不等式证明——比较法、综合法、分析法
- 格式:ppt
- 大小:451.00 KB
- 文档页数:18
不等式的证明最新考纲 通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.知 识 梳 理1.基本不等式定理1:如果a ,b ∈R,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a ,b >0,那么a +b 2≥a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥a =b =c 时,等号成立.2.不等式的证明方法(1)比较法①作差法(a ,b ∈R):a -b >0⇔a >b ;a -b <0⇔a <b ;a -b =0⇔a =b . ②作商法(a >0,b >0):a b >1⇔a >b ;a b <1⇔a <b ;a b=1⇔a =b .(2)综合法与分析法①综合法:从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.综合法又叫顺推证法或由因导果法.②分析法:从要证的结论出发,逐步寻求使它成立的充分条件,所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证法称为分析法,即“执果索因”的证明方法.[微点提醒]1.作差比较法的实质是把两个数或式子的大小判断问题转化为一个数(或式子)与0的大小关系.2.用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)……”“即要证……”“就要证……”等分析到一个明显成立的结论,再说明所要证明的数学问题成立.3.利用基本不等式证明不等式或求最值时,要注意变形配凑常数.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)比较法最终要判断式子的符号得出结论.( )(2)综合法是从原因推导到结果的思维方法,它是从已知条件出发,经过逐步推理,最后达到待证的结论.( )(3)分析法又叫逆推证法或执果索因法,是从待证结论出发,一步一步地寻求结论成立的必要条件,最后达到题设的已知条件或已被证明的事实.( )(4)使用反证法时,“反设”不能作为推理的条件应用.( )解析(1)作商比较法是商与1的大小比较.(3)分析法是从结论出发,寻找结论成立的充分条件.(4)应用反证法时,“反设”可以作为推理的条件应用.答案(1)×(2)√(3)×(4)×2.(选修4-5P23习题2.1T1改编)已知a≥b>0,M=2a3-b3,N=2ab2-a2b,则M,N的大小关系为________.解析2a3-b3-(2ab2-a2b)=2a(a2-b2)+b(a2-b2)=(a2-b2)(2a+b)=(a-b)(a+b)(2a+b).因为a≥b>0,所以a-b≥0,a+b>0,2a+b>0,从而(a-b)(a+b)(2a+b)≥0,故2a3-b3≥2ab2-a2b.答案M≥N3.(选修4-5P25T3改编)已知a,b,c∈(0,+∞),且a+b+c=1,则1a +1b+1c的最小值为________.解析把a+b+c=1代入1a +1b+1c得a+b+ca+a+b+cb+a+b+cc=3+⎝⎛⎭⎪⎫ba+ab+⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥3+2+2+2=9, 当且仅当a =b =c =13时等号成立. 答案 94.(2019·聊城模拟)下列四个不等式:①log x 10+lg x ≥2(x >1);②|a -b |<|a |+|b |;③⎪⎪⎪⎪⎪⎪b a +a b ≥2(ab ≠0);④|x -1|+|x -2|≥1,其中恒成立的个数是( )A.1B.2C.3D.4解析 log x 10+lg x =1lg x+lg x ≥2(x >1),①正确; ab ≤0时,|a -b |=|a |+|b |,②不正确;因为ab ≠0,b a 与a b同号,所以⎪⎪⎪⎪⎪⎪b a +a b =⎪⎪⎪⎪⎪⎪b a +⎪⎪⎪⎪⎪⎪a b ≥2,③正确; 由|x -1|+|x -2|的几何意义知,|x -1|+|x -2|≥1恒成立,④也正确,综上①③④正确.答案 C5.(2017·全国Ⅱ卷)已知a >0,b >0,且a 3+b 3=2.证明:(1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.证明 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 4+b 4-2a 2b 2)=4+ab (a 2-b 2)2≥4.(2)(a+b)3=a3+3a2b+3ab2+b3=2+3ab(a+b)≤2+3(a+b)24(a+b)=2+3(a+b)34,所以(a+b)3≤8,因此a+b≤2.考点一比较法证明不等式【例1】设a,b是非负实数,求证:a2+b2≥ab(a+b). 证明因为a2+b2-ab(a+b)=(a2-a ab)+(b2-b ab)=a a(a-b)+b b(b-a)=(a-b)(a a-b b)=(a 12-b12)(a32-b32).因为a≥0,b≥0,所以不论a≥b≥0,还是0≤a≤b,都有a 12-b12与a32-b32同号,所以(a 12-b12)(a32-b32)≥0,所以a2+b2≥ab(a+b).规律方法比较法证明不等式的方法与步骤1.作差比较法:作差、变形、判号、下结论.2.作商比较法:作商、变形、判断、下结论.提醒(1)当被证的不等式两端是多项式、分式或对数式时,一般使用作差比较法.(2)当被证的不等式两边含有幂式或指数式或乘积式时,一般使用作商比较法.【训练1】(1)(2019·锦州模拟)设不等式|2x-1|<1的解集为M.①求集合M;②若a,b∈M,试比较ab+1与a+b的大小.(2)若a >b >1,证明:a +1a >b +1b. (1)解 ①由|2x -1|<1得-1<2x -1<1,解得0<x <1.所以M ={x |0<x <1}.②由①和a ,b ∈M 可知0<a <1,0<b <1,所以(ab +1)-(a +b )=(a -1)(b -1)>0.故ab +1>a +b .(2)证明 a +1a -⎝ ⎛⎭⎪⎫b +1b =a -b +b -a ab =(a -b )(ab -1)ab . 由a >b >1得ab >1,a -b >0,所以(a -b )(ab -1)ab>0. 即a +1a -⎝ ⎛⎭⎪⎫b +1b >0, 所以a +1a >b +1b. 