216y =+=-,故答案为-2. 【考点】循环结构流程图【名师点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项. 5. 若π1tan(),46α-= 则tan α= ▲ .【答案】75【考点】两角和正切公式【名师点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异. ①一般可以适当变换已知式,求得另外函数式的值,以备应用; ②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.结束 (第4题)开始 22log y x←+Y1x ≥N输入x 2x y ←输出y6. 如图,在圆柱12,O O 内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱12,O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是 ▲.【答案】32【解析】设球半径为r ,则213223423V r r V r ππ⨯==.故答案为32. 【考点】圆柱体积【名师点睛】空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解. 7. 记函数2()6f x x x =+-的定义域为D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是 ▲ . 【答案】59【考点】几何概型概率【名师点睛】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.8. 在平面直角坐标系xOy 中,双曲线2213x y -=的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是12,F F ,则四边形12F PF Q 的面积是 ▲ .O O 1 O 2 ⋅⋅ ⋅【答案】23【考点】双曲线渐近线【名师点睛】1.已知双曲线方程22221x y a b-=求渐近线:22220x y b y x a b a -=⇒=±2.已知渐近线y mx = 设双曲线标准方程222m x y λ-=3,双曲线焦点到渐近线距离为b ,垂足为对应准线与渐近线的交点.9. 等比数列{}n a 的各项均为实数,其前n 项的和为n S ,已知3676344S S ==,,则8a = ▲ .【答案】32【解析】当1q =时,显然不符学#科.网合题意;当1q ≠时,3161(1)714(1)6314a q q a q q ⎧-=⎪-⎪⎨-⎪=⎪-⎩,解得1142a q ⎧=⎪⎨⎪=⎩,则7812324a =⨯=. 【考点】等比数列通项【名师点睛】在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.10. 某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储之和最小,则x 的值是 ▲ . 【答案】30 【解析】总费用600900464()42900240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立. 【考点】基本不等式求最值【名师点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误. 11. 已知函数31()2e e x xf x x x =-+-, 其中e 是自然对数的底数. 若2(1)(2)0f a f a -+≤,则实数a 的取值范围是 ▲ . 【答案】1[1,]2-【考点】利用函数性质解不等式【名师点睛】解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内12. 如图,在同一个平面内,向量OA ,OB ,OC 的模分别为2OA 与OC 的夹角为α,且tan α=7,OB 与OC 的夹角为45°.若OC mOA nOB =+(,)m n ∈R , 则m n += ▲ . 【答案】3【解析】由tan 7α=可得72sin α=,2cos α=,根据向量的分解,易得cos 45cos 2sin 45sin 0n m n m αα⎧︒+=⎪⎨︒-=⎪⎩2222102720210n m n m +=⎪-=⎩,即510570n m n m +=⎧⎨-=⎩,即得57,44m n ==,所以3m n +=.α A CB(第12题)【考点】向量表示【名师点睛】(1)向量的坐标运算将向量与代数有机结合起来,这就为向量和函数、方程、不等式的结合提供了前提,运用向量的有关知识可以解决某些函数、方程、不等式问题.(2)以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法.(3)向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题.13. 在平面直角坐标系xOy 中,(12,0),(0,6),A B -点P 在圆2250O x y +=:上,若20,PA PB ⋅≤则点P 的横坐标的取值范围是 ▲ . 【答案】[52,1]-【考点】直线与圆,线性规划【名师点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求横坐标或纵坐标、直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.14. 设()f x 是定义在R 且周期为1的函数,在区间[0,1)上,2,,(),,x x D f x x x D ⎧∈⎪=⎨∉⎪⎩其中集合1,*n D x x n n -⎧⎫==∈⎨⎬⎩⎭N ,则方程()lg 0f x x -=的解的个数是 ▲ .【答案】8【解析】由于()[0,1)f x ∈ ,则需考虑110x ≤< 的情况在此范围内,x Q ∈ 且x ∈Z 时,设*,,,2qx p q p p=∈≥N ,且,p q 互质 若lg x Q ∈ ,则由lg (0,1)x ∈ ,可设*lg ,,,2nx m n m m=∈≥N ,且,m n 互质因此10nmqp=,则10()n mqp=,此时左边为整数,右边非整数,矛盾,因此lg x Q∉【考点】函数与方程【名师点睛】对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分14分)如图,在三棱锥A-BCD中,AB⊥AD, BC⊥BD, 平面ABD⊥平面BCD, 点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【答案】(1)见解析(2)见解析【解析】证明:(1)在平面ABD 内,因为AB ⊥AD ,EF AD ⊥,所以EF AB ∥.【考点】线面平行判定定理、线面垂直判定与性质定理,面面垂直性质定理 【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直. 16.(本小题满分14分)已知向量(cos ,sin ),(3,3),[0,π].x x x ==-∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值. 【答案】(1)5π6x =(2)0x =时,取得最大值,为3; 5π6x =时,取得最小值,为3-.(第15题)ADBC EF【解析】解:(1)因为co ()s ,sin x x =a ,(3,3)=-b ,a ∥b ,(2)π(cos ,sin )(3,3)3cos 3sin 23cos(())6f x x x x x x =⋅=⋅-=-=+a b . 因为,所以ππ7π[,]666x +∈, 从而π31cos()62x -≤+≤. 于是,当ππ66x +=,即0x =时,取到最学.科网大值3; 当π6x +=π,即5π6x =时,取到最小值23-【考点】向量共线,数量积【名师点睛】(1)向量平行:1221//a b x y x y ⇒=,//,0,a b b a b λλ≠⇒∃∈=R ,111BA AC OA OB OC λλλλ=⇔=+++ (2)向量垂直:121200a b a b x x y y ⊥⇔⋅=⇔+=,(3)向量加减乘: 221212(,),||,||||cos ,a b x x y y a a a b a b a b ±=±±=⋅=⋅<> 17.(本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1F , 2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作 直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l .(1)求椭圆E 的标准方程;(2)若直线E 的交点Q 在椭圆E 上,求点P 的坐标.【答案】(1)22143x y +=(2)4737(,) 【解析】解:(1)设椭圆的半焦距为c .从而直线1l 的方程:001(1)x y x y +=-+, ① 直线2l 的方程:001(1)x y x y -=--. ② 由①②,解得20001,x x x y y -=-=,所以2001(,)x Q x y --. F 1 ⋅O⋅F 2xy(第17题)因为点Q 在椭圆上,由对称性,得20001x y y -=±,即22001x y -=或22001x y +=.因此点P 的坐标为737(77.【考点】椭圆方程,直线与椭圆位置关系【名师点睛】直线和圆锥曲线的位置关系,一般转化为直线方程与圆锥曲线方程组成的方程组,利用韦达定理或求根公式进行转化,要充分利用椭圆和双曲线的几何性质、点在曲线上则点的坐标满足曲线方程. 18.(本小题满分16分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC 的长为7容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm. 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm. 现有一根玻璃棒l ,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计) (1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分的长度; (2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分的长度.【答案】(1)16(2)20【解析】解:(1)由正棱柱的定义,1CC ⊥平面ABCD ,所以平面11A ACC ⊥平面ABCD ,1CC AC ⊥.容器Ⅱ容器ⅠGOHFD BAO 1H 11F 1E D 1C 1B 1A (第18题)记玻璃棒的另一端落在1CC 上点M 处.( 如果将“没入水中部分冶理解为“水面以上部分冶,则结果为24cm)(2)如图,O ,O 1是正棱台的两底面中心.由正棱台的定义,OO 1⊥平面 EFGH , 所以平面E 1EGG 1⊥平面EFGH ,O 1O ⊥EG . 同理,平面 E 1EGG 1⊥平面E 1F 1G 1H 1,O 1O ⊥E 1G 1. 记玻璃棒的另一端落在GG 1上点N 处.过G 作GK ⊥E 1G ,K 为垂足, 则GK =OO 1=32. 因为EG = 14,E 1G 1= 62,所以KG 1=6214242-=,从而222211 243240GG KG GK =+=+=. 设1,,EGG ENG αβ==∠∠则114sin sin()cos 25KGG KGG απ=+==∠∠.因为2απ<<π,所以3cos 5α=-.在ENG △中,由正弦定理可得4014sin sin αβ=,解得7sin 25β=. 因为02βπ<<,所以24cos 25β=.于是42473sin sin()sin()sin co 3s cos sin ()5252555NEG αβαβαβαβ=π--=+=+=⨯+-⨯=∠. 记EN 与水面的交点为P 2,过 P 2作P 2Q 2⊥EG ,Q 2为垂足,则 P 2Q 2⊥平面 EFGH ,故P 2Q 2=12,从而 EP 2=2220sin P NEGQ =∠.答:玻璃棒l 没入水中部分的长度为20cm.(如果将“没入水中部分冶理解为“水面以上部分冶,则结果为20cm) 【考点】正余弦定理【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果. 19.(本小题满分16分)对于给定的正整数k ,若数列{}n a 满足1111n k n k n n n k n k a a a a a a --+-++-++++++++2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列. 【答案】(1)见解析(2)见解析当3n ≥时,n n n n n a a a a a --+++++=21124,①当4n ≥时,n n n n n n n a a a a a a a ---++++++++=3211236.②由①知,n n n a a a ---+=-32141()n n a a ++,③n n n a a a ++++=-23141()n n a a -+,④所以数列{}n a 是等差数列.【考点】等差数列定义及通项公式【名师点睛】证明{}n a 为等差数列的方法: (1)用定义证明:1(n n a a d d +-=为常数); (2)用等差中项证明:122n n n a a a ++=+; (3)通项法: n a 为n 的一次函数;(4)前n 项和法:2n S An Bn =+20.