可生物降解聚乳酸复合材料
- 格式:ppt
- 大小:1.78 MB
- 文档页数:29
生物可降解材料聚乳酸的制备改性及应用摘要:聚乳酸(PLA)是人工合成的可生物降解的的热塑性脂肪族聚酯,其具有良好的机械性能、热塑性、生物相容性和生物降解性等,广泛应用于可控释材料、生物医用材料、组织工程材料、合成纤维等领域。
本文主要介绍了聚乳酸的合成、改性及其在各个领域的应用。
关键词:聚乳酸;生物降解;合成;应用随着大量高分子材料在各个领域的应用,废弃高分子材料对环境的污染有着日益加剧的趋势。
处理高分子材料的一些老套方法如焚烧、掩埋、熔融共混挤出法、回收利用等都存在缺陷并有一定的局限性,给环境带来严重的负荷,因此开发环境可接受的降解性高分子材料是解决环境污染的重要途径。
而乳酸主要来源于自然界十分丰富的可再生植物资源如玉米淀粉、甜菜糖等的发酵。
聚乳酸(polylactide简称PLA)在自然环境中可被水解或微生物降解为无公害的最终产物CO2和H2O,对其进行堆肥或焚烧处理也不会带来新的环境污染[1]。
此外聚乳酸及其共聚物是一种具有优良的生物相容性的合成高分子材料。
它具有无毒、无刺激性、强度高、可塑性强、易加工成型等特点,因而被认为是最有前途的生物可降解高分子材料[2]。
利用其可降解性,也可用作生物医用材料如组织支架、外科手术缝合线、专业包装、外科固定等。
1 生物降解机理[3,4]生物降解是指高分子材料通过溶剂化作用、简单水解或酶反应,以及其他有机体转化为相对简单的中间产物或小分子的过程。
高分子材料的生物降解过程可分为4个阶段:水合作用、强度损失、物质整体化丧失和质量损失。
微生物首先向体外分泌水解酶,与可生物降解材料表面结合,通过水解切断这些材料表面的高分子链,生成低相对分子质量的化合物(有机酸、糖等),然后,降解的生成物被微生物摄入体内,合成为微生物体物或转化为微生物活动能量,在耗氧条件下转化为CO2,完成生物降解的全过程。
材料的结构是决定其是否可生物降解的根本因素。
合成高分子多为憎水性的,一般不能生物降解,只有能保持一定湿度的材料才有可能生物降解。
可生物降解聚乳酸纳米复合材料的研究进展摘要聚乳酸具有良好的机械性能、热塑性、生物相容性和生物降解性等, 广泛应用于可控释材料、生物医用材料、组织工程材料、合成纤维等领域。
将填充剂以纳米尺度分散在聚乳酸基体中形成聚乳酸纳米复合材料, 能显著提高聚乳酸的机械性、气体阻隔性能、热性能及生物降解性能, 受到国内外学者及工业界的广泛关注。
本文针对近年来在聚乳酸纳米复合材料的制备方法、结构表征与性能测试等方面取得的研究成果进行综述, 并对今后的研究方向进行了展望。
关键词聚乳酸; 可生物降解; 纳米复合材料; 蒙脱石; 聚多糖1 引言近年来, 由于大量聚烯烃等来源于石油产品的聚合物被广泛应用于包装材料领域, 它们被使用后很难回收而直接被弃入环境中, 造成很严重的环境污染问题。
现行处理此类固体污染物的方法通常是填埋或焚烧处理, 但是焚烧处理过程中易产生有害气体二次污染环境, 埋处理又会占用大量有限的土地资源, 传统聚烯烃塑料制品化学、生物稳定性强, 填埋后上百年也几乎不会分解, 造成土壤板结、作物减产、填埋地寿命变短等新的环境压力。
以可生物降解的聚合物替代传统石油基聚合物是解决上述环境污染问题的有效途径,聚乳酸被认为是最具开发应用价值的可生物降解聚合物, 它是由乳酸直接缩合或乳酸二聚体丙交酯开环聚合而形成的高分子, 而乳酸主要来源于自然界十分丰富的可再生植物资源如玉米淀粉、甜菜糖等的发酵, 聚乳酸在自然环境中可被水解或微生物降解为无公害的最终产物CO2 和H2O,对其进行堆肥或焚烧处理也不会带来新的环境污染[ 1]。
根据纳米填充剂的种类不同, 可以将其分为聚乳酸2无机纳米复合材料和聚乳酸2有机纳米复合材料两类, 本文针对近年来国内外在两类聚乳酸纳米复合材料的制备方法、结构表征与性能测试等方面取得的研究成果进行综述。