考点二 综合法证明不等式【例2】 (1)已知a ,b ,c ∈R,且它们互不相等,求证a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2;(2)已知x ,y ,z 均为正数,求证:x yz +y zx +z xy ≥1x +1y +1z. 证明 (1)∵a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2,a 4+c 4≥2a 2c 2,∴2(a 4+b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2),即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2.又∵a ,b ,c 互不相等,∴a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2.(2)因为x ,y ,z 都为正数,所以x yz +y zx =1z ⎝ ⎛⎭⎪⎫x y +y x ≥2z①,同理可得yxz+zyx≥2x②,z xy +xyz≥2y③,当且仅当x=y=z时,以上三式等号都成立. 将上述三个不等式两边分别相加,并除以2,得xyz +yzx+zxy≥1x+1y+1z.规律方法 1.综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.2.在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.【训练2】已知实数a,b,c满足a>0,b>0,c>0,且abc=1.(1)证明:(1+a)(1+b)(1+c)≥8;(2)证明:a+b+c≤1a+1b+1c.证明(1)1+a≥2a,1+b≥2b,1+c≥2c,相乘得:(1+a)(1+b)(1+c)≥8abc=8.(2)1a +1b+1c=ab+bc+ac,ab+bc≥2ab2c=2b,ab+ac≥2a2bc=2a,bc+ac≥2abc2=2c,相加得a+b+c≤1a +1b+1c.考点三分析法证明不等式【例3】已知函数f(x)=|x-1|.(1)解不等式f (x -1)+f (x +3)≥6;(2)若|a |<1,|b |<1,且a ≠0,求证:f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a . (1)解 由题意,知原不等式等价为|x -2|+|x +2|≥6,令g (x )=|x -2|+|x +2|,则g (x )=⎩⎨⎧-2x ,x ≤-2,4,-2<x <2,2x ,x ≥2.当x ≤-2时,由-2x ≥6,得x ≤-3;当-2<x <2时,4≥6不成立,此时无解;当x ≥2时,由2x ≥6,得x ≥3.综上,不等式的解集是(-∞,-3]∪[3,+∞).(2)证明 要证f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a , 只需证|ab -1|>|b -a |,只需证(ab -1)2>(b -a )2.而(ab -1)2-(b -a )2=a 2b 2-a 2-b 2+1=(a 2-1)(b 2-1)>0,从而原不等式成立. 规律方法 1.当要证的不等式较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.2.分析法证明的思路是“执果索因”,其框图表示为: Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件【训练3】 已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a .证明 由a >b >c 且a +b +c =0,知a >0,c <0. 要证b 2-ac <3a ,只需证b 2-ac <3a 2.∵a +b +c =0,只需证b 2+a (a +b )<3a 2,只需证2a 2-ab -b 2>0,只需证(a -b )(2a +b )>0,只需证(a -b )(a -c )>0.∵a >b >c ,∴a -b >0,a -c >0,∴(a -b )(a -c )>0显然成立,故原不等式成立.[思维升华]证明不等式的方法和技巧:(1)如果已知条件与待证明的结论直接联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出或否定性命题、唯一性命题,则考虑用反证法;如果待证不等式与自然数有关,则考虑用数学归纳法等.(2)在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法或证明,其简化的根本思路是去绝对值号,转化为常见的不等式(组)求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据.[易错防范]在使用基本不等式时,等号成立的条件是一直要注意的事情,特别是连续使用时,要求分析每次使用时等号是否成立.基础巩固题组(建议用时:60分钟)1.设a ,b >0且a +b =1,求证:⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252. 证明 因为(12+12)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b 2=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫1a +1b 2=⎝ ⎛⎭⎪⎫1+1ab 2≥25⎝⎛⎭⎪⎫因为ab ≤14. 所以⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252.2.设a >0,b >0,a +b =1,求证1a +1b +1ab≥8. 证明 ∵a >0,b >0,a +b =1,∴1=a +b ≥2ab , 即ab ≤12,∴1ab≥4, ∴1a +1b +1ab =(a +b )⎝ ⎛⎭⎪⎫1a +1b +1ab ≥2ab ·21ab +1ab ≥4+4=8. 当且仅当a =b =12时等号成立, ∴1a +1b +1ab≥8. 3.(2019·大理一模)已知函数f (x )=|x |+|x -3|.(1)解关于x 的不等式f (x )-5≥x .(2)设m ,n ∈{y |y =f (x )},试比较mn +4与2(m +n )的大小.解 (1)f (x )=|x |+|x -3|=⎩⎨⎧3-2x ,x <0,3,0≤x ≤3,2x -3,x >3.f (x )-5≥x ,即⎩⎨⎧x <0,3-2x ≥x +5或⎩⎨⎧0≤x ≤3,3≥x +5或⎩⎨⎧x >3,2x -3≥x +5,解得x ≤-23或x ∈∅或x ≥8. 