(本小题满分16分)已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数()f x '的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域; (2)证明:23b a >;(3)若()f x ,()f x '这两个函数的所有极值之和不小于72-,求a 的取值范围.【答案】(1)3a >(2)见解析(3)36a <≤【解析】解:(1)由32()1f x x ax bx =+++,得222()323()33a a f x x axb x b '=++=++-.当3ax =-时,()f x '有极小值23a b -.因为()f x '的极值点是()f x 的零点.所以33()1032793a a a ab f -=-+-+=,又0a >,故2239a b a=+. 因为()f x 有极值,故()=0f x '有实根,从而231(27a )039a b a-=-≤,即3a ≥. 3a =时,()>0(1)f x x '≠-,故()f x 在R 上是增函数,()f x 没有极值;3a >时,()=0f x '有两个相异的实根213=3a a b x ---,223=3a a bx -+-. 列表如下x1(,)x -∞1x12(,)x x2x2(,)x +∞()f x '+ 0 – 0 + ()f x极大值极小值故()f x 的极值点是12,x x . 从而3a >,因为3a >,所以33a a >()>(33)=3g a g >3a因此2>3b a .(3)由(1)知,()f x 的极值点是12,x x ,且1223x x a +=-,22212469a b x x -+=.从而323212111222()()11f x f x x ax bx x ax bx +=+++++++2222121122121212(32)(32)()()23333x x x ax b x ax b a x x b x x =++++++++++346420279a ab ab -=-+=因此a 的取值范围为(36],.【考点】利用导数研究函数单调性、极值及零点【名师点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.数学II21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题......,并在相应的答题区域内作答............,若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A. [选修4—1:几何证明选讲](本小题满分10分)如图,AB 为半圆O 的直径,直线PC 切半圆O 于点C ,AP ⊥PC ,P 为垂足. 求证:(1);PAC CAB ∠=∠ (2)2AC AP AB =⋅.【答案】见解析【解析】证明:(1)因为PC 切半圆O 于点C ,POCA(第21-A 题)所以PCA CBA =∠∠,所以2·AC AP AB = 【考点】圆性质,相似三角形【名师点睛】1.解决与圆有关的成比例线段问题的两种思路(1)直接应用相交弦、切割线定理及其推论;(2)当比例式(等积式)中的线段分别在两个三角形中时,可转化为证明三角形相似,一般思路为“相似三角形→比例式→等积式”.在证明中有时还要借助中间比来代换,解题时应灵活把握.2.应用相交弦定理、切割线定理要抓住几个关键内容:如线段成比例与相似三角形、圆的切线及其性质、与圆有关的相似三角形等.B. [选修4—2:矩阵与变换](本小题满分10分) 已知矩阵0110,.1002B ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦A A= ,B=.(1)求AB ;(2)若曲线221:182x y C +=在矩阵AB 对应的变换作用下得到另一曲线2C ,求2C 的方程.【答案】(1)(2)228x y +=【解析】解:(1)因为A =0110⎡⎤⎢⎥⎣⎦, B =1002⎡⎤⎢⎥⎣⎦, 所以AB =0110⎡⎤⎢⎥⎣⎦1002⎡⎤⎢⎥⎣⎦=0210⎡⎤⎢⎥⎣⎦. (2)设00(,)Q x y 为曲线1C 上的任意一点, 它在矩阵AB 对应的变换作用下变为(,)P x y ,则000210x x y y ⎡⎤⎡⎤=⎡⎢⎥⎢⎥⎣⎦⎣⎤⎥⎣⎦⎦⎢,即002y x x y =⎧⎨=⎩,所以002x yx y =⎧⎪⎨=⎪⎩. 因为00(,)Q x y 在曲线1C 上,所以2200188x y +=,从而22188x y +=,即228x y +=.因此曲线1C 在矩阵AB 对应的变换作用下得到曲线2C :228x y +=.【考点】矩阵乘法、线性变换【名师点睛】(1)矩阵乘法注意对应相乘:a b m p am bn ap bq c d n q cm dn cp dq ++⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥++⎣⎦⎣⎦⎣⎦(2)矩阵变换注意变化前后对应点:a b x x c d y y '⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦表示点(,)x y 在矩阵a b c d ⎡⎤⎢⎥⎣⎦变换下变成点(,)x y '' C. [选修4-4:坐标系与参数方程](本小题满分10分)在平面坐标系中xOy 中,已知直线l 的参考方程为x 82tty =-+⎧⎪⎨=⎪⎩(t 为参数),曲线C 的参数方程为22,22x s y s⎧=⎪⎨=⎪⎩(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值. 【答案】45【解析】解:直线l 的普通方程为280x y -+=.因此当点P 的坐标为(4,4)时,曲线C 上点P 到直线l 45. 【考点】参数方程化普通方程【名师点睛】1.将参数方程化为普通方程,消参数常用代入法、加减消元法、三角恒等变换法. 2.把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普通方程中x 及y 的取值范围的影响.D.[选修4-5:不等式选讲](本小题满分10分)已知,,,a b c d 为实数,且22224,16,a b c d +=+=证明8.ac bd +≤ 【答案】见解析【考点】柯西不等式【名师点睛】柯西不等式的一般形式:设a 1,a 2,…,a n ,b 1,b 2,…,b n 为实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0或存在一个数k ,使a i =kb i (i =1,2,…,n )时,等号成立.【必做题】第22、23题,每小题10分,计20分.请把答案写在答题卡的指定区域内...........作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图, 在平行六面体ABCD-A 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 13 120BAD ∠=︒.(1)求异面直线A 1B 与AC 1所成角的余弦值; (2)求二面角B-A 1D-A 的正弦值.DCBD 1B 1C 1A 1A(第22题)【答案】(1)1 7(2)74【解析】解:在平面ABCD内,过点A作AE⊥AD,交BC于点E.因此异面直线A1B与AC1所成角的余弦值为17.(2)平面A1DA的一个法向量为(3,0,0)AE=.设(,,)x y z=m为平面BA1D的一个法向量,又1(3,1,3),(3,3,0)A B BD=--=-,则10,0,A BBD⎧⋅=⎪⎨⋅=⎪⎩mm即330,330.x y zx y-=+=⎪⎩不妨取x =3,则3,2y z ==,因此二面角B -A 1D -A 7. 【考点】空间向量、异面直线所成角及二面角【名师点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”. 23.(本小题满分10分)已知一个口袋有m 个白球,n 个黑球(,*,2m n n ∈N ≥),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,,m n +的抽屉内,其中第k 次取出的球放入编号为k 的抽屉(1,2,3,,)k m n =+.1 2 3m n +(1)试求编号为2的抽屉内放的是黑球的概率p ;(2)随机变量X 表示最后一个取出的黑球所在抽屉编号的倒数,()E X 是X 的数学期望,证明:()()(1)nE X m n n <+-【答案】(1)nm n+(2)见解析 【解析】解:(1) 编号为2的抽屉内放的是黑球的概率p 为: 11C C n m n n m n np m n-+-+==+. (2) 随机变量 X 的概率分布为: X1n 11n + 12n + …1k…1m n+P11C C n n nm n--+ 1C C n nnm n-+ 11C C n n nm n-++ …11C C n k nm n--+ …11C C n n m nm n-+-+ 随机变量 X 的期望为:()()(1)nE X m n n <+-.【考点】古典概型概率、随机变量及其分布、数学期望 【名师点睛】求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布(,)XB n p ),则此随机变量的期望可直接利用这种典型分布的期望公式(()E X np )求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.。
【方法引领】数学应用问题是高考中常见题型之一.常见的应用题有:(1)函数与不等式模型;(2)函数与导数模型;(3)三角函数模型;(4)数列模型.首先,要掌握解决实际问题的一般步骤:(1)阅读题目,理解题意;(2)设置变量,建立函数关系;(3)应用函数知识或数学方法解决问题;(4)检验,作答(解应用题的一般思路如下面流程图所示).其次,要掌握数学建模的方法.【举例说法】一、关系分析法:通过寻找关键词和关键量之间的数量关系的方法来建立问题的数学模型.例1某工厂有容量为300 t的水塔一个,每天从早上6时起到晚上10时止供应该厂生活和生产用水.已知该厂生活用水为每小时10 t,工业用水量W(单位:t)与时间t(单位:h,定义早上6时t=0)的函数关系式为t10级,第一级每小时进水10 t,以后每提高一级,每小时的进水量增加10 t,若某天水塔原有水100 t,在供水同时打开进水管.(1)设进水量选用第n级,写出在t时刻时水的存有量;(2)问:进水量选择第几级,既能保证该厂用水(水塔中水不空)又不会使水溢出?【读懂题意】题目涉及的关键词比较多:生活用水量、工业用水量、水的存有量、进水量、原有量.其数量关系为:存有量=进水量-用水量+原有量,而用水量=生活用水量+工业用水量.第一问的关键点是求“进水量选用第n级”.第二问的关键点是“水塔中水不空不溢”转化为“存有量∈(0,300)”.【建立模型】因为存有量=进水量-用水量+原有量,而用水量=生活用水量+工业用水量=10t+100t,所以在选用第n级的进水量时,t时刻水的存有量为t n,使t(0,16]上恒成立.【精要解析】面对上述不等式,如何求解?是否会转化为“-10t+t+1<n≤20t+t+1对一切0<t≤16恒成立”,是否会作一个代换“令t=x,x≥14”,将上式转化为“-10x2+10x+1<n≤20x2+10x+1对一切x≥14恒成立”.由于g(x)=20x2+10x+1在14∞⎡⎫+⎪⎢⎣⎭,上的最小值为194,h(x)=-10x2+10x+1在14∞⎡⎫+⎪⎢⎣⎭,上的最大值为7 2,所以72<n≤194,从而确定n=4.【练习】某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900 m2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1 m,三块矩形区域的前、后与内墙各保留1 m宽的通道,左、右两块矩形区域分别与相邻的左、右内墙保留3 m宽的通道,如图.设矩形温室的室内长为x(单位:m),三块种植植物的矩形区域的总面积为S(单位:m2).(1)求S关于x的函数关系式;(2)求S的最大值.二、列表分析法: 对于数据较多,较复杂的应用性问题通过列表的方式探索问题的数学模型. 例2从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少15,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加1 4 .(1)设n年内(本年度为第一年)总投入为a n万元,旅游业总收入为b n万元,试写出它们的表达式;(2)问:至少经过几年旅游业的总收入才能超过总投入?【读懂题意】在研究旅游业的投入产出问题时,根据“本年度投入800万元,以后每年投入将比上年减少11”“54和旅游业收入每年会比上年增加”,其投入资金数列和收入(产出)数列均为等比数列,注意题目“设n年内(本年度为第一年)总投入为an万元,旅游业总收入为bn万元”中的“n年内”说明“an”,“bn”表示等比数列的前n项和.【建立模型】(1)第n年的投入与收入资金数列表如下:第几年投入资金(单位:万元) 旅游收入(单位:万元)1 800 4002 80011-5⎛⎫⎪⎝⎭400114⎛⎫+⎪⎝⎭3 800211-5⎛⎫⎪⎝⎭4002114⎛⎫+⎪⎝⎭4 800311-5⎛⎫⎪⎝⎭4003114⎛⎫+⎪⎝⎭5 800411-5⎛⎫⎪⎝⎭4004114⎛⎫+⎪⎝⎭………n 800·n-111-5⎛⎫⎪⎝⎭400·n-1114⎛⎫+⎪⎝⎭(2)略第1年旅游业收入为400万元,第2年旅游业收入为400×114⎛⎫+⎪⎝⎭万元,…,第n年旅游业收入为400×-1114n ⎛⎫+⎪⎝⎭万元,所以n年内的总收入bn=400+400×114⎛⎫+⎪⎝⎭+ (400)-1114n⎛⎫+⎪⎝⎭=1 600×5-14n⎡⎤⎛⎫⎢⎥⎪⎝⎭⎢⎥⎣⎦.