2 聚乳酸2无机纳米复合材料近年来, 将无机增强剂(包括蒙脱石、合成云母、碳纳米管、羟基磷灰石、二氧化硅和碳酸钙等)以纳米尺度分散在聚乳酸基体中形成聚乳酸2无机纳米复合材料, 能显著提高聚乳酸的机械性、气体阻隔性能、热性能及生物降解性能, 受到国内外学者及工业界的广泛关注[ 2]。
文章编号 :1001-9731(2014 05-05037-04木粉 /聚乳酸可降解复合材料性能研究 *宋丽贤 , 姚妮娜 , 宋英泽 , 丁涌 , 杨松(西南科技大学四川省非金属复合与功能材料重点实验室 -省部共建国家重点实验室培育基地 , 四川绵阳 621010摘要 :用生物可降解材料聚乳酸 (P L A 和桉木粉 (W F 为原料 , 制备木粉 /聚乳酸 (W F /P L A 复合材料 , 为实现木塑复合材料完全生物降解提供新思路。
采用傅立叶变换红外光谱仪 (F T -I R 、扫描电子显微镜 (S E M 、同步热分析仪 (T G /D S C 及电子万能试验机研究了改性前后木粉的红外结构 , W F /P L A 复合材料的微观形貌、热性能和结晶性能以及其力学性能。
结果表明 , 偶联剂 K H -570的烷基结构成功接枝到了木粉表面 ; 改性后的木粉在聚乳酸基体中分散均匀 ; 木粉的添加有利于 W F /P L A 复合材料异相成核结晶和热稳定性的提高 ; 木粉对 P L A 起到增强作用 , 当木粉填量为50%(质量分数时 , W F /P L A 复合材料的拉伸强度最大 , 值为 29. 9M P a , 比纯 P L A 提高了 10M P a , 木粉填量为 30%(质量分数时 , W F /P L A 复合材料的弯曲强度最大 , 值为 43. 2M P a , 比纯 P L A 提高了 7. 3 M P a 。
关键词 :聚乳酸 ; 木粉 ; 复合材料 ; 力学性能 ; 微观形貌中图分类号 : T Q 327. 8文献标识码 :A D O I :10. 3969/j . i s s n . 1001-9731. 2014. 05. 0081引言木塑复合材料因其兼具原木材料和高分子材料的优点而得以飞速发展 , 在航天、汽车内饰、建筑结构材料、物流、园林、室内装潢等方面得到极为广泛的应用 [1-2]。
生物降解聚乳酸共混复合材料的研究进展摘要:聚乳酸(PLA)是具有生物相容性和生物相容性的高分子材料,一般是由乳酸直接缩聚或丙交酯间接开环聚合成的脂肪族聚酯。
但由于本身的疏水性、脆性及韧性差、降解周期难以控制和合成成本高等缺点,限制了PLA的大范围应用及生产,故需要各种无机、有机材料对其共混改性。
合成可完全生物降解的聚乳酸共混复合材料,成为目前的研究热点。
本文介绍了近几年的PLA共混复合材料,并综述了其研究进展及对其进行了未来的展望。
关键词:聚乳酸共混复合可生物降解目前,全世界塑料年产量已经超过2亿t,相应的塑料废弃物也逐年增加,严重污染环境。
减少废塑料污染的方法之一是使用在自然界无论生物体内外都可以自然降解,不会造成环境污染的生物降解材料。
聚乳酸就是一种可生物降解材料。
聚乳酸的熔点为178℃,玻璃化温度为59℃,透明性与PS(聚苯乙烯)、PET(聚对苯二甲酸乙二醇酯)相似,为一种燃烧热小的结晶聚合物,具有较好的结晶性能及与PET相近的拉伸强度与弹性。
由于聚乳酸侧链上含有甲基,因此疏水性强,加水分解速度相对较慢。
聚乳酸双向拉伸后透光率为94%,具有优良的表面光泽性和透明性,很高的刚性,良好的低温热封性、抗油性和耐润滑侵蚀性。
[2]但是,由于PLA树脂的结晶速率慢,制品收缩率大,本身质脆等缺点,应用受到限制。
利用各种无机或有机材料对其进行共混改性,可以扩展PLA的应用范围。
本文介绍的是可生物降解PLA共混体系,主要包括PLA/无机填料体系、PLA/有机填料体系、PLA/生物降解高分子合金等三大类。
1、含无机填料的PLA基复合体系1、1PLA/磷酸盐类无机钙质复合材料[3]与PLA进行共混改性的磷酸盐类无机钙质材料,主要有羟基磷灰石(HA),磷酸三钙( TCP)和聚磷酸钙纤维(CPPF)三种。
HA是人体骨骼的基本成分,具有极好的生物活性。