所以不等式的解集为⎝⎛⎦⎥⎤-∞,-23∪[8,+∞). (2)由(1)易知f (x )≥3,所以m ≥3,n ≥3.由于2(m +n )-(mn +4)=2m -mn +2n -4=(m -2)(2-n ).且m ≥3,n ≥3,所以m -2>0,2-n <0,即(m -2)(2-n )<0,所以2(m +n )<mn +4.4.(2019·郴州质量检测)已知a ,b ,c 为正数,函数f (x )=|x +1|+|x -5|.(1)求不等式f (x )≤10的解集;(2)若f (x )的最小值为m ,且a +b +c =m ,求证:a 2+b 2+c 2≥12.(1)解 f (x )=|x +1|+|x -5|≤10等价于⎩⎨⎧x ≤-1,-(x +1)-(x -5)≤10或⎩⎨⎧-1<x <5,(x +1)-(x -5)≤10或⎩⎨⎧x ≥5,(x +1)+(x -5)≤10,解得-3≤x ≤-1或-1<x <5或5≤x ≤7,∴不等式f (x )≤10的解集为{x |-3≤x ≤7}.(2)证明 ∵f (x )=|x +1|+|x -5|≥|(x +1)-(x -5)|=6,∴m =6,即a +b +c =6.∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,c 2+b 2≥2cb ,∴2(a 2+b 2+c 2)≥2(ab +ac +bc ),∴3(a 2+b 2+c 2)≥a 2+b 2+c 2+2ab +2ac +2bc =(a +b +c )2,∴a 2+b 2+c 2≥12.当且仅当a =b =c =2时等号成立.5.(2019·沈阳模拟)设a ,b ,c >0,且ab +bc +ca =1.求证:(1)a +b +c ≥3; (2)a bc +b ac +c ab ≥3(a +b +c ). 证明 (1)要证a +b +c ≥3,由于a ,b ,c >0,因此只需证明(a +b +c )2≥3.即证a 2+b 2+c 2+2(ab +bc +ca )≥3.而ab +bc +ca =1,故只需证明a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ),即证a 2+b 2+c 2≥ab +bc +ca .而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c时等号成立)证得.所以原不等式成立. (2)a bc +b ac +c ab =a +b +c abc. 在(1)中已证a +b +c ≥ 3.因此要证原不等式成立,只需证明1abc ≥a +b +c , 即证a bc +b ac +c ab ≤1,即证a bc +b ac +c ab ≤ab +bc +ca .而a bc =ab ·ac ≤ab +ac2, b ac ≤ab +bc2,c ab ≤bc +ac2,所以a bc +b ac +c ab ≤ab +bc +ca⎝ ⎛⎭⎪⎫当且仅当a =b =c =33时等号成立. 所以原不等式成立.6.(2019·百校联盟联考)已知函数f (x )=|2x -3|+|2x -1|的最小值为M .(1)若m ,n ∈[-M ,M ],求证:2|m +n |≤|4+mn |;(2)若a ,b ∈(0,+∞),a +2b =M ,求2a +1b的最小值. (1)证明 ∵f (x )=|2x -3|+|2x -1|≥|2x -3-(2x -1)|=2,∴M =2. 要证明2|m +n |≤|4+mn |,只需证明4(m +n )2≤(4+mn )2,∵4(m +n )2-(4+mn )2=4(m 2+2mn +n 2)-(16+8mn +m 2n 2)=(m 2-4)(4-n 2), ∵m ,n ∈[-2,2],∴m 2,n 2∈[0,4],∴(m 2-4)(4-n 2)≤0,∴4(m +n )2-(4+mn )2≤0,∴4(m +n )2≤(4+mn )2,可得2|m +n |≤|4+mn |.(2)解 由(1)得,a +2b =2,因为a ,b ∈(0,+∞),所以2a +1b =12⎝ ⎛⎭⎪⎫2a +1b (a +2b ) =12⎝ ⎛⎭⎪⎫2+2+a b +4b a ≥12⎝ ⎛⎭⎪⎫4+2a b ·4b a =4, 当且仅当a =1,b =12时,等号成立. 所以2a +1b的最小值为4. 能力提升题组(建议用时:20分钟)7.已知函数f (x )=x +1+|3-x |,x ≥-1.(1)求不等式f (x )≤6的解集;(2)若f (x )的最小值为n ,正数a ,b 满足2nab =a +2b ,求证:2a +b ≥98. (1)解 根据题意,若f (x )≤6,则有⎩⎨⎧x +1+3-x ≤6,-1≤x <3或⎩⎨⎧x +1+(x -3)≤6,x ≥3, 解得-1≤x ≤4,故原不等式的解集为{x |-1≤x ≤4}.(2)证明 函数f (x )=x +1+|3-x |=⎩⎨⎧4,-1≤x <3,2x -2,x ≥3,分析可得f (x )的最小值为4,即n =4, 则正数a ,b 满足8ab =a +2b ,即1b +2a=8, 又a >0,b >0,∴2a +b =18⎝ ⎛⎭⎪⎫1b +2a (2a +b )=18⎝ ⎛⎭⎪⎫2a b +2b a +5≥18⎝ ⎛⎭⎪⎫5+22a b ·2b a =98,当且仅当a =b =38时取等号. 原不等式得证.8.(2015·全国Ⅱ卷)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件.证明 (1)∵a ,b ,c ,d 为正数,且a +b =c +d ,欲证a +b >c +d ,只需证明(a +b )2>(c +d )2, 也就是证明a +b +2ab >c +d +2cd ,只需证明ab >cd ,即证ab >cd .由于ab >cd ,因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .∵a +b =c +d ,所以ab >cd . 由(1)得a +b >c +d .②若a +b >c +d ,则(a +b )2>(c +d )2, ∴a +b +2ab >c +d +2cd .∵a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.。