(2)设至少经过n年旅游业的总收人才能超过总投入,所以bn-an>0,即1 600×5-14n⎡⎤⎛⎫⎢⎥⎪⎝⎭⎢⎥⎣⎦-4 000×41-5n⎡⎤⎛⎫⎢⎥⎪⎝⎭⎢⎥⎣⎦>0,化简,得5×45n⎛⎫⎪⎝⎭+2×54n⎛⎫⎪⎝⎭-7>0,即45n⎛⎫⎪⎝⎭<25,可得n≥5,所以至少要经过5年旅游业的总收入才能超过总投入. @网三、图象分析法:通过对图象中的数量关系进行分析来建立问题数学模型.例3某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系可用图(1)所示的一条折线表示;西红柿的种植成本与上市时间的关系可用图(2)所示的抛物线段表示.(1)写出图(1)表示的市场售价与时间的函数关系式P=f(t),写出图(2)表示的种植成本与时间的函数关系Q=g(t);(2)认定市场售价减去种植成本为纯收益,问:何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/102kg,时间单位:天)图(1) 图(2)【读懂题意】(1)观察图象求出市场售价函数P=f(t)和种植成本函数Q=g(t).(2)由“市场售价减去种植成本为纯收益”建立纯收益函数h(t)=f(t)-g(t).【建立模型】由图(1)可得市场售价与时间的函数关系为f(t)=300-02002-300200300t tt t≤≤⎧⎨<≤⎩,,,;由图(2)可得种植成本与时间的函数关系为g(t)=2(-150)200t+100,0≤t≤300.【精要解析】(1)由图(1)可得市场售价与时间的函数关系为f(t)=300-02002-300200300t t t t ≤≤⎧⎨<≤⎩,,,;由图(2)可得种植成本与时间的函数关系为g(t)=2(-150)200t +100,0≤t≤300.当0≤t≤200时,配方整理得h(t)=-1200(t-50)2+100, 所以当t=50时,h(t)取得区间0,200]上的最大值100; 当200<t≤300时,配方整理得h(t)=-1200(t-350)2+100, 所以当t=300时,h(t)取得区间(200,300]上的最大值87.5.综上,由100>87.5可知,h(t)在区间0,300]上可以取得最大值100,此时t=50,即从二月一日开始的第50天时,上市的西红柿纯收益最大.【练习】 某公司为帮助尚有26.8万元的无息贷款,但没有偿还能力的残疾人商店,借出20万元,将该商店改建为经营状况良好的某种消费品专卖店,并约定用该店经营的利润逐步偿还债务(不计息).已知该种消费品的进价为每件40元,该店每月销售量q(单位:百件)与销售价p(单位:元/件)的关系用图中的一条折线表示.职工每人每月工资600元,该店应交付的其他费用为每月13 200元.(1)若当销售价p 为52元/件时,该店正好收支平衡,求该店的职工人数;(2)若该店只安排40名职工,则该店最早可在几年后还清所有债务,此时每件消费品价格定为多少元?所以当40≤p≤58时,S=(-2p+140)(p-40)×100-600m-13 200,当58<p≤81时,S=(-p+82)(p-40)×100-600m-13 200.由题设知,当p=52时,S=0,即(-2×52+140)(52-40)×100-600m-13 200=0,解得m=50,即此时该店有员工50人.(2)由题意知S=(-2140)(-40)100-372004058 (-82)(-40)100-372005881 p p pp p p+⨯≤≤⎧⎨+⨯<≤⎩,,,,当40≤p≤58时,求得当p=55时,S取最大值7 800(元);当58<p≤81时,求得当p=61时,S取最大值6 900(元).所以当p=55时,S有最大值为7 800元.设该店最早可在n年后还清所有债务,依题意得12×7 800×n-268 000-200 000≥0,解得n≥5,即该店最早可在5年后还清所有债务,此时消费品价格定为每件55元. %网四、建立坐标系法: 通过建立坐标系,得到函数模型来解应用题.例4如图(1)所示的镀锌铁皮材料ABCD,上沿DC为圆弧,其圆心为A,半径为2 m,AD⊥AB,BC⊥AB,且BC的长为1 m.现要用这块材料裁一个矩形PEAF(其中P在»D C上,E在线段AB上,F在线段AD上)作圆柱的侧面,若以PE为母线,问:如何裁剪可使圆柱的体积最大?其最大值是多少?(例4(1))【读懂题意】该问题是方案设计问题,如何确定点P的位置使得以PE为母线,以矩形PEAF(其中P 在»D C上,E在线段AB上,F在线段AD上)作圆柱的侧面围成的圆柱的体积最大.【建立模型】因为点P在»D C上,其圆心为A,半径为2 m,且AD⊥AB,BC⊥AB,所以分别以AB,AD所在直线为x轴、y轴建立平面直角坐标系xOy,如图(2)所示,(例4(2))则»DC 的方程为x2+y2=4(0≤x≤3,y>0),设P(x ,y)(0<x≤3),圆柱底面半径为r ,体积为V ,则PE=24-x ,2πr=AE=x,则r=2πx ,所以V=πr2l=2π2πx ⎛⎫ ⎪⎝⎭·24-x=14πx224-x .设t=x2∈(0,3],令u=t2(4-t),则u'=-3t2+8t=-3t 8-3t ⎛⎫⎪⎝⎭, 令u'=0,得t=83.当83<t≤3时,u'<0,u 是减函数;当0<t<83时,u'>0,u 是增函数,所以当t=83时,u 有极大值,也是最大值,所以当x=263 m 时,V 有最大值39πm3,此时24-x 233m. 故裁一个矩形,两边长分别为263 m 和33 m 时,能使圆柱的体积最大,其最大值为39πm3.【练习】某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4 s.已知各观测点到该中心的距离都是1 020 m.试确定该巨响发生的位置.(假定当时声音传播的速度为340 m/s ,相关各点均在同一平面上)由双曲线定义知点P在以A,B为焦点的双曲线22xa-22yb=1上,依题意得a=680,c=1 020,所以b2=c2-a2=1 0202-6802=5×3402,故双曲线方程为22680x-225340y⨯=1.将y=-x代入上式,得x=±6805因为PB>PA,所以x=-68055即P(-68055,故10答:巨响发生在接报中心的西偏北45°距中心10处.【实战演练】1. 某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l.如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5 km和40 km,点N到l1,l2的距离分别为20 km和2.5 km,以l1,l2所在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=2ax b+(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于点P,点P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.则点P 的坐标为t ,21000t . 设在点P 处的切线l 交x ,y 轴分别于点A ,B ,y'=-32000x , 则直线l 的方程为y-21000t =-32000t(x-t), 由此得A 302t ⎛⎫⎪⎝⎭,,B 230000t ⎛⎫⎪⎝⎭,, 故222330002t t ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭62434102t t ⨯+20]. ②设g(t)=t2+64410t ⨯,则g'(t)=2t-651610t⨯.令g'(t)=0,解得2.当t∈(5,2)时,g'(t)<0,g(t)单调递减;220)时,g'(t)>0,g(t)单调递增.所以当2时,函数g(t)有极小值,也是最小值,g(t)min=300,此时f(t)min=153答:当2时,公路l 的长度最短,最短长度为3 km.%2. (2016·南通、扬州、泰州、淮安三调)某宾馆在装修时,为了美观,欲将客房的窗户设计成半径为1 m 的圆形,并用四根木条将圆分成如图所示的9个区域,其中四边形ABCD 为中心在圆心的矩形.现计划将矩形ABCD 区域设计为可推拉的窗口.(1)若窗口ABCD为正方形,且面积大于14m2(木条宽度忽略不计),求四根木条总长的取值范围;(2)若四根木条总长为6 m,求窗口ABCD面积的最大值.又因为四根木条将圆分成9个区域,所以x>2所以4215答:木条总长的取值范围为2,15(2)方法一:设AB所在木条的长为a m,则BC所在木条的长为(3-a)m.因为a∈(0,2),3-a∈(0,2),所以a∈(1,2),S矩形21-4a2(3-)1-4a 24-a24-(3-)a432-624-20a a a a++设f(a)=a4-6a3+a2+24a-20,f'(a)=4a3-18a2+2a+24=2(a+1)(2a-3)(a-4),令f'(a)=0,得a=32或a=-1(舍去)或a=4(舍去).当a变化时,f'(a),f(a)的变化情况如下表:a 3 2所以当a=32时,f(a)max=f 32⎛⎫⎪⎝⎭=4916,即Smax=74. 答:窗口ABCD面积的最大值为74m2. 方法二:设AB 所在木条的长为a m ,BC 所在木条的长为b m. 由题意知2a+2b=6,即a+b=3.因为a,b∈(0,2),所以b=3-a∈(0,2),从而a ,b∈(1,2).由于S 矩形228-()2a b +≤2()8-22a b +=74, 当且仅当a=b=32∈(1,2)时,S 矩形ABCD=74.答:窗口ABCD 面积的最大值为74m2.3. (2016·扬州期末)某隧道设计为双向四车道,车道总宽20 m ,要求通行车辆限高4.5 m ,隧道口截面的拱线近似地看成抛物线形状的一部分,如图所示建立平面直角坐标系xOy. (1)若最大拱高h 为6 m ,则隧道设计的拱宽l 是多少?(2)为了使施工的土方工程量最小,需隧道口截面面积最小.现隧道口的最大拱高h 不小于6 m ,则应如何设计拱高h 和拱宽l ,使得隧道口截面面积最小.23S lh ⎛⎫= ⎪⎝⎭隧道口截面面积公式为【分析】求面积的关键在于求出l ,h 之间的关系,注意到点910--22l h h ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,及点,在抛物线上,就可得到l ,h 之间的关系,由此来消去一个变量,消元时,要注意等价性,即注意变量的取值范围的求解.令y=-h ,则-9-2100h x2=-h ,解得x2=1009-2h h ,则22l ⎛⎫ ⎪⎝⎭=1009-2hh ,h=2292-400l l .因为h≥6,所以2292-400ll ≥6,即20<l≤40.所以S=23lh=23l·2292-400l l =323-400l l (20<l≤40).所以S'=223229(-400)-3?2(-400)l l l l l =22223(-1200)(-400)l l l 23(203)(-203)l l l +, 当20<l<203S'<0;当3S'>0,即S 在(20,203上单调递减,在(20340]上单调递增, 所以S 在3时取得最小值,此时l=203h=274. 答:当拱高为274m ,拱宽为203时,使得隧道口截面面积最小.4. 如图(1),为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直,保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m.经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),tan∠BCO=43. (1)求新桥BC 的长;(2)当OM多长时,圆形保护区的面积最大?【解答】方法一:(1)如图(2)所示,以O为坐标原点,OC所在直线为x轴,建立平面直角坐标系xOy.(练习(2))设点B的坐标为(a,b),则kBC=-0-170ba=-43,kAB=-60-0ba=34,解得a=80,b=120,所以22(170-80)(0-120)+因此新桥BC的长是150m.(2)设保护区的边界圆M的半径为rm,OM=dm(0≤d≤60).由条件知,直线BC的方程为y=-43(x-170),即4x+3y-680=0.由于圆M与直线BC相切,故点M(0,d)到直线BC的距离是r,即2243+=680-35d.因为O和A到圆M上任意一点的距离均不少于80m,所以-80-(60-)80r dr d≥⎧⎨≥⎩,,即680-3-805680-3-(60-)805dddd⎧≥⎪⎪⎨⎪≥⎪⎩,,解得10≤d≤35.故当d=10时,r=680-35d最大,即圆的面积最大,所以当OM=10m时,圆形保护区的面积最大.方法二:(1)如图(3)所示,延长OA,CB交于点F.(练习(3))因为tan∠FCO=43,所以sin∠FCO=45,cos∠FCO=35.因为OA=60,OC=170,所以OF=OCtan∠FCO=6803,CF=cosOCFCO∠=8503,从而AF=OF-OA=5003.因为OA⊥OC,所以cos∠AFB=sin∠FCO=45.又因为AB⊥BC,所以BF=AFcos∠AFB=4003,从而BC=CF-BF=150.因此新桥BC的长是150m.(2)设保护区的边界圆M与BC的切点为D,连接MD,则MD⊥BC,且MD是圆M的半径,并设MD=r m,OM=dm(0≤d≤60).因为OA⊥OC,所以sin∠CFO=cos∠FCO.故由(1)知sin∠CFO=MDMF=-M DOF OM=680-3rd=35,所以r=680-35d.