但是,HA缺乏力学强度,需要与PLA进行复合提高其力学性能[3]。
聚乳酸材料介绍聚乳酸是一种生物可降解的高分子材料,其化学名称为聚乳酸酯(PLA),是由乳酸分子经过聚合反应而成。
它具有优异的物理、化学和机械性能,同时还具有良好的生物相容性和可降解性,被广泛应用于医疗、食品包装、纺织等领域。
聚乳酸材料的物理性质聚乳酸是一种无色透明的高分子材料,在常温下为固体。
它的密度约为1.25 g/cm³,熔点在165-175℃之间。
聚乳酸具有良好的耐热性和耐候性,在高温下也不易变形或变色。
此外,它还具有一定的透光性和柔软性。
聚乳酸材料的化学性质聚乳酸是一种相对稳定的高分子材料,在常规条件下不会发生明显的化学反应。
但在强碱或强酸环境下,聚乳酸会发生水解反应,并最终分解成二氧化碳和水。
这使得它成为一种非常环保的材料,可以有效地减少对环境的污染。
聚乳酸材料的机械性能聚乳酸具有较高的强度和硬度,可以用于制造各种机械零件和工业用品。
它还具有良好的抗拉伸性、弯曲性和冲击性能,在一定程度上可以代替一些传统材料。
此外,聚乳酸还具有较好的耐磨性和耐腐蚀性,可用于制造化学容器、医疗器械等。
聚乳酸材料的生物相容性由于聚乳酸是一种天然产物,因此它具有良好的生物相容性。
在人体内分解时,它会被分解成二氧化碳和水,并被人体代谢掉。
这使得聚乳酸成为一种理想的医疗材料,在制造缝合线、支架、修复组织等方面应用广泛。
聚乳酸材料的可降解性聚乳酸是一种生物可降解的高分子材料,在自然界中会被微生物分解成二氧化碳和水。
这使得它成为一种环保的材料,可以有效地减少对环境的污染。
此外,聚乳酸还可以通过物理方法(如加热)或化学方法(如水解)来分解,从而实现回收再利用。
聚乳酸材料的应用由于聚乳酸具有良好的物理、化学和机械性能,以及优异的生物相容性和可降解性,因此被广泛应用于医疗、食品包装、纺织等领域。
在医疗领域中,聚乳酸被广泛用于制造缝合线、支架、修复组织等医疗器械。
它具有良好的生物相容性和可降解性,在人体内不会产生任何不良反应。
《聚乳酸纳米复合材料的制备与性能研究》篇一一、引言随着环保意识的日益增强和可持续发展理念的深入人心,生物基材料的研究与应用日益受到重视。
聚乳酸(PLA)作为一种可生物降解的聚合物,具有良好的生物相容性和可加工性,被广泛应用于医疗、包装、农业等领域。
然而,为了进一步提高聚乳酸的性能,满足不同领域的应用需求,研究者们开始探索将纳米技术与聚乳酸相结合,制备出聚乳酸纳米复合材料。
本文将重点研究聚乳酸纳米复合材料的制备方法及其性能。
二、聚乳酸纳米复合材料的制备1. 材料选择与准备制备聚乳酸纳米复合材料所需的主要材料包括聚乳酸、纳米填料以及其他添加剂。
纳米填料的选择对复合材料的性能具有重要影响,常用的纳米填料包括纳米碳酸钙、纳米二氧化硅、纳米纤维素等。
2. 制备方法聚乳酸纳米复合材料的制备方法主要包括熔融共混法、原位聚合法、溶液共混法等。
本文采用熔融共混法,将聚乳酸与纳米填料在高温下进行熔融共混,制备出聚乳酸纳米复合材料。
三、聚乳酸纳米复合材料的性能研究1. 力学性能通过拉伸试验、冲击试验等方法,研究聚乳酸纳米复合材料的力学性能。
实验结果表明,加入适量的纳米填料可以提高聚乳酸纳米复合材料的拉伸强度、冲击强度和硬度。
2. 热性能利用差示扫描量热仪(DSC)和热重分析仪(TGA)等设备,研究聚乳酸纳米复合材料的热性能。
实验结果表明,纳米填料的加入可以提高聚乳酸纳米复合材料的热稳定性和玻璃化转变温度。
3. 生物相容性通过细胞培养、生物降解试验等方法,研究聚乳酸纳米复合材料的生物相容性。
实验结果表明,聚乳酸纳米复合材料具有良好的生物相容性,可应用于医疗领域。
四、结论本文采用熔融共混法制备了聚乳酸纳米复合材料,并通过实验研究了其力学性能、热性能和生物相容性。
实验结果表明,加入适量的纳米填料可以提高聚乳酸纳米复合材料的各项性能。
聚乳酸纳米复合材料具有良好的应用前景,可广泛应用于医疗、包装、农业等领域。
未来,研究者们将继续探索更多种类的纳米填料和制备方法,以进一步提高聚乳酸纳米复合材料的性能和应用范围。