不等式证明的基本方法不等式证明的基本方法包括:比较法;综合法;分析法;反证法;换元法等.下面,就不等式证明的常用方法作较为全面的归纳.【比较法】——是证明不等式的最基本、最重要的方法,它常用的证明方法有两种:1.作差比较法(1)应用范围:当欲证的不等式两端是多项式、分式或对数式时,常用此法.(2)步骤:“作差----变形----判断符号”.(3)变形——判断符号的主要途径和方法:①配方,将差式变形为若干个非负(或非正)数(式子)和的形式后判断差式的符号.②因式分解,将差式变形为若干个因式积的形式,再根据所有因式积的符号判断差式的符号.③分成几项,然后说明各项均为正(或负),判断差的符号.例1.已知a,b,c∈R+,求证:a3+b3+c3≥3abc.证明:a3+b3+c3-3abc=[(a+b)3+c3]-3a2b-3ab2-3abc=(a+b+c)[(a+b)2-(a+b)c+c2]-3ab(a+b+c)[(a−b)2+(b−c)2+(a−c)2](a+b+c),=(a+b+c)[a2+b2+c2-ab-bc-ca]=12∵ a,b,c∈R+,∴ a+b+c>0.又∵(a−b)2+(b−c)2+(a−c)2≥0,a+b+c>0,[(a−b)2+(b−c)2+(a−c)2](a+b+c) ≥0,即a3+b3+c3-3abc≥0,∴12∴a3+b3+c3≥3abc.(当且仅当a=b=c时取等号).例2.已知a,b∈R+,n∈N,求证:(a+b)(a n+b n)≤2(a n+1+b n+1).证明:∵左边-右边=a n+1+ab n+a n b+b n+1-2a n+1-2b n+1=ab n+a n b-a n+1-b n+1=a(b n-a n)+b(a n-b n) =(b n-a n)(a-b),①当a>b>0时,b n-a n<0,a-b>0,∴①<0;当b>a>0时,b n-a n>0,a-b<0,∴①<0;当a=b>0时,b n-a n=0,a-b=0,∴①=0.综上所述,有(a+b)(a n+b n)-2(a n+1+b n+1)≤0.(当且仅当a=b>0时取等号).即(a+b)(a n+b n)≤2(a n+1+b n+1),当且仅当a=b 是去等号.2.作商比较法(1)应用范围:当要证的式子两端是乘积或幂、指数形式时,常用此法.(2)方法:要证A>B ,常分以下三种情况:若B>0,只需证明 AB >1;若B=0,只需证明A>0;若B<0,只需证明 AB <1.(3)步骤:作商-----变形-----判断商数与1的大小. 例3.已知a ,b ∈R +,求证a a b b ≥a b b a .证明:∵ a ,b ∈R +,∴ a b b a >0,又∵ a a b ba b b a =(ab )a (ba )b =(ab )a−b . 当a>b>0时,ab>1,且a -b>0,故a ab b a b b a >1; 当b > a >0时,0<a b<1,且a -b<0,故a ab b a b b a>1;当a=b>0时,ab1,且a -b=0,故a ab b a b b a=1;综上所述,当a ,b >0是,都有a a b b ≥a b b a .例4 .已知a ,b 均为正实数,且a ≠b.求证:a 3+b 3>a 2b+ab 2. 证明:∵ a ,b 均为正实数,且a ≠b , ∵ a 3+b 3ab 2+a 2b =(a+b )(a 2−ab+b 2)ab(a+b)>2ab−ab ab=1,由于a 2b+ab 2>0,∵ a 3+b 3>a 2b+ab 2.说明:此题的常规证明方式为求差法.请读者自证.想一想①:证明下列不等式. 1.a 2+b 2≥2(a -b -1).2.已知a>2,b>2,求证:a+b<ab.【综合法】用综合法证明不等式,就是利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的演绎推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”推“可知”,逐步推出“结论”. 综合法属演绎推理范畴.例5.(1)若a 、b 、c 是不全相等的正数,求证:lg a+b 2+lg b+c 2+lg a+c2>lga +lgb +lgc .(2)已知a>2,求证log a (a -1)·log a (a+1)<1.证明:(1)∵ a ,b ,c ∈R +,∴a+b 2≥√ab >0,b+c 2≥√bc >0,a+c 2≥√ac >0,又a ,b ,c 为不全相等的正数,故有,a+b 2∙b+c 2∙a+c 2>abc ,∴ lga+b 2∙b+c 2∙a+c 2> lg abc.即lga+b 2+lg b+c 2+lga+c 2>lga +lgb +lgc .(2) ∵ a >2,∴log a (a -1)> 0,log a (a+1)> 0.又∵ log a (a -1)≠log a (a+1),∴ √log a (a −1)∙log a (a +1)<log a (a−1)+log a (a+1)2=12log a (a 2−1)<12log a a 2=1,∴ log a (a -1)·log a (a+1)< 1.例6.已知a ,b ,c∈R +,求证:(1)(ab+a+b+1)(ab+ac+bc+c 2)≥16abc . (2).3≥-++-++-+ccb a b bc a a a c b 证明:(1) ∵ ab+a+b+1=(a+1)(b+1),ab+ac+bc+c 2=(a+c)(b+c).又∵a ,b ,c∈R +, ∴ ,021>≥+a a ,021>≥+b b ,02>≥+ac c a ,02>≥+bc c b于是有,,04)1)(1(>≥++ab b a ,04))((2>≥++abc c b c a ∴ (a+1)(b+1)(a+c)(b+c)≥16abc . (当且仅当a=b=c=1时取等号). (2)法1.(利用二元均值不等式a+b ab 2≥).∵ .332223)()()(=-++≥-+++++=-++-++-+c b b c c a a c b a a b c c b a b b c a a a c b∴ .3≥-++-++-+cc b a bb c a aa cb (当且仅当a=b=c 时取等号).法2. (利用三元均值不等式a+b+c 33abc ≥).∵ .33333)()(=-+≥-+++++=-++-++-+ba cb ac ca bc ab cc b a bb c a aa c b∴ .3≥-++-++-+c c b a b b c a a a c b (当且仅当a=b=c 时取等号). 法3. (利用六元均值不等式a+b+c+d+e+f 66abcdef ≥).