因为O和A到圆M上任意一点的距离均不少于80m,所以-80-(60-)80r dr d≥⎧⎨≥⎩,,即680-3-805680-3-(60-)805dddd⎧≥⎪⎪⎨⎪≥⎪⎩,,解得10≤d≤35.故当d=10时,r=680-35d最大,即圆的面积最大,所以当OM=10m 时,圆形保护区的面积最大. 学¥5. 某企业拟建造如图所示的容器(不计厚度,长度单位:m),其中容器的中间为圆柱形,高为l ,左、右两端均为半球形,半径为r ,按照设计要求容器的体积为80π3m3,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y 千元. (1)求y 关于r 的函数解析式,并求该函数的定义域; (2)求该容器的建造费用最小时半径r 的值.【分析】根据球的体积和圆柱的体积公式求出y 关于r 的函数表达式,再利用导数研究其最值.所以y=160πr-8πr2+4πcr2,定义域为(0,2]. (2)y'=-2160πr -16πr+8πcr=328π[(-2)-20]c r r,因为c>3,所以c-2>0,当r3=20-2c 时,即y'=0, 320c-2,则m>0, 所以y'=28(c-2)r (r-m)(r2+mr+m2). ①当0<m<2,即c>92时,当r=m 时,y'=0;当r∈(0,m)时,y'<0;当r∈(m ,2)时,y'>0, 所以当r=m 时,函数y 取得极小值点,也是最小值点.②当m≥2,即3<c≤92时, 当r∈(0,2)时,y'<0,函数单调递减,所以r=2时函数y 取得最小值点. 综上,当3<c≤92时,建造费用最小时r=2;当c>92时,建造费用最小时r=320-2c .6. (2016·江苏卷)现需要设计一个仓库,它由上下两部分组成,如图,上部分的形状是正四棱锥P-A1B1C1D1,下部分的形状是正四棱柱ABCD-A1B1C1D1,并要求正四棱柱的高O1O 是正四棱锥的高PO1的四倍.(1)若AB=6 m ,PO1=2 m ,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m ,则当PO1为多少时,仓库的容积最大?【解答】(1)容积为下部正四棱柱的容积与上部正四棱锥的容积的和,则V=62×4×2+13×62×2=62×2×143⎛⎫+ ⎪⎝⎭=312(m3). (2)设PO1=x m. 则A1O1=226-x (0<x<6),A1B1=222(6-)x ⨯.当3<x<6时,V'<0,V 是单调减函数,所以当3 m 时,仓库的容积V 取得最大值.7. 如图,某园林单位准备绿化一块直径为BC 的半圆形空地,△ABC外的地方种草,△ABC的内接正方形PQRS 为一水池,其余的地方种花,若BC=a ,∠ABC=θ,设△ABC的面积为S1,正方形PQRS 的面积为S2.(1)用a ,θ表示S1和S2;(2)当a 固定,θ变化时,求12S S 的最小值.【分析】用a ,θ表示S1和S2,a 固定时12S S 是关于θ的函数,然后可以利用换元法或求导来研究其单调性从而求出最小值.【解答】(1)S1=12asinθ·acosθ=14a2sin2θ, 设正方形边长为x ,则BQ=tan xθ,RC=xtanθ,所以tan x θ+xtanθ+x=a,所以x=1tan 1tan aθθ++=sin22sin2a θθ+,所以S2=2sin22sin2a θθ⎛⎫ ⎪+⎝⎭=222sin 2sin 24sin24a θθθ++. (2)当a 固定,θ变化时,12S S =14sin244sin2θθ⎛⎫++⎪⎝⎭, 令sin2θ=t,则12S S =1444t t ⎛⎫++ ⎪⎝⎭(0<t≤1),利用单调性求得t=1时,12min S S ⎛⎫ ⎪⎝⎭=94.8. 如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 处沿直线步行到C 处,另一种是先从A 处沿索道乘缆车到B 处,然后从B 处沿直线步行到C 处.现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A 处乘缆车到B 处,在B 处停留1 min 后,再从B 处匀速步行到C 处.假设缆车匀速直线运动的速度为130 m/min ,山路AC 长为1 260 m ,经测量,cos A=1213,cos C=35. (1)求索道AB 的长;(2)问:乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处相互等待的时间不超过3 min ,乙步行的速度应控制在什么范围内?(2)由(1)知BC=sinsinAB·AC=500(m),设乙出发t(t≤8)min后,甲到了D处,乙到了E处,则有AD=50t+100,AE=130t,根据余弦定理得DE2=AE2+AD2-2AE·AD·cos A,即DE2=7 400t2-14 000t+10 000,所以当t=1400027400⨯=3537时,DE2有最小值,此时乙在缆车上与甲的距离最短,(3)设甲所用时间为t甲,乙所用时间为t乙,乙步行速度为v乙,由题意知甲到C处用时t甲=126050=1265(min),乙到C处用时t乙=2+1040130+1+500v乙=11+500v乙(min),所以-3≤1265-50011v⎛⎫+⎪⎝⎭乙≤3,解不等式得125043≤v乙≤62514.所以乙步行的速度应控制在12506254314⎡⎤⎢⎥⎣⎦,(m/min)范围内.9.(2016·南通一调)如图,阴影部分为古建筑物保护群所在地,其形状是以O1为圆心,半径为1 km的半圆面.公路l经过点O,且与直径OA垂直.现计划修建一条与半圆相切的公路PQ(点P在直径OA的延长线上,点Q在公路l上),T为切点.(1)按下列要求建立函数关系:①设∠OPQ=α(单位:rad),将△OPQ的面积S表示为α的函数;②设OQ=t(单位:km),将△OPQ的面积S表示为t的函数.(2)请你选用(1)中的一个函数关系,求△OPQ的面积S的最小值.所以Rt△OPQ 的面积为S=12OP·OQ=1211sin α⎛⎫+ ⎪⎝⎭1sin cos αα+=2(1sin )2sin cos ααα+=2(1sin )π0sin22ααα+⎛⎫<< ⎪⎝⎭. ②由题设知,OQ=QT=t ,O1T=1,且Rt△POQ∽△PTO1,所以OP OQ =1TP TO ,即OPt 22-t OP t +OP=222-1t t (t>1). 所以Rt△OPQ的面积为S=12OQ·OP=12t·222-1t t =32-1t t (t>1).(2)方法一:选用(1)中①的函数关系S=2(1sin )sin2αα+π02α⎛⎫<< ⎪⎝⎭. S'=222(1sin )cos sin2-(1sin )2cos2sin 2αααααα++=22(1sin )[cos sin2-(1sin )cos2]sin 2αααααα++=222(1sin )[sin(2-)-(1-2sin )]sin 2ααααα+=222(1sin )(2sin -1)π0sin 22αααα+⎛⎫<< ⎪⎝⎭.由S'=222(1sin )(2sin -1)sin 2ααα+=0π02α⎛⎫<< ⎪⎝⎭,得α=π6.当α变化时,S ,S'的变化情况如下表:α06π⎛⎫⎪⎝⎭, 6π 62ππ⎛⎫ ⎪⎝⎭, S' - 0 + S↘极小值↗所以当α=π6时,△OPQ的面积S取得最小值为2π1sin6πsin26⎛⎫+⎪⎝⎭⎛⎫⨯⎪⎝⎭=33(km2).方法二:选用(1)中②的函数关系S=32-1tt(t>1).S'=223223(-1)-2(-1)t t t tt⨯=2(3)(-3)t t t+(t>1).由S'=222(3)(-3)(-1)t t tt+=0(t>1),得t=3.当t变化时,S,S'的变化情况如下表:t (1,3) 3(3,+∞)S' - 0 +S ↘极小值↗所以当t=3时,△OPQ的面积S的最小值为3(3)=33(km2).10.(2016·南京三模)如图,某森林公园有一直角梯形区域ABCD,其四条边均为道路,AD∥BC,∠ADC=90°,AB=5 km,BC=8 km,CD=3 km.现甲、乙两管理员同时从A地出发匀速前往D地,甲的路线是AD,速度为6 km/h,乙的路线是ABCD,速度为v km/h.(1)若甲、乙两管理员到达D地的时间相差不超过15 min,求乙的速度v的取值范围;(2)已知对讲机有效通话的最大距离是5 km.若乙先到达D地,且乙从A到D的过程中始终能用对讲机与甲保持有效通话,求乙的速度v的取值范围.①当0<vt≤5,即0<t≤5v时, f(t)=(6t)2+(vt)2-2×6t×vt×cos∠DAB=248-365v v ⎛⎫+ ⎪⎝⎭t2. 因为v2-485v+36>0,所以当t=5v时,f(t)取得最大值, 所以248-365v v ⎛⎫+ ⎪⎝⎭×25v ⎛⎫ ⎪⎝⎭≤25,解得v≥154. ②当5≤vt≤13,即5v ≤t≤13v时, f(t)=(vt-1-6t)2+9=(v-6)221--6t v ⎛⎫ ⎪⎝⎭+9. 因为v>8,所以1-6v <5v ,(v-6)2>0, 所以当t=13v时,f(t)取得最大值, 所以(v-6)22131--6v v ⎛⎫ ⎪⎝⎭+9≤25,解得398≤v≤394. ③当13≤vt≤16,即13v ≤t≤16v时,f(t)=(12-6t)2+(16-vt)2, 因为12-6t>0,16-vt>0,所以f(t)在1316v v ⎡⎤⎢⎥⎣⎦,上单调递减, 即当t=13v 时,f(t)取得最大值,21312-6v ⎛⎫⨯ ⎪⎝⎭+21316-v v ⎛⎫⨯ ⎪⎝⎭≤25,解得398≤v≤394. 因为v>8,所以8<v≤394. 方法二:设经过t h ,甲、乙之间的距离的平方为f(t).由于乙先到达D 地,故16v<2,即v>8. 以点A 为原点,AD 为x 轴建立平面直角坐标系,①当0<vt≤5时,f(t)=24-65vt t⎛⎫⎪⎝⎭+235vt⎛⎫⎪⎝⎭.由于24-65vt t⎛⎫⎪⎝⎭+235vt⎛⎫⎪⎝⎭≤25,所以24-65v⎛⎫⎪⎝⎭+235v⎛⎫⎪⎝⎭≤225t对任意0<t≤5v都成立,所以24-65v⎛⎫⎪⎝⎭+235v⎛⎫⎪⎝⎭≤v2,解得v≥154.②当5≤vt≤13时,f(t)=(vt-1-6t)2+32. 由于(vt-1-6t)2+32≤25,所以-4≤vt-1-6t≤4对任意5v≤t≤13v都成立,即5-63--6vtvt⎧≤⎪⎪⎨⎪≤⎪⎩,对任意5v≤t≤13v都成立,所以5-6133--613vvvv⎧≤⎪⎪⎨⎪≤⎪⎩,,解得398≤v≤394.③当13≤vt≤16,即13v≤t≤16v时,f(t)=(12-6t)2+(16-vt)2.由①及②知8<v≤394,于是0<12-6t≤12-78v≤12-78×439=4,又因为0≤16-vt≤3,所以f(t)=(12-6t)2+(16-vt)2≤42+32=25恒成立.综上所述,8<v≤394.。
2017年江苏1.(2017年江苏)已知集合A={1,2},B={a,a2+3},若A∩B={1},则实数a的值为.1.1 【解析】由题意1∈B,显然a2+3≥3,所以a=1,此时a2+3=4,满足题意,故答案为1.2. (2017年江苏)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.2.10 【解析】|z|=|(1+i)(1+2i)|=|1+i||1+2i|=2×5=10.故答案为10.3. 某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取▲ 件.【答案】18【解析】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18.【考点】分层抽样【名师点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i∶N i=n∶N.4. (2017年江苏)右图是一个算法流程图,若输入x的值为116,则输出y的值是.4. -2 【解析】由题意得y=2+log2116=-2.故答案为-2.5. (2017年江苏)若tan(α+π4)=16则tan α= .5. 75 【解析】tan α= tan[(α-π4)+π4]=tan(α-π4)+tan π41- tan(α-π4) tan π4=16+11-16=75.故答案为75.6. (2017年江苏)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是 .6. 32 【解析】设球半径为r ,则V1V2=πr2×2r 43πr3=32.故答案为32.7. (2017年江苏)记函数f (x )=6+x-x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是 .7. 59 【解析】由6+x-x 2≥0,即x 2-x-6≤0,得-2≤x≤3,根据几何概型的概率计算公式得x ∈D 的概率是3-(-2)5-(-4)=59.8. (2017年江苏)在平面直角坐标系xOy 中,双曲线x 23-y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1,F 2,则四边形F 1PF 2Q 的面积是 .8. 2 3 【解析】右准线方程为x=310=31010,渐近线方程为y=±33x ,设P (31010,3010),则Q (31010,-3010),F 1(-10,0),F 2(10,0),则S=210×3010=2 3.9.(2017·江苏高考)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________.