聚乳酸生物降解的研究进展一、本文概述随着全球环境问题的日益严峻,特别是塑料废弃物对环境的污染问题,生物降解材料的研究与应用越来越受到人们的关注。
聚乳酸(PLA)作为一种重要的生物降解材料,因其良好的生物相容性、可加工性和环保性,在包装、医疗、农业等领域具有广泛的应用前景。
本文旨在综述聚乳酸生物降解的研究进展,包括其生物降解机制、影响因素、改性方法以及应用现状,以期为聚乳酸的进一步研究和应用提供参考。
本文首先介绍了聚乳酸的基本性质,包括其分子结构、合成方法以及主要性能。
接着,重点分析了聚乳酸的生物降解机制,包括酶解、微生物降解和动物体降解等过程,并探讨了影响聚乳酸生物降解的主要因素,如结晶度、分子量、添加剂等。
在此基础上,本文综述了聚乳酸的改性方法,包括共聚、共混、填充和表面改性等,以提高其生物降解性能和机械性能。
本文总结了聚乳酸在包装、医疗、农业等领域的应用现状,并展望了其未来的发展趋势。
通过本文的综述,旨在为聚乳酸生物降解的研究与应用提供有益的参考,同时为推动生物降解材料的发展贡献一份力量。
二、聚乳酸的生物降解机理聚乳酸(PLA)的生物降解主要依赖于微生物的作用,这些微生物包括细菌和真菌,它们能够分泌特定的酶来降解PLA。
生物降解过程通常包括两个主要步骤:首先是微生物对PLA表面的附着和酶的产生,然后是酶对PLA的催化水解。
在降解过程中,微生物首先通过其细胞壁上的特定受体识别并附着在PLA表面。
随后,微生物开始分泌能够降解PLA的酶,这些酶主要包括聚乳酸解聚酶和酯酶。
聚乳酸解聚酶能够直接作用于PLA的酯键,将其水解为乳酸单体;而酯酶则能够水解PLA链末端的乳酸单体。
水解产生的乳酸单体可以被微生物进一步利用,通过三羧酸循环等途径转化为二氧化碳和水,或者用于微生物自身的生长和代谢。
这个过程中,微生物扮演了关键的角色,它们不仅能够降解PLA,还能够将降解产生的乳酸完全矿化为无害的物质。
值得注意的是,PLA的生物降解速率受到多种因素的影响,包括PLA的分子量、结晶度、形态、微生物的种类和活性、环境温度和湿度等。
《聚乳酸纳米复合材料的制备与性能研究》篇一一、引言随着科技的不断进步,聚乳酸(PLA)作为一种可生物降解的聚合物材料,在环保和可持续性方面得到了广泛的关注。
而纳米复合材料以其优异的物理和化学性能,为聚乳酸的改进提供了新的可能。
本文旨在研究聚乳酸纳米复合材料的制备方法及其性能表现,以期为该领域的研究和应用提供参考。
二、聚乳酸纳米复合材料的制备1. 材料选择制备聚乳酸纳米复合材料,首先需要选择合适的纳米填料。
常见的纳米填料包括纳米二氧化硅、纳米碳酸钙、纳米粘土等。
本文选择纳米二氧化硅作为主要研究对象。
2. 制备方法制备聚乳酸纳米复合材料,主要采用熔融共混法。
该方法通过将聚乳酸与纳米填料在高温下熔融共混,使纳米填料均匀地分散在聚乳酸基体中,从而得到聚乳酸纳米复合材料。
三、性能研究1. 力学性能通过拉伸试验和冲击试验,对聚乳酸纳米复合材料的力学性能进行了研究。
实验结果表明,添加纳米二氧化硅后,聚乳酸纳米复合材料的拉伸强度和冲击强度均有所提高。
这主要是由于纳米填料的加入,增强了聚乳酸基体的分子间作用力,提高了材料的力学性能。
2. 热稳定性通过热重分析(TGA)实验,对聚乳酸纳米复合材料的热稳定性进行了研究。
实验结果表明,添加纳米二氧化硅后,聚乳酸纳米复合材料的热稳定性得到了显著提高。
这主要是因为纳米填料的加入,提高了材料的热传导性能,降低了材料的热分解速率。
3. 生物降解性虽然聚乳酸本身具有良好的生物降解性,但纳米复合材料的生物降解性仍需进行研究。
通过实验发现,聚乳酸纳米复合材料在特定条件下的生物降解性与纯聚乳酸相比,并未发生明显变化。
这表明纳米填料的加入并未对聚乳酸的生物降解性产生负面影响。
四、结论本文研究了聚乳酸纳米复合材料的制备方法和性能表现。
实验结果表明,通过熔融共混法将纳米二氧化硅与聚乳酸共混,可以成功制备出聚乳酸纳米复合材料。
该材料在力学性能和热稳定性方面得到了显著提高,而生物降解性未受影响。