∵ .3363)(=-≥-+++++=-++-++-+cb ca bc ba ac ab cc b a bb c a aa c b∴ .3≥-++-++-+cc b a bb c a aa cb (当且仅当a=b=c 时取等号).例7.已知a 、b 、c ∈R +,求证:.23≥+++++a c b c b a b a c 有人给出了如下的证明:∵ a 、b 、c ∈R +,∴ .232223))()((333≥≥+++≥+++++ac bc ab abc a c c b b a abc a c b c b a b a c ∴.23≥+++++a c b c b a b a c (当且仅当a=b=c 时取等号). 你认为正确吗? 剖析:在上述的证明过程中,第二个“≥”,应为“≤”. 在不等式的基本性质中,只有同向的不等式才有传递性,此题的推证在第二个“≥”处,是传递不了的.正确的证明如下..233293))()((13))()((3213)]111)](()()[(213)111)(()1()1()1(33=-=-+++⋅+++⋅≥-++++++++++=-+++++++=-++++-++++-+++=+++++a c c b b a c a c b b a c a c b b a c a c b b a c a c b b a c b a ca cb ac b c b a b a c b a a c b c b a b a c∴.23≥+++++a c b c b a b a c (当且仅当a=b=c 时取等号). 说明:(1)用均值定理证明不等式时,要为运用定理对式子作适当变形,可把式子分成若干分,对每部分运用均值定理后,再把它们相加或相乘. (2)在用不等式的基本性质“传递性”时,要注意只有“不等号同向”时,才能进行传递.在用同向不等式相乘时,一定要强调各个不等式均为正,否则会出错. 例8.已知a ,b ∈R +,且a+b=1,求证:ax 2+by 2≥(ax+by)2. 证明:法1.(求差法).∵ a ,b ∈R +,且a+b=1,∴ ax 2+by 2-(ax+by)2=a(1-a)x 2+b(1-b)y 2-2abxy=ab(x 2+y 2-2xy)=ab(x -y)2≥0, 即ax 2+by 2≥(ax+by)2. (当且仅当x=y 时取等号). 法2.(利用二元均值不等式).∵ a ,b ∈R +,且a+b=1,∴ ax 2+by 2=(a+b)( ax 2+by 2)=(ax)2+(by)2+ab(x 2+y 2) ≥(ax)2+(by)2+2abxy=(ax+by)2. 即ax 2+by 2≥(ax+by)2. 法3.(利用柯西不等式).∵ [22)()(b a +][22)()(y b x a +]≥(ax+by)2. 又∵a ,b ∈R +,且a+b=1,∴ ax 2+by 2≥(ax+by)2.想一想②:证明下列不等式1.求证:a 2+b 2+c 2+3≥2(a+b+c).2.设a ,b ,c 是不全等的正实数,求证:cab b ac a bc ++>a+b+c.3.已知0<x <1,求证:xb x a -+122≥2)(b a +.【分析法】分析法是指从需证的不等式出发,寻求使这个不等式成立的充分条件.其特点和思路是“执果索因”,即从“未知”求“需知”,逐步靠拢“已知”.分析法一般用于综合法难以证明的不等式.通常表现为不等式的形式复杂,难以直接由一端过渡到另一端的问题. 例9.若0<a<c ,b<c. 求证:<<--a ab c c 2ab c c -+2.证明:要证<<--a ab c c 2ab c c -+2,只要证,<-<--c a ab c 2ab c -2, 即只要证 |a -c|<ab c -2,只要证 (a -c)2<c 2-ab ,即a 2-2ac<-ab ,∵ a>0,∴ 只要证a+b<2c. 由题设条件,显然有a+b<2c 成立.将每一步倒推回去, ∴ 原不等式成立.说明:分析法的书写方式是比较繁琐的.因此我们在实际做题时,往往用分析法“探路”,用综合法来书写表述.在探路时,也可以用“⇐”来表述. 例10.设 x>0,y>0,x≠y ,求证:21223133)()(y x y x +<+证明:∵ x>0,y>0,x≠y ,,)()(.)()(32233212231332y x y x y x y x +<+⇐+<+.0)()(2),(32222222233>-++⇐+<⇐y x y x y x y x y x ∴ 原不等式成立.想一想③:设0>>b a ,求证:.8)(28)(22bb a ab b a a b a -<-+<-【反证法】即要证明不等式A>B ,先假设A ≤B ,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法.反证法的逻辑原理是命题“P ”与它的否定“非P ”的真假相反,所以要证一个命题为真,只要证它的否定为假即可.推出矛盾的四种途径:①推理的结果与基本定义、公理、定理等相矛盾——与基本结论相矛盾. ②推理的结果与已知条件相矛盾——与已知相矛盾. ③推出两个相互矛盾的结论——自相矛盾. ④推理的结果与假设相矛盾——与假设相矛盾.例11.对实数a ,b ,c ,A ,B ,C ,有20aC bB cA -+=,且20ac b ->.求证:20AC B -≤. 证明:假设AC -B 2>0, 则20AC B >≥,由已知有 20ac b >≥,相乘得 22aAcC b B >,∵ 2aC cA bB +=,∴ 222()44aC cA b B aAcC +=<, 整理得 2()0aC cA -< , 这与“任何实数的平方非负”相矛盾(与基本结论相矛盾). ∴ 假设不成立,故20AC B -≤.例12.已知a>0,b>0,且a+b>2. 求证:1+b a与1+ab中,至少有一个小于2.证明:假设1+b a与1+a b都不小于2,则1+b a≥2且1+a b≥2,∵ a>0,b>0,∴ 1+b≥2a ,1+a≥2b , 两式相加可得1+b+1+a≥2(a+b),即a+b≤2,这与已知a+b>2矛盾( 与已知相矛盾). 故假设不成立, ∴1+b a与1+a b中,至少有一个小于2.例13.设0 < a , b , c < 1,求证:(1 - a )b ,(1 - b )c ,(1 - c )a 不可能同时大于14. 证明:假设(1 - a )b >14>0, (1 - b )c >14>0, (1 - c )a >14>0, 则三式相乘:(1 - a )b •(1 - b )c •(1 - c )a >164. ①又∵0 < a , b , c < 1 , ∴ 0<(1-a)a ≤[(1−a )+a 2]2=14, 同理:(1-b)b ≤14,(1-c)c ≤14 . 