[解析] 设等比数列{a n}的公比为q ,则由S 6≠2S 3,得q ≠1,则⎩⎪⎨⎪⎧S 3=a 1(1-q 3)1-q=74,S 6=a 1(1-q 6)1-q=634,解得⎩⎪⎨⎪⎧q =2,a 1=14, 则a 8=a 1q 7=14×27=32.[答案] 3210. (2017·江苏高考)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.解析:由题意,一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4⎝⎛⎭⎫900x +x ≥8900x·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.答案:3011. (2017年江苏)已知函数f(x)=x 3-2x+e x-1e x ,其中e 是自然对数的底数.若f(a-1)+f(2a 2)≤0,则实数a 的取值范围是___________.12. (2017年江苏)如图,在同一个平面内,向量→OA ,→OB ,→OC 的模分别为1,1,2,→OA 与→OC 的夹角为α,且tan α=7,→OB 与→OC 的夹角为45°.若→OC =m →OA +n →OB (m ,n ∈R),则m n +=___________.12.3 【解析】由tan α=7可得sin α=7210,cos α=210,根据向量的分解, 易得⎩⎨⎧ncos 45°+mcos α=2,nsin 45°-msin α=0,即⎩⎨⎧22n+210m=2,22n-7210m=0,即⎩⎨⎧5n+m=10,5n-7m=0,即得m=54,n=74, 所以m+n=3.13. (2017年江苏)在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上,若→PA ·→PB ≤20,则点P 的横坐标的取值范围是_________. 【答案】 [52,1]【解析】设P (x ,y ,)由→PA ·→PB ≤20易得2x -y +5≤0,由⎩⎨⎧2x -y +5=0,x 2+y 2=50可得A :⎩⎨⎧x =-5,y =-5或B :⎩⎨⎧x =1,y =7.由2x -y +5≤0得P 点在圆左边弧⌒AB 上,结合限制条件-52≤x ≤52,可得点P横坐标的取值范围为 [52,1].14. (2017·江苏高考)设f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,f (x )=⎩⎪⎨⎪⎧x 2,x ∈D ,x ,x ∉D ,其中集合D =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x =n -1n ,n ∈N *,则方程f (x )-lg x =0的解的个数是________.解析:由于f (x )∈[0,1),因此只需考虑1≤x <10的情况,在此范围内,当x ∈Q 且x ∉Z 时,设x =qp ,q ,p ∈N *,p ≥2且p ,q 互质.若lg x ∈Q ,则由lg x ∈(0,1),可设lg x =nm ,m ,n ∈N *,m ≥2且m ,n 互质,因此10n m =qp ,则10n =⎝⎛⎭⎫q p m ,此时左边为整数,右边为非整数,矛盾,因此lg x ∉Q , 故lg x 不可能与每个周期内x ∈D 对应的部分相等, 只需考虑lg x 与每个周期内x ∉D 部分的交点.画出函数草图(如图),图中交点除(1,0)外其他交点横坐标均为无理数,属于每个周期x∉D的部分,且x=1处(lg x)′=1x ln 10=1ln 10<1,则在x=1附近仅有一个交点,因此方程f(x)-lgx=0的解的个数为8.答案:815.(2017年江苏)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【分析】(1)先由平面几何知识证明EF∥AB,再由线面平行判定定理得结论;(2)先由面面垂直性质定理得BC⊥平面ABD,则BC⊥AD,再由AB⊥AD及线面垂直判定定理得AD ⊥平面ABC,即可得AD⊥AC.【证明】(1)在平面ABC内,∵AB⊥AD,EF⊥AD,∴EF∥AB.又∵EF⊄平面ABC,AB⊂平面ABC,∴EF∥平面ABC.(2)∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,BC ⊂平面BCD ,BC ⊥BD , ∴BC ⊥平面ABD .∵AD ⊂平面ABD ,∴BC ⊥AD .又AB ⊥AD ,BC ∩AB =B ,AB ⊂平面ABC ,BC ⊂平面ABC , ∴AD ⊥平面ABC .又∵AC ⊂平面ABC ,∴AD ⊥AC .16. (2017年江苏)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. 【解析】(1)∵a =(cos x ,sin x ),b =(3,-3),a ∥b , ∴-3cos x =3sin x .若cos x =0,则sin x =0,与sin 2x +cos 2x =1矛盾,∴cos x ≠0. 于是tan x =-33.又错误!未找到引用源。
专题1.1 集合【三年高考】1.【2017高考某某1】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =,则实数a 的值为 ▲ . 【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.【考点】集合的运算、元素的互异性【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误. (3)防X 空集.在解决有关,AB A B =∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.2.【2016高考某某1】已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B . 【答案】{}1,2- 【解析】 试题分析:{}{}{}1,2,3,6231,2AB x x =--<<=-.故答案应填:{}1,2-【考点】集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,属于基本题,难度不大.一要注意培养良好的答题习惯,避免出现粗心而出错,二是明确某某高考对于集合题的考查立足于列举法,强调对集合运算有关概念及法则的理解.2.【2015高考某某1】已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A 中元素的个数为_______. 【答案】5【解析】{123}{245}{12345}A B ==,,,,,,,,,,,则集合B A 中元素的个数为5个. 【考点定位】集合运算3.【2014某某1】已知集合{}2,1,3,4A =--,{}1,2,3B =-,则A B ⋂=. 【答案】{1,3}- 【解析】由题意得{1,3}AB =-.4.【2017课标II ,理】设集合{}1,2,4A =,{}240x x x m B =-+=。
2017年高考数学真题试卷(江苏卷)一、填空题1.已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为________.2.已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是________.3.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.4.如图是一个算法流程图:若输入x的值为116,则输出y的值是________.5.若tan(α﹣π4)= 16.则tanα=________.6.如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则V1V2的值是________.7.记函数f (x )= √6+x −x 2 定义域为D .在区间[﹣4,5]上随机取一个数x ,则x ∈D 的概率是________.8.在平面直角坐标系xOy 中,双曲线x 23﹣y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1 , F 2 , 则四边形F 1PF 2Q 的面积是________.9.等比数列{a n }的各项均为实数,其前n 项为S n , 已知S 3= 74 ,S 6= 634,则a 8=________.10.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.11.已知函数f (x )=x 3﹣2x+e x ﹣ 1e x ,其中e 是自然对数的底数.若f (a ﹣1)+f (2a 2)≤0.则实数a 的取值范围是________.12.如图,在同一个平面内,向量 OA⃗⃗⃗⃗⃗ , OB ⃗⃗⃗⃗⃗ , OC ⃗⃗⃗⃗⃗ 的模分别为1,1, √2 , OA ⃗⃗⃗⃗⃗ 与 OC ⃗⃗⃗⃗⃗ 的夹角为α,且tanα=7, OB ⃗⃗⃗⃗⃗ 与 OC ⃗⃗⃗⃗⃗ 的夹角为45°.若 OC ⃗⃗⃗⃗⃗ =m OA ⃗⃗⃗⃗⃗ +n OB ⃗⃗⃗⃗⃗ (m ,n ∈R ),则m+n=________.13.在平面直角坐标系xOy 中,A (﹣12,0),B (0,6),点P 在圆O :x 2+y 2=50上.若 PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ ≤20,则点P 的横坐标的取值范围是________.14.设f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,f (x )= {x 2,x ∈D x ,x ∉D,其中集合D={x|x=n−1n,n ∈N *},则方程f (x )﹣lgx=0的解的个数是________.二、解答题15.如图,在三棱锥A ﹣BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E 、F (E 与A 、D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(Ⅰ)EF ∥平面ABC ; (Ⅱ)AD ⊥AC .16.已知向量a=(cosx,sinx),b⃗=(3,﹣√3),x∈[0,π].(Ⅰ)若a∥b⃗,求x的值;(Ⅱ)记f(x)= a⋅b⃗,求f(x)的最大值和最小值以及对应的x的值.17.如图,在平面直角坐标系xOy中,椭圆E:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,离心率为12,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.18.如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10 √7cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(Ⅰ)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;(Ⅱ)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.19.对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k+1+…+a n ﹣1+a n+1+…a n+k ﹣1+a n+k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(Ⅰ)证明:等差数列{a n }是“P (3)数列”;(Ⅱ)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.20.已知函数f (x )=x 3+ax 2+bx+1(a >0,b ∈R )有极值,且导函数f′(x )的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值)(Ⅰ)求b 关于a 的函数关系式,并写出定义域; (Ⅱ)证明:b 2>3a ;(Ⅲ)若f (x ),f′(x )这两个函数的所有极值之和不小于﹣ 72 ,求a 的取值范围. 21.如图,AB 为半圆O 的直径,直线PC 切半圆O 于点C ,AP ⊥PC ,P 为垂足.求证:(Ⅰ)∠PAC=∠CAB ; (Ⅱ)AC 2 =AP•AB .22.已知矩阵A= [0110] ,B= [1002] .(Ⅰ)求AB ; (Ⅱ)若曲线C 1:x 28+y 22=1在矩阵AB 对应的变换作用下得到另一曲线C 2 , 求C 2的方程.23.在平面直角坐标系xOy 中,已知直线l 的参数方程为 {x =−8+ty =t 2 (t 为参数),曲线C 的参数方程为{x =2s 2y =2√2s (s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.24.已知a ,b ,c ,d 为实数,且a 2+b 2=4,c 2+d 2=16,证明ac+bd≤8.25.如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1= √3,∠BAD=120°.(Ⅰ)求异面直线A1B与AC1所成角的余弦值;(Ⅱ)求二面角B﹣A1D﹣A的正弦值.26.已知一个口袋有m个白球,n个黑球(m,n∈N*,n≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m+n的抽屉内,其中第k次取出的球放入编号为k的抽屉(k=1,2,3,…,m+n).(Ⅰ)试求编号为2的抽屉内放的是黑球的概率p;(Ⅱ)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E(X)<n.