以上三式相乘: (1 - a )a •(1 - b )b •(1 - c )c ≤164. 与①矛盾(自相矛盾).∴ 原命题成立例14.已知数列{a n }是首项为2,公比为12的等比数列,S n 是它的前n 项和.(1)用S n -1表示S n ;(2)是否存在自然数c 和k ,使得 12k k S c S c+->-成立.解:(1)由求和公式可得242nn S -=-,从而可得S n =.2211+-n S (2)假设存在符合条件的自然数c 和k ,则11242242kk k k S c c S c c-+----=>---,从而114320422kkc c ----⨯<--⨯. ① 令 4t c =-, 则由①式得 (t -3×21-k )(t -2×21-k )<0,即112232k kt --⨯<<⨯,∴ 1223k t -<⨯<,② ∵ c ,k 为自然数,知t 为整数,这样一来 ②式不成立. 故这样的自然数c 和k 不存在. 想一想④:已知a + b + c > 0,ab + bc + ca > 0,abc > 0,求证:a ,b , c > 0.【换元法】在不等式的证明过程中,按照所证不等式的结构特点,将不等式中的变量作适当的代换,使其结构和关系变得更清晰、明朗,从而使证明过程变得简洁、明快.常用的换元有如下几种形式.(1)三角代换:多用于条件不等式的证明. 当所给条件中变量t 的取值在[-a ,a]时,可令t=acos θ,θ∈[0,π]或t=asin θ,θ∈[−π2,π2];当变量t 为任意实数时,可令t=atan θ, θ∈[−π2,π2].例15.若x 2+y 2≤1,求证:|x 2+2xy -y 2|≤√2.证明:由x 2+y 2≤1,设x=rsin α,y=rcos α,|r|≤1,则|x 2+2xy -y 2|=|r 2cos 2α+2r 2cosαsinα−r 2sin 2α|=r 2|cos2α+sin2α|=√2r 2|sin(α+π4)| ≤√2r 2≤√2.(2)代数代换:若条件中有a >0,b >0,且a +b =1时,可令a=12+t ,b =12−t ,t ∈(−12,12); 或a>0,b>0,c>0.且a+b+c=1时,可令a=13+t 1,b =13+t 2,c =13+3,t 1+t 2+t 3=0. 也可将其中的一部分作代换.例16.已知a >0,b >0,且a +b =1 求证:(a +1a )(b +1b )≥254.证法1:(代数代换) 设a =12+t ,b =12-t .∵ a +b =1,a>0,b>0,∴ |t |<12.∵ (a +1a )(b +1b )=2222222241)45(211)21(211)21(11t t t t t t t bb a a --+==-+-⋅+++=+⋅+ =42541162541231625242=≥-++t tt .(当且仅当t=0,即a=b=12时取等号). 即(a +1a )(b +1b )≥254.证法2. (三角换元法)∵ a>0,b>0,a +b =1,故令a =sin 2α,b =cos 2α,α∈(0,). ∴ αααααααααα2244442222cos sin 1cos sin cos sin )cos 1)(cos sin 1(sin )1)(1(+++=++=++b b a aαααααααααα2sin 416)2sin 4(2sin 4322sin 82sin 2sin 4)2cos sin 2cos (sin 1622222422244+-=+-=+-=. 又∵ 12sin 2≤α,∴ 2516)2sin 4(,3142sin 4222≥+-⇒=-≥-αα①.且 .412sin 412≥α②. 由①②可得,.4252sin 416)2sin 4(222≥+-αα 即 (a +1a)(b +1b)≥254..例17.证明:若a > 0,则√a 2+1a 2 -√2≥a +1a -2.证明:设x= a +1a ,y=√a 2+1a 2,a > 0,x ≥2,y ≥√2.则只需证明y −√2≥x −2,2π∵ x 2-y 2=( a +1a )2-(√a 2+1a 2)2=2,x+y=( a +1a )+ √a 2+1a 2≥2+√2, (当a = 1时取“=” ).∴ x -y=x 2−y 2x+y≤2+√2=2−√2. 即 y −√2≥x −2,∴ 原不等式成立.习题3.11.求证:a 2+b 2+1≥a+b -ab .2.已知a>b>0,求证:a a b b>(ab)a+b 2.3.已知0 < x < 1, 0 < a < 1,试比较|log a (1-x)|与|log a (1+x)|的大小.4.已知a>b>c ,求证1140a b b c c a++≥---.5.已知224x y +=,求证:|4y +≤.6.已知a ,b ,c 为正实数,且a 2+b 2=c 2.求证:a n +b n <c n (n 为大于2的整数).7.设a 、b 、c 是三角形的边长,求证cb a cb ac b a c b a -++-++-+≥3.8.已知a>1,b>1,c>1. 求证:22212111a b c b c a ++≥---.参考答案想一想①:1.提示:求差后配方.2. 提示:求差或求商.1212111=+<+=+a b ab b a . 想一想②:提示:1.求差法,也可以用二元均值不等式. 2.用二元均值不等式. 3.仿例8.只有x+(1-x)=1.想一想③:要证原不等式成立,只需证:.8)(2)(8)(222bb a b a a b a -<-<-∵b a ≠只需证.4)(14)(22bb a a b a +<<+只需证bb a a b a 212+<<+,只需证b a a b <<1∵0>>b a 上式成立 ∴原不等式在0>>b a 时成立.想一想④:假设a < 0,∵ abc > 0, ∴ bc < 0. 又由a + b + c > 0,则b + c = -a > 0,∴ ab + bc + ca = a (b + c ) + bc < 0, 与题设矛盾. 又若a = 0,则与abc > 0矛盾, ∴ 必有a > 0. 同理可证:b > 0, c > 0.习题3.11.求差配方.2.求商分类讨论.3.作商或作差比较大小均可4.1140a b b c c a++≥---,.4)11)](()[(,411≥-+--+-⇐-≥-+-⇐c b b a c b b a c a c b b a5.三角代换.6.构造以a 、b 、c 为三边,且以c 为斜边的直角三角形. 令)900(sin cos 00<<==θθθc b c a ,.)2(cos cos 0sin sin 01cos 01sin 022><<<<<<<<n n n θθθθθθ,∴,,∵,nnnnnnnc c c b a =+<+=+)cos (sin )cos (sin 22θθθθ∴. 7.由不等式的对称性,不妨设a ≥b ≥c ,则a c b -+≤b a c -+≤c b a -+, 且b a c --2≤0, c b a --2≥0.∴1113--++--++--+=--++-++-+c b a cb ac b a c b a c b a c b a c b a c b ac b a b a c b a c c a b a c b c b a -+--+-+--+-+--=222≥0222=-+--+-+--+-+--ba cb ac b a c a c b b a c c b a , ∴cb a cb ac b a c b a -++-++-+≥3.8.由1,1,1a b c >>>,可设1,1,1,0,0,0a x b y c z x y z >>>-=-=-=.于是xz z y y x x z z y y x a c c b b a 222222222)2()2()2()1()1()1(111++≥+++++=-+-+- =1234)(43=⋅⋅⋅≥++xzz y y x x z z y y x .。
黔南民族师范学院(贵定分院)毕业论文题目:不等式的证明姓名:丁成义班级:12级数学(2)班学号:2012052206专业:数学教育指导教师:张大书日期:2015年2月26日2不等式的证明方法不等式的证明方是中学数学的难点和重点,证明不等式的途径是利用不等式的性质进行代数变形,经常用到的证明不等式的主要方法有基本法 如:比较法,综合法,分析法。
其他方法:如反证法,放缩法,数学归纳法,涣元法,构造法和判别式法等。
1.证明不等式的基本方法1.1比较法比较法是证明不等式的方法之一,比较法除了比差法之外,还有比商法,它们的解题依据及步具步骤如下:比差法。
主要依据是实数的运算性质与大小顺序关系。
即 ,0,0,0a b a b a b a b a b a b ->⇔>-<⇔<-=⇔=基本解题步骤是:作差——变形——判断符号。
(1)作商比较法。
当欲证的不等式两端是乘积形式幂指数式可采用作商比较法。
当0b > 欲证a b >只需证1ab > 欲证a b <只需证1ab< 基本解题步骤是:作商——变形——判断。
(与1的大小)例1.求证: 222(2)5a b a b +≥--322224254250a b a b a b a b +≥--=>+-++≥22(44)(21)0a a b b -++++≥ 2,1a b ==-时等号成立。
所以222(2)5a b a b +≥--成立。
例2.已知,a b R +∈求证a b b a a b a b ≥证: ,a b R +∈又()a b a b b a a b aa b b -=∴()1a b b a a b a a b a b b-≥⇔≥ (1)当a b >时,1a b >,0a b ->所以()1a b ab -> (2)当a b <时01,a a b o b <<-<所以()1a b ab-> (3)当a b =时不等式取等号。
证明不等式的常用技巧证明方法有比较法、综合法、分析法、放缩法、数学归纳法、反证法、换元法、构造法等。
作差比较法:根据a-b>0↔a>b,欲证a>b,只需证a-b>0。
换元法:换元的目的就是减少不等式中变量的个数,以使问题化难为易,化繁为简。
1不等式证明方法比较法①作差比较法:根据a-b>0↔a>b,欲证a>b,只需证a-b>0;②作商比较法:根据a/b=1,当b>0时,得a>b;当b>0时,欲证a>b,只需证a/b>1;当b<0 时,得 a<b。
综合法由因导果。
证明不等式时,从已知的不等式及题设条件出发,运用不等式性质及适当变形推导出要证明的不等式. 合法又叫顺推证法或因导果法。
分析法执果索因。
证明不等式时,从待证命题出发,寻找使其成立的充分条件. 由于”分析法“证题书写不是太方便,所以有时我们可以利用分析法寻找证题的途径,然后用”综合法“进行表述。
放缩法将不等式一侧适当的放大或缩小以达到证题目的。
数学归纳法证明与自然数n有关的不等式时,可用数学归纳法证之。
用数学归纳法证明不等式,要注意两步一结论。
在证明第二步时,一般多用到比较法、放缩法和分析法。
反证法证明不等式时,首先假设要证明的命题的反面成立,把它作为条件和其他条件结合在一起,利用已知定义、定理、公理等基本原理逐步推证出一个与命题的条件或已证明的定理或公认的简单事实相矛盾的结论,以此说明原假设的结论不成立,从而肯定原命题的结论成立的方法称为反证法。
换元法换元的目的就是减少不等式中变量的个数,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。
构造法通过构造函数、图形、方程、数列、向量等来证明不等式。
2基本不等式基本不等式是主要应用于求某些函数的最值及证明的不等式。
其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。
在使用基本不等式时,要牢记“一正”“二定”“三相等”的七字真言。
证明不等式的几种常用方法证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用.一、反证法如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理.反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的.用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A >B ,先假设A ≤B ,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A ≤B 不成立,而肯定A >B 成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效.例1 设a 、b 、c 、d 均为正数,求证:下列三个不等式:①a +b <c +d ;②(a +b)(c +d)<ab +cd ;③(a +b)cd <ab(c +d)中至少有一个不正确.反证法:假设不等式①、②、③都成立,因为a 、b 、c 、d 都是正数,所以不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④由不等式③得(a +b)cd <ab(c +d)≤(2b a )2·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d),综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31ab . 