(m+n)(n−1)答案解析部分一、<b >填空题1.【答案】1【考点】交集及其运算【解析】【解答】解:∵集合A={1,2},B={a,a2+3}.A∩B={1},∴a=1或a2+3=1,解得a=1.故答案为:1.【分析】利用交集定义直接求解.2.【答案】√10【考点】复数代数形式的乘除运算,复数求模【解析】【解答】解:复数z=(1+i)(1+2i)=1﹣2+3i=﹣1+3i,∴|z|= √(−1)2+32= √10.故答案为:√10.【分析】利用复数的运算法则、模的计算公式即可得出.3.【答案】18【考点】分层抽样方法= 【解析】【解答】解:产品总数为200+400+300+100=1000件,而抽取60辆进行检验,抽样比例为6010006,100=18件,则应从丙种型号的产品中抽取300× 6100故答案为:18,再由此比例计算出应从丙种型号的产品中抽取的数目.【分析】由题意先求出抽样比例即为61004.【答案】-2【考点】选择结构,程序框图,不满足x≥1,【解析】【解答】解:初始值x= 116=2﹣log224=﹣2,所以y=2+log2116故答案为:﹣2.【分析】直接模拟程序即得结论.5.【答案】75【考点】两角和与差的正切公式【解析】【解答】解:∵tan(α﹣π4)=tanα−tanπ41+tanαtanπ4= tanα−1tanα+1= 16∴6tanα﹣6=tanα+1,解得tanα= 75,故答案为:75.【分析】直接根据两角差的正切公式计算即可6.【答案】32【考点】旋转体(圆柱、圆锥、圆台),球的体积和表面积【解析】【解答】解:设球的半径为R,则球的体积为:43πR3,圆柱的体积为:πR2•2R=2πR3.则V1V2=2πR34πR33= 32.故答案为:32.【分析】设出球的半径,求出圆柱的体积以及球的体积即可得到结果.7.【答案】59【考点】一元二次不等式的解法,几何概型【解析】【解答】解:由6+x﹣x2≥0得x2﹣x﹣6≤0,得﹣2≤x≤3,则D=[﹣2,3],则在区间[﹣4,5]上随机取一个数x,则x∈D的概率P= 3−(−2)5−(−4)= 59,故答案为:59【分析】求出函数的定义域,结合几何概型的概率公式进行计算即可.8.【答案】2 √3【考点】双曲线的简单性质【解析】【解答】解:双曲线x23﹣y2=1的右准线:x= 32,双曲线渐近线方程为:y= √33x,所以P(32,√32),Q(32,﹣√32),F1(﹣2,0).F2(2,0).则四边形F1PF2Q的面积是:12×4×√3=2 √3.故答案为:2 √3.【分析】求出双曲线的准线方程和渐近线方程,得到P,Q坐标,求出焦点坐标,然后求解四边形的面积.9.【答案】32【考点】等比数列的通项公式,等比数列的前n项和【解析】【解答】解:设等比数列{a n}的公比为q≠1,∵S3= 74,S6= 634,∴a1(1−q3)1−q= 74,a1(1−q6)1−q= 634,解得a1= 14,q=2.则a8= 14×27=32.故答案为:32.【分析】设等比数列{a n}的公比为q≠1,S3= 74,S6= 634,可得a1(1−q3)1−q= 74,a1(1−q6)1−q= 634,联立解出即可得出.10.【答案】30【考点】基本不等式,基本不等式在最值问题中的应用【解析】【解答】解:由题意可得:一年的总运费与总存储费用之和= 600x ×6+4x≥4×2× √900x⋅x=240(万元).当且仅当x=30时取等号.故答案为:30.【分析】由题意可得:一年的总运费与总存储费用之和= 600x×6+4x,利用基本不等式的性质即可得出.11.【答案】[-1,12]【考点】函数奇偶性的性质,利用导数研究函数的单调性,一元二次不等式的解法,基本不等式【解析】【解答】解:函数f(x)=x3﹣2x+e x﹣1e x的导数为:f′(x)=3x2﹣2+e x+ 1e x ≥﹣2+2 √e x⋅1e x=0,可得f(x)在R上递增;又f(﹣x)+f(x)=(﹣x)3+2x+e﹣x﹣e x+x3﹣2x+e x﹣1e x=0,可得f(x)为奇函数,则f(a﹣1)+f(2a2)≤0,即有f (2a 2)≤﹣f (a ﹣1)=f (1﹣a ), 即有2a 2≤1﹣a , 解得﹣1≤a≤ 12 , 故答案为:[﹣1, 12 ].【分析】求出f (x )的导数,由基本不等式和二次函数的性质,可得f (x )在R 上递增;再由奇偶性的定义,可得f (x )为奇函数,原不等式即为2a 2≤1﹣a ,运用二次不等式的解法即可得到所求范围. 12.【答案】 3【考点】平面向量的基本定理及其意义,两角和与差的余弦公式,两角和与差的正弦公式,同角三角函数间的基本关系【解析】【解答】解:如图所示,建立直角坐标系.A (1,0).由 OA⃗⃗⃗⃗⃗ 与 OC ⃗⃗⃗⃗⃗ 的夹角为α,且tanα=7. ∴cosα= 5√2 ,sinα= 5√2 . ∴C (15,75) .cos (α+45°)= √22 (cosα﹣sinα)= −35 .sin (α+45°)= √22(sinα+cosα)= 45 .∴B (−35,45) .∵ OC⃗⃗⃗⃗⃗ =m OA ⃗⃗⃗⃗⃗ +n OB ⃗⃗⃗⃗⃗ (m ,n ∈R ), ∴ 15 =m ﹣ 35 n , 75 =0+ 45 n , 解得n= 74 ,m= 54 . 则m+n=3. 故答案为:3.【分析】如图所示,建立直角坐标系.A (1,0).由 OA⃗⃗⃗⃗⃗ 与 OC ⃗⃗⃗⃗⃗ 的夹角为α,且tanα=7.可得cosα= 5√2,sinα= 5√2 .C (15,75) .可得cos (α+45°)= −35 .sin (α+45°)= 45 .B (−35,45) .利用 OC ⃗⃗⃗⃗⃗ =m OA⃗⃗⃗⃗⃗ +n OB ⃗⃗⃗⃗⃗ (m ,n ∈R ),即可得出. 13.【答案】 [-5 √2 ,1]【考点】平面向量数量积的运算,直线和圆的方程的应用【解析】【解答】解:根据题意,设P (x 0 , y 0),则有x 02+y 02=50,PA⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =(﹣12﹣x 0 , ﹣y 0)•(﹣x 0 , 6﹣y 0)=(12+x 0)x 0﹣y 0(6﹣y 0)=12x 0+6y+x 02+y 02≤20, 化为:12x 0+6y 0+30≤0,即2x 0+y 0+5≤0,表示直线2x+y+5≤0以及直线下方的区域,联立 {x 02+y 02=502x 0+y 0+5=0 ,解可得x 0=﹣5或x 0=1, 结合图形分析可得:点P 的横坐标x 0的取值范围是[﹣5 √2 ,1], 故答案为:[﹣5 √2 ,1].【分析】根据题意,设P (x 0 , y 0),由数量积的坐标计算公式化简变形可得2x 0+y 0+5≤0,分析可得其表示表示直线2x+y+5≤0以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案. 14.【答案】 8【考点】分段函数的解析式求法及其图象的作法,函数的周期性,对数函数的图象与性质,根的存在性及根的个数判断【解析】【解答】解:∵在区间[0,1)上,f (x )= {x 2,x ∈Dx ,x ∉D ,第一段函数上的点的横纵坐标均为有理数, 又f (x )是定义在R 上且周期为1的函数,∴在区间[1,2)上,f (x )= {(x −1)2,x ∈Dx −1,x ∉D ,此时f (x )的图象与y=lgx 有且只有一个交点;同理:区间[2,3)上,f (x )的图象与y=lgx 有且只有一个交点; 区间[3,4)上,f (x )的图象与y=lgx 有且只有一个交点; 区间[4,5)上,f (x )的图象与y=lgx 有且只有一个交点; 区间[5,6)上,f (x )的图象与y=lgx 有且只有一个交点; 区间[6,7)上,f (x )的图象与y=lgx 有且只有一个交点; 区间[7,8)上,f (x )的图象与y=lgx 有且只有一个交点; 区间[8,9)上,f (x )的图象与y=lgx 有且只有一个交点; 在区间[9,+∞)上,f (x )的图象与y=lgx 无交点; 故f (x )的图象与y=lgx 有8个交点; 即方程f (x )﹣lgx=0的解的个数是8, 故答案为:8【分析】由已知中f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,f (x )= {x 2,x ∈Dx ,x ∉D ,其中集合D={x|x= n−1n,n ∈N *},分析f (x )的图象与y=lgx 图象交点的个数,进而可得答案.二、<b >解答题15.【答案】 证明:(Ⅰ)因为AB ⊥AD ,EF ⊥AD ,且A 、B 、E 、F 四点共面, 所以AB ∥EF ,又因为EF ⊊平面ABC ,AB ⊆平面ABC ,所以由线面平行判定定理可知:EF ∥平面ABC ;(Ⅱ)在线段CD 上取点G ,连结FG 、EG 使得FG ∥BC ,则EG ∥AC , 因为BC ⊥BD ,所以FG ⊥BC , 又因为平面ABD ⊥平面BCD , 所以FG ⊥平面ABD ,所以FG ⊥AD , 又因为AD ⊥EF ,且EF∩FG=F , 所以AD ⊥平面EFG ,所以AD ⊥EG , 故AD ⊥AC .【考点】空间中直线与直线之间的位置关系,直线与平面平行的判定 【解析】【分析】(Ⅰ)利用AB ∥EF 及线面平行判定定理可得结论;(Ⅱ)通过取线段CD 上点G ,连结FG 、EG 使得FG ∥BC ,则EG ∥AC ,利用线面垂直的性质定理可知FG ⊥AD ,结合线面垂直的判定定理可知AD ⊥平面EFG ,从而可得结论.16.【答案】 解:(Ⅰ)∵ a =(cosx ,sinx ), b ⃗ =(3,﹣ √3 ), a ∥ b⃗ ,∴﹣ √3 cosx+3sinx=0, ∴tanx= √3 , ∵x ∈[0,π], ∴x= π3 ,(Ⅱ)f (x )= a ⋅b ⃗ =3cosx ﹣ √3 sinx=2 √3 ( √32cosx ﹣ 12sinx )=2 √3 cos (x+ π6 ), ∵x ∈[0,π], ∴x+ π6 ∈[ π6 ,7π6],∴﹣1≤cos (x+ π6 )≤ √32,当x=0时,f (x )有最大值,最大值3, 当x=5π6时,f (x )有最小值,最大值﹣2 √3【考点】平面向量共线(平行)的坐标表示,平面向量数量积的运算,三角函数中的恒等变换应用,三角函数的最值,同角三角函数间的基本关系【解析】【分析】(Ⅰ)根据向量的平行即可得到tanx= √3 ,问题得以解决,(Ⅱ)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出 17.【答案】 解:(Ⅰ)由题意可知:椭圆的离心率e= ca = 12 ,则a=2c ,①椭圆的准线方程x=±a 2c,由2×a 2c=8,②由①②解得:a=2,c=1, 则b 2=a 2﹣c 2=3, ∴椭圆的标准方程:x 24+y 23=1 ;(Ⅱ)设P (x 0 , y 0),则直线PF 2的斜率 k PF 2 = y 0x 0−1 , 则直线l 2的斜率k 2=﹣x 0−1y 0,直线l 2的方程y=﹣x 0−1y 0(x ﹣1),直线PF 1的斜率 k PF 1 = y 0x 0+1 , 则直线l 2的斜率k 2=﹣x 0+1y 0,直线l 2的方程y=﹣x 0+1y 0(x+1),联立 {y =−x 0−1y 0(x −1)y =−x 0+1y(x +1) ,解得: {x =−x 0y =x 02−1y 0,则Q (﹣x 0 , x 02−1y 0 ),由Q 在椭圆上,则y 0=x 02−1y 0,则y 02=x 02﹣1,则 {x 024+y 023=1y 02=x 02−1 ,解得: {x 02=167y 02=97,则 {x 0=±4√77y 0=±3√77, ∵P 在第一象限,所以P 点的坐标为(4√77,3√77)【考点】直线的点斜式方程,两条直线的交点坐标,椭圆的简单性质,直线与圆锥曲线的关系 【解析】【分析】(Ⅰ)由椭圆的离心率公式求得a=2c ,由椭圆的准线方程x=± 2a 2c,则2×2a 2c=8,即可求得a 和c 的值,则b 2=a 2﹣c 2=3,即可求得椭圆方程;(Ⅱ)设P 点坐标,分别求得直线PF 2的斜率及直线PF 1的斜率,则即可求得l 2及l 1的斜率及方程,联立求得Q 点坐标,由Q 在椭圆方程,求得y 02=x 02﹣1,联立即可求得P 点坐标; 18.【答案】 解:(Ⅰ)设玻璃棒在CC 1上的点为M ,玻璃棒与水面的交点为N ,在平面ACM 中,过N 作NP ∥MC ,交AC 于点P , ∵ABCD ﹣A 1B 1C 1D 1为正四棱柱,∴CC 1⊥平面ABCD , 又∵AC ⊂平面ABCD ,∴CC 1⊥AC ,∴NP ⊥AC , ∴NP=12cm ,且AM 2=AC 2+MC 2 , 解得MC=30cm , ∵NP ∥MC ,∴△ANP ∽△AMC , ∴ ANAM = NPMC ,AN 40=1230 ,得AN=16cm .∴玻璃棒l 没入水中部分的长度为16cm .(Ⅱ)设玻璃棒在GG 1上的点为M ,玻璃棒与水面的交点为N , 在平面E 1EGG 1中,过点N 作NP ⊥EG ,交EG 于点P , 过点E 作EQ ⊥E 1G 1 , 交E 1G 1于点Q ,∵EFGH ﹣E 1F 1G 1H 1为正四棱台,∴EE 1=GG 1 , EG ∥E 1G 1 , EG≠E 1G 1 ,∴EE1G1G为等腰梯形,画出平面E1EGG1的平面图,∵E1G1=62cm,EG=14cm,EQ=32cm,NP=12cm,∴E1Q=24cm,由勾股定理得:E1E=40cm,∴sin∠EE1G1= 45,sin∠EGM=sin∠EE1G1= 45,cos ∠EGM=−35,根据正弦定理得:EMsin∠EGM= EGsin∠EMG,∴sin ∠EMG=725,cos ∠EMG=2425,∴sin∠GEM=sin(∠EGM+∠EMG)=sin∠EGMcos∠EMG+cos∠EGMsin∠EMG= 35,∴EN= NPsin∠GEM =1235=20cm.∴玻璃棒l没入水中部分的长度为20cm.【考点】棱柱、棱锥、棱台的体积,直线与平面垂直的判定,直线与平面垂直的性质,正弦定理【解析】【分析】(Ⅰ)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,过N作NP∥MC,交AC 于点P,推导出CC1⊥平面ABCD,CC1⊥AC,NP⊥AC,求出MC=30cm,推导出△ANP∽△AMC,由此能出玻璃棒l没入水中部分的长度.(Ⅱ)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,过点N作NP⊥EG,交EG于点P,过点E 作EQ⊥E1G1,交E1G1于点Q,推导出EE1G1G为等腰梯形,求出E1Q=24cm,E1E=40cm,由正弦定理求出sin∠GEM= 35,由此能求出玻璃棒l没入水中部分的长度.19.【答案】解:(Ⅰ)证明:设等差数列{a n}首项为a1,公差为d,则a n=a1+(n﹣1)d,则a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3,=(a n﹣3+a n+3)+(a n﹣2+a n+2)+(a n﹣1+a n+1),=2a n+2a n+2a n,=2×3a n,∴等差数列{a n}是“P(3)数列”;(Ⅱ)证明:由数列{a n}是“P(2)数列”则a n﹣2+a n﹣1+a n+1+a n+2=4a n,①数列{a n}是“P(3)数列”a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n,②由①可知:a n﹣3+a n﹣2+a n+a n+1=4a n﹣1,③a n﹣1+a n+a n+2+a n+3=4a n+1,④由②﹣(③+④):﹣2a n=6a n﹣4a n﹣1﹣4a n+1,整理得:2a n=a n﹣1+a n+1,∴数列{a n}是等差数列.【考点】等差数列的通项公式,数列的应用,等差关系的确定,等差数列的性质【解析】【分析】(Ⅰ)由题意可知根据等差数列的性质,a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=(a n﹣3+a n+3)+(a n ﹣2+a n+2)+(a n﹣1+a n+1)═2×3a n,根据“P(k)数列”的定义,可得数列{a n}是“P(3)数列”;(Ⅱ)由“P(k)数列”的定义,则a n﹣2+a n﹣1+a n+1+a n+2=4a n,a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n,变形整理即可求得2a n=a n﹣1+a n+1,即可证明数列{a n}是等差数列.20.【答案】(Ⅰ)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,令g′(x)=0,解得x=﹣a3.由于当x>﹣a3时g′(x)>0,g(x)=f′(x)单调递增;当x<﹣a3时g′(x)<0,g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣a3,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣a3)=0,即﹣a327+ a39﹣ab3+1=0,所以b= 2a29+ 3a(a>0).因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以f′(x)=3x2+2ax+b=0有两个不等的实根,所以4a2﹣12b>0,即a2﹣2a23+ 9a>0,解得a>3,所以b= 2a29+ 3a(a>3).(Ⅱ)证明:由(1)可知h(a)=b2﹣3a= 4a481﹣5a3+ 9a2= 181a2(4a3﹣27)(a3﹣27),由于a>3,所以h(a)>0,即b2>3a;(Ⅲ)解:由(1)可知f′(x)的极小值为f′(﹣a3)=b﹣a23,设x1,x2是y=f(x)的两个极值点,则x1+x2= −2a3,x1x2= b3,所以f(x1)+f(x2)= x13+ x23+a(x12+ x22)+b(x1+x2)+2 =(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2= 4a327﹣2ab3+2,又因为f(x),f′(x)这两个函数的所有极值之和不小于﹣72,所以b﹣a23+ 4a327﹣2ab3+2= 3a﹣a29≥﹣72,因为a>3,所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0,解得a≤6,所以a的取值范围是(3,6].【考点】导数的运算,利用导数研究函数的单调性,利用导数研究函数的极值,导数在最大值、最小值问题中的应用【解析】【分析】(Ⅰ)通过对f(x)=x3+ax2+bx+1求导可知g(x)=f′(x)=3x2+2ax+b,进而再求导可知g′(x)=6x+2a,通过令g′(x)=0进而可知f′(x)的极小值点为x=﹣a3,从而f(﹣a3)=0,整理可知b= 2a29+ 3a(a>0),结合f(x)=x3+ax2+bx+1(a>0,b∈R)有极值可知f′(x)=0有两个不等的实根,进而可知a>3.(Ⅱ)通过(1)构造函数h(a)=b2﹣3a= 4a481﹣5a3+ 9a2= 181a2(4a3﹣27)(a3﹣27),结合a>3可知h(a)>0,从而可得结论;(Ⅲ)通过(1)可知f′(x)的极小值为f′(﹣a3)=b﹣a23,利用韦达定理及完全平方关系可知y=f(x)的两个极值之和为4a327﹣2ab3+2,进而问题转化为解不等式b﹣a23+ 4a327﹣2ab3+2= 3a﹣a29≥﹣72,因式分解即得结论.21.【答案】证明:(Ⅰ)∵直线PC切半圆O于点C,∴∠ACP=∠ABC.∵AB为半圆O的直径,∴∠ACB=90°.∵AP⊥PC,∴∠APC=90°.∴∠PAC=90°﹣∠ACP,∠CAB=90°﹣∠ABC,∴∠PAC=∠CAB.(Ⅱ)由(Ⅰ)可得:△APC∽△ACB,∴ACAB = APAC.∴AC 2 =AP•AB .【考点】相似三角形的判定,相似三角形的性质,弦切角,与圆有关的比例线段【解析】【分析】(Ⅰ)利用弦切角定理可得:∠ACP=∠ABC .利用圆的性质可得∠ACB=90°.再利用三角形内角和定理即可证明.(Ⅱ)由(Ⅰ)可得:△APC ∽△ACB ,即可证明. 22.【答案】 解:(Ⅰ)AB= (0110)(1002) = (0210) ,(Ⅱ)设点P (x ,y )为曲线C 1的任意一点, 点P 在矩阵AB 的变换下得到点P′(x 0 , y 0), 则 (0210)(x y ) = (2yx) ,即x 0=2y ,y 0=x , ∴x=y 0 , y= x 02,∴y 028+x 028=1 ,即x 02+y 02=8,∴曲线C 2的方程为x 2+y 2=8.【考点】矩阵变换的性质,矩阵与矩阵的乘法的意义 【解析】【分析】(Ⅰ)按矩阵乘法规律计算;(Ⅱ)求出变换前后的坐标变换规律,代入曲线C 1的方程化简即可. 23.【答案】 解:直线l 的直角坐标方程为x ﹣2y+8=0,∴P 到直线l 的距离d=2√2s+8|√5=√2s−2)2√5,∴当s= √2 时,d 取得最小值 √5 = 4√55.【考点】二次函数在闭区间上的最值,点到直线的距离公式,参数方程化成普通方程,函数最值的应用 【解析】【分析】求出直线l 的直角坐标方程,代入距离公式化简得出距离d 关于参数s 的函数,从而得出最短距离.24.【答案】 证明:∵a 2+b 2=4,c 2+d 2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.∴ac+bd=8(cosαcosβ+sinαsinβ)=8cos (α﹣β)≤8.当且仅当cos (α﹣β)=1时取等号.因此ac+bd≤8.【考点】两角和与差的余弦公式,三角函数的最值,圆的参数方程,不等式的证明,同角三角函数基本关系的运用【解析】【分析】a 2+b 2=4,c 2+d 2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.代入ac+bd 化简,利用三角函数的单调性即可证明.25.【答案】 解:在平面ABCD 内,过A 作Ax ⊥AD ,∵AA 1⊥平面ABCD ,AD 、Ax ⊂平面ABCD , ∴AA 1⊥Ax ,AA 1⊥AD ,以A 为坐标原点,分别以Ax 、AD 、AA 1所在直线为x 、y 、z 轴建立空间直角坐标系. ∵AB=AD=2,AA 1= √3 ,∠BAD=120°,∴A (0,0,0),B ( √3,−1,0 ),C ( √3 ,1,0), D (0,2,0),A 1(0,0, √3 ),C 1( √3,1,√3 ).A 1B ⃗⃗⃗⃗⃗⃗⃗ =( √3,−1,−√3 ), AC 1⃗⃗⃗⃗⃗⃗⃗ =( √3,1,√3 ), DB ⃗⃗⃗⃗⃗⃗ =(√3,−3,0) , DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(0,−2,√3) .(Ⅰ)∵cos < A 1B ⃗⃗⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ >=A 1B ⃗⃗⃗⃗⃗⃗⃗⃗ ⋅AC 1⃗⃗⃗⃗⃗⃗⃗⃗ |A 1B ⃗⃗⃗⃗⃗⃗⃗⃗ ||AC 1⃗⃗⃗⃗⃗⃗⃗⃗ |= √7×√7=−17 .∴异面直线A 1B 与AC 1所成角的余弦值为 17 ; (Ⅱ)设平面BA 1D 的一个法向量为 n ⃗ =(x ,y ,z) ,由 {n ⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =0n ⃗ ⋅DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =0 ,得 {√3x −3y =0−2y +√3z =0 ,取x= √3 ,得 n ⃗ =(√3,1,2√33) ; 取平面A 1AD 的一个法向量为 m ⃗⃗ =(1,0,0) . ∴cos < m ⃗⃗ ,n ⃗ >= m⃗⃗⃗ ⋅n ⃗ |m⃗⃗⃗ ||n ⃗ |= √31×√3+1+43=34. ∴二面角B ﹣A 1D ﹣A 的正弦值为 34 ,则二面角B ﹣A 1D ﹣A 的正弦值为 √1−(34)2=√74.【考点】异面直线及其所成的角,直线与平面垂直的性质,用空间向量求直线间的夹角、距离,二面角的平面角及求法【解析】【分析】在平面ABCD 内,过A 作Ax ⊥AD ,由AA 1⊥平面ABCD ,可得AA 1⊥Ax ,AA 1⊥AD ,以A 为坐标原点,分别以Ax 、AD 、AA 1所在直线为x 、y 、z 轴建立空间直角坐标系.结合已知求出A ,B ,C ,D ,A 1 , C 1 的坐标,进一步求出 A 1B ⃗⃗⃗⃗⃗⃗⃗ , AC 1⃗⃗⃗⃗⃗⃗⃗ , DB ⃗⃗⃗⃗⃗⃗ , DA 1⃗⃗⃗⃗⃗⃗⃗⃗ 的坐标.(Ⅰ)直接利用两法向量所成角的余弦值可得异面直线A 1B 与AC 1所成角的余弦值;(Ⅱ)求出平面BA 1D 与平面A 1AD 的一个法向量,再由两法向量所成角的余弦值求得二面角B ﹣A 1D ﹣A 的余弦值,进一步得到正弦值.26.【答案】 解:(Ⅰ)设事件A i 表示编号为i 的抽屉里放的是黑球,则p=p (A 2)=P (A 2|A 1)P (A 1)+P (A 2| A 1̅̅̅ )P ( A 1̅̅̅ ) = n−1m+n−1×n m+n ×n m+n−1×mm+n = n 2−n+mn (m+n)(m+n−1) = nm+n .证明:(Ⅱ)∵X 的所有可能取值为 1n ,1n+1 ,…, 1n+m , P (x= 1k )= C k−1n−1C m+nn,k=n ,n+1,n+2,…,n+m ,∴E (X )= ∑n+m k=1( 1k ⋅C k−1n−1C n+mn )= 1C n+mn⋅∑n+m k=n C k−1n−1k= 1C n+mn⋅∑n+m k=nC k−1n−1k< 1C n+mn⋅∑n+m k=nC k−1n−1k−1= 1C n+mn⋅∑n+m k=nC k−2n−2n−1= 1(n−1)C n+mn •( C n−2n−2+C n−1n−2+⋯+C n+m−2n−2 ) = 1(n−1)C m+nn⋅C m+n−1n−1= n(m+n)(n−1) ,∴E (X )< n(m+n)(n−1) .【考点】离散型随机变量的期望与方差,条件概率与独立事件【解析】【分析】(Ⅰ)设事件A i 表示编号为i 的抽屉里放的是黑球,则p=p (A 2)=P (A 2|A 1)P (A 1)+P (A 2| A 1̅̅̅ )P ( A 1̅̅̅ ),由此能求出编号为2的抽屉内放的是黑球的概率.(Ⅱ)X 的所有可能取值为 1n ,1n+1 ,…, 1n+m ,P (x= 1k )= C k−1n−1C m+nn,k=n ,n+1,n+2,…,n+m ,从而E (X )= ∑n+m k=1( 1k ⋅C k−1n−1C n+mn)= 1C n+mn ⋅∑n+m k=nC k−1n−1k,由此能证明E (X )< n(m+n)(n−1) .。
2017年普通高等学校招生全国统一考试(江苏卷)数学(全卷满分160分,考试时间120分钟)参考公式:棱锥的体积13V Sh =,其中S 为底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.(2017年江苏省5分)已知集合{124}A =,,,{246}B =,,,则A B = ▲ .【答案】{}1,2,4,6。
【考点】集合的概念和运算。
【分析】由集合的并集意义得{}1,2,4,6AB =。
2.(2017年江苏省5分)某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 ▲ 名学生. 【答案】15。
【考点】分层抽样。
【解析】分层抽样又称分类抽样或类型抽样。
将总体划分为若干个同质层,再在各层内随机抽样或机械抽样,分层抽样的特点是将科学分组法与抽样法结合在一起,分组减小了各抽样层变异性的影响,抽样保证了所抽取的样本具有足够的代表性。
因此,由350=15334⨯++知应从高二年级抽取15名学生。
3.(2017年江苏省5分)设a b ∈R ,,117ii 12ia b -+=-(i 为虚数单位),则a b +的值为 ▲ . 【答案】8。
【考点】复数的运算和复数的概念。
【分析】由117ii 12ia b -+=-得()()()()117i 12i 117i 1115i 14i ===53i 12i 12i 12i 14a b -+-+++=+--++,所以=5=3a b ,,=8a b + 。
4.(2017年江苏省5分)下图是一个算法流程图,则输出的k 的值是 ▲ .【答案】5。
【考点】程序框图。
【分析】根据流程图所示的顺序,程序的运行过程中变量值变化如下表:是否继续循环k 2k 5k 4-+循环前 0 0 第一圈 是 1 0 第二圈 是 2 -2 第三圈 是 3 -2 第四圈 是 4 0 第五圈 是 5 4 第六圈否输出5∴最终输出结果k=5。
2017三轮考点总动员【江苏版】【方法引领】江苏高考对填空题知识点的考查相对稳定,共有14道,分值70分,填空题的得分多少,决定了整个试卷的成败.我们应该坚持由易到难的做题顺序.要确保填空题前10题正确.解填空题时,要有合理的分析和判断,要求推理、运算的每一个步骤都正确无误,还要求将答案表达的准确、完整.合情推理、优化思路、少算多思将是快速、准确地解答填空题的基本要求.数学填空题,解题的基本方法一般有:①直接求解;②数形结合;③特例法(特殊值、特殊函数、特殊角、特殊数列、特殊图形、特殊位置、特殊点、特殊方程、特殊模型);④整体代换;⑤类比、归纳;⑥构造图形等.求解填空题的基本策略是要在“准”“巧”“快”上下功夫.要想又快又准地答好填空题,除直接推理计算外,还要讲究解题策略,要合理利用“数形结合”和“特例法”等非常规解法. 【举例说法】 一、直接法直接从题设条件出发,利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果.例1 【南京市、盐城市2017届高三年级第二次模拟考试】若函数f (x )=x 2-m cos x +m 2+3m -8有唯一零点,则满足条件的实数m 组成的集合为 .【答案】{2}【练习】 【南京市、盐城市2017届高三年级第一次模拟考试】在ABC ∆中,已知AB =3C π=,则CA CB ⋅uu r uu r的最大值为 ▲ . 【答案】32【解析】1cos 2CA CB ba C ab ⋅==uu r uu r ,由余弦定理得:2232cos 23a b ab ab ab ab π=+-≥-=,所以32CA CB ⋅≤uu r uu r ,当且仅当a b =时取等号. 二、数形结合法对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果.例2 【镇江市2017届高三年级第一次模拟考试】已知函数1221+=+x x y 与函数x x y 1+=的图象共有k(*∈N k )个公共点:),(111y x A , ),(222y x A ,… ,),(k k k y x A ,则=+∑=ki i iy x1)( .【答案】2【练习】【南京市、盐城市2017届高三年级第二次模拟考试】 在平面直角坐标系xOy 中,直线l 1:kx -y +2=0与直线l 2:x +ky -2=0相交于点P ,则当实数k 变化时,点P 到直线x -y -4=0的距离的最大值为 .【答案】【解析】直线l 1过定点(0,2),直线l 2过定点(2,0),且12l l ⊥ 垂足为P ,所以点P 的轨迹为圆,因此点P 到直线x -y -4=0的距离的最大值为d r +== 三、特例法当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以把题中变化的不定量用特殊值(或特殊函数、特殊角、特殊数列、特殊图形、特殊位置、特殊点、特殊方程、特殊模型等)代替,即可以得到正确结果.例3 在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b a +a b=6cos C ,则t a n t a n C A +tan tan CB= .【答案】4【解析】方法一:(特殊值法)根据题意可知,a ,b 是等价关系,我们将题目中的a ,b 互换条件不变.因此,我们选用特殊图形,构造锐角三角形ABC 为等腰三角形,此时cos C=13.不妨设a=b=3(如图),作AD ⊥BC ,垂足为D ,所以CD=1,AD=2tan C=2tan A=tanB=tan tan C A +tan tan CB=4. 方法二:因为b a +a b =6cos C ⇒6ab cos C=a 2+b 2,所以6ab·222-2a b c ab +=a 2+b 2⇒a 2+b 2=232c , 所以t a t a C A +tan tan C B =sin cos C C ·cos sin sin cos sin sin B A B A A B +=sin cos C C ·sin()sin sin A B A B +=1cos C ·2sin sin sin C A B =2221-2a b c ab+·2c ab=224c c =4. 【练习】【南京市、盐城市2017届高三年级第一次模拟考试】在ABC ∆中,,,A B C 所对的边分别为,,a b c ,若22228a b c ++=,则ABC ∆面积的最大值为 ▲ .所以ABCS ∆≤=≤=28,5a b c ==时取等号 四、等价转化法通过“化复杂为简单、化陌生为熟悉”,将问题等价地转化成便于解决的问题,从而得到正确的结果.例4 若不论k 为何实数,直线y=kx+1与曲线x 2+y 2-2ax+a 2-2a-4=0恒有交点,则实数a 的取值范围是 .【分析】直线y=kx+1恒过定点(0,1),转化为点(0,1)恒在圆的内部或边界上即可满足题意. 【答案】[-1,3] 学科*网【练习】 如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别是AB ,CD 的中点,点G 是EF 上的动点,记△A 1B 1G ,△C 1D 1G 的面积分别为S 1,S 2,则S 1+S 2的最小值为 .【答案】2【解析】设EG=x,则FG=2-x,0≤x ≤2,则S 1+S 2=12×212×2在平面直角坐标系中,它表示x 轴上的点P (x ,0)到M (0,2)与N (2,2)两点的距离之和,而点M 关于x 轴的对称点为M'(0,-2),则S 1+S 2≥M'N=五、整体代入法将需要解决的问题看作一个整体,通过研究问题的整体形式、整体结构、整体功能或作整体处理后得到正确的结果.例5 已知三棱锥的三个侧面两两互相垂直,它们的侧面积分别是6,4,3,那么该三棱锥的体积等于 .【分析】由题意联想到长方体,把三棱锥放置于长方体内,整体代入,解决问题.【答案】4【练习】 设实数x ,y 满足3≤xy 2≤8,4≤2x y ≤9,则34x y的最大值是 .【答案】27【解析】34xy =22x y ⎛⎫ ⎪⎝⎭·21xy∈[2,27],故所求最大值为27. 学科*网 六、构造法构造型填空题的求解,需要利用已知条件和结论的特殊性构造出新的数学模型,从而简化推理与计算过程.例6 在四面体ABCD 中,若AC=BD=5,AD=BC=则该四面体的体积V= .【答案】8【解析】构造如图所示的长方体,并且满足AC=BD=5,AD=BC=2现设AP=p ,AQ=q ,AR=r ,则p 2+q 2=AB 2=13,r 2+p 2=AD 2=20,q 2+r 2=AC 2=25. 将以上三式分别相加得p 2+q 2+r 2=29,于是r=4,q=3,p=2.故V=V 长方体-4CAQB V =2×3×4-4×13×4×12×2×3=8. 七、归纳猜想法认真分析,仔细观察、归纳,发现共同特征,大胆猜想,据此预测它的变化规律.例7 设{a n }是首项为1的正项数列,且(n+1)21n a +-n 2n a +a n+1a n =0(n=1,2,3,…),则它的通项公式是a n = .【答案】1n【解析】因为(a n+1+a n )[(n+1)a n+1-na n ]=0,所以(n+1)a n+1-na n =0, 所以a 1=1,a 2=12,a 3=13,…,猜想a n =1n. 【练习】 观察下列算式,猜测由此提供的一般性法则,使用适当的数学式子表示它:1=1 3+5=8 7+9+11=27 13+15+17+19=64 21+23+25+27+29=125设第n 个式子为a 1+a 2+…+a n =b n ,则(a 1,a n )= ,b n = .【答案】(n 2-n+1,n 2+n-1) n3【实战演练】1. 对于△ABC ,有如下四个结论:①若sin2A= sin2B ,则△ABC 为等腰三角形; ②若sin B=cos A ,则△ABC 是直角三角形;③若sin 2A+ sin 2B> sin 2C ,则△ABC 是锐角三角形;④若cos2a=cos 2b =cos 2c,则△ABC 是等边三角形.其中正确的结论个数是 . 【答案】 1【解析】①不对,可能2A+2B=π;②不对,如B=120°,A=30°;③不对,仅能说明C 为锐角;④对,由正弦定理可得sin2A =sin 2B =sin 2C,即A=B=C. 2. 如图,在直三棱柱ABC -A 1B 1C 1中,若AB=1,BC=2,AC=AA 1=3,M 为线段BB 1上的一动点,则当AM+MC1最小时,△AMC 1的面积为 .学科*网3. 若一个钝角三角形的三内角成等差数列,且最大边与最小边之比为m ,则实数m 的取值范围是 . 【答案】(2,+∞) 学科*网【解析】由三角形的三个内角成等差数列,得中间角为60°.设最小角为α,则最大角为120°-α,其中0°<α<30°.由正弦定理得m=°sin(120-)sin αα=2×1tan α+12>212=2.4. 已知ω>0,若函数f (x )=sin π4x ω⎛⎫+⎪⎝⎭在ππ2⎛⎫⎪⎝⎭,上单调递减,则ω的取值范围是 .【答案】1524⎡⎤⎢⎥⎣⎦,5. 已知实数x ,y 满足约束条件-0-50-30x y x y y ≤⎧⎪+≥⎨⎪≤⎩,,,若不等式m (x 2+y 2)≤(x+y )2恒成立,则实数m 的最大值是 .【答案】2513【解析】作出线性约束条件下的可行域如图中阴影部分所示,显然,A (2,3),B (3,3),令目标函数z=y x ,它表示经过点(0,0)及可行域内的点(x ,y )的直线的斜率,从而1≤z ≤32.不等式m (x 2+y 2)≤(x+y )2恒成立,也就是m ≤222()x y x y ++恒成立,令u=222()x y x y++,则u=1+222xyx y +=1+2x y y x+=1+21z z+1≤z ≤32,当1≤z ≤32时,2≤1z +z ≤136,从而1213≤21z z+≤1,所以2513≤1+21z z+≤2,于是m ≤2513,即实数m 的最大值为2513.6. 若a 2-ab+b 2=1,a ,b 是实数,则a+b 的最大值是 . 【答案】2【解析】方法一:因为a 2-ab+b 2=1,即(a+b )2-3ab=1,从而3ab=(a+b )2-1≤23()4a b +,即(a+b )2≤4,所以-2≤a+b ≤2,所以(a+b )max =2.方法二:令u=a+b ,与a 2-ab+b 2=1联立消去b 得3a 2-3ua+u 2-1=0,由于此方程有解,从而有Δ=9u 2-12(u 2-1)≥0,即u 2≤4,所以-2≤u ≤2,所以(a+b )max =2. 学科*网 7. 如图,在△ABC 中,AB=AC=4,∠BAC=90°,D 是BC 的中点,若向量AM =14AB +m A C ,且AM 的终点M 在△ACD 的内部(不含边界),则AM ·BM 的取值范围是.【答案】(-2,6)【解析】以AB ,AC 为x 轴、y 轴建立平面直角坐标系,则A (0,0),B (4,0),C (0,4),D (2,2),从而直线AD 的方程为y=x ,直线BC 的方程为y=-x+4.由AM =14AB +m A C 得M (1,4m ).因为点M 在△ACD 的内部,所以1-40144m m <⎧⎨+<⎩,,解得14<m<34.又因为AM ·BM =(1,4m )·(-3,4m )=16m 2-3,所以AM ·BM ∈(-2,6). 8. 在边长为1的菱形ABCD 中,∠BAD=2π3,若点P 为对角线AC 上一点,则P B ·PD 的最大值为 . 【答案】-129. 在平面直角坐标系xOy 中,已知圆C :x 2+(y-1)2=5,A 为圆C 与x 轴负半轴的交点,过点A 作圆C 的弦AB ,记线段AB 的中点为M.若OA=OM ,则直线AB 的斜率为 . 【答案】210.在平面直角坐标系xOy中,圆C的方程为(x-1)2+(y-1)2=9,直线l:y=kx+3与圆C相交于A,B两点,M为弦AB上一动点,以M为圆心,2为半径的圆与圆C总有公共点,则实数k的取值范围为.【答案】3-4∞⎡⎫+⎪⎢⎣⎭,【解析】由题意得MC≥1对于任意的点M恒成立,由图形的对称性可知,只需点M位于AB的中点时存在则可.由点C(1,1)到直线l的距离得k≥-34.。