由不等式④,得(a +b)2<ab +cd <34ab ,即a 2+b 2<-32ab ,显然矛盾.∴不等式①、②、③中至少有一个不正确.例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0,c>0.证明:反证法由abc >0知a ≠0,假设a <0,则bc <0,又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0,从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾.∴假设不成立,从而a >0,同理可证b >0,c >0.例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2.证明:反证法假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8,∵p 3+q 3= 2,∴pq (p +q)>2.故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2),又p >0,q >0 p +q >0,∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.故假设p +q >2不成立,∴p +q ≤2.例4 已知)(x f = x 2+ax +b ,其中a 、b 是与x 无关的常数,求证:|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 反证法一:假设|)1(f |<21,|)2(f |<21,|)3(f |<21, 由于)1(f = 1+a +b ,)2(f = 4+2a +b ,)3(f = 9+3a +b ,∴)1(f +)3(f -)2(f =2,但是,2 = |)1(f +)3(f -)2(f |≤|)1(f |+|)3(f |+2|)2(f |<21+21+2×21= 2, 即2<2,矛盾,∴假设不成立,∴|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 反证法二:假设|)1(f |<21,|)2(f |<21,|)3(f |<21,即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<.21|)3(|,21|)2(|,21|)1(|f f f ⇒ ⎪⎪⎪⎩⎪⎪⎪⎨⎧<++<-<++<-<++<-③b a ②b a ①b a .219321,214221,21121 ①+③得:-1<4a +2b +10<1,即-21<2a +b +5<21, ∴-23<2a +b +4<-21,④ 显然②与④矛盾,因此,假设是不成立的, 故|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 例4 设a ,b ,c 均为小于1的正数,求证:(1-a)b ,(1-b)c ,(1-c)a 不能同时大于41. 证明:反证法假设(1-a)b ,(1-b)c ,(1-c)a 同时大于41,即(1-a)b >41,(1-b)c >41,(1-c)a >41, 则由41<(1-a)b ≤(21b a +-)2⇒21b a +->21, 同理:21c b +->21,21a c +->21, 三个同向不等式两边分别相加,得23>23,矛盾,所以假设不成立, ∴原结论成立.例6 若0<a <2,0<b <2,0<c <2,求证:(2-a)b ,(2-b)c ,(2-c)a不能同时大于1.证明:反证法假设⎪⎩⎪⎨⎧>->->-.1)2(,1)2(,1)2(a c c b b a 那么2)2(b a +-≥b a )2(->1,① 同理2)2(c b +->1,② 2)2(a c +->1,③ ①+②+③,得3>3矛盾,即假设不成立,故(2-a)b ,(2-b)c ,(2-c)a 不能同时大于1.二、三角换元法对于条件不等式的证明问题,当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑用三角代换,将复杂的代数问题转化为三角问题.若变量字母x 的取值围与sin θ或cos θ的变化围相同,故可采用三角换元,把所要证的不等式转换为求三角函数的值域而获证.一般地,题设中有形如x 2+y 2≤r 2,22a x +22b y = 1或22a x -22b y = 1的条件可以分别引入三角代换⎩⎨⎧==θθsin cos r y r x (| r |≤1),⎩⎨⎧==θθsin cos b y a x 或⎩⎨⎧==θθtan sec b y a x ,其中θ的取值围取决于x ,y 的取值围,凡不能用重要不等式证明的问题时,一般可以优先考虑换元(代数换元或三角换元),然后利用函数的单调性最终把问题解决.在三角换元中,由于已知条件的限制作用,根据问题需要,可能对引入的角度有一定的限制,应特别引起注意,否则可能会出现错误的结果.例2 已知1≤x 2+y 2≤2,求证:21≤x 2-xy +y 2≤3. 证明:∵1≤x 2+y 2≤2,∴可设x = rcos θ,y = rsin θ,其中1≤r 2≤2,0≤θ<π2.∴x 2-xy +y 2= r 2-r 2sin θ2= r 2(1-21sin θ2), ∵21≤1-21sin θ2≤23,∴21r 2≤r 2(1-21sin θ2)≤23r 2,而21r 2≥21,23r 2≤3, ∴ 21≤x 2-xy +y 2≤3. 例2 已知x 2-2xy +y 2≤2,求证:| x +y |≤10.证明:∵x 2-2xy +y 2= (x -y)2+y 2,∴可设x -y = rcos θ,y = rsin θ,其中0≤r ≤2,0≤θ<π2.∴| x +y | =| x -y +2y | = | rcos θ+2rsin θ| = r|5sin(θ+ractan21)|≤r 5≤10.例3 已知-1≤x ≤1,n ≥2且n ∈N ,求证:(1-x)n +(1+x)n ≤2n . 证明:∵-1≤x ≤1,设x = cos θ2 (0≤θ≤2π), 则1-x =1-cos θ2= 1-(1-2sin 2θ) = 2sin 2θ,1+x =1+cos θ2= 2cos 2θ,∴(1-x)n +(1+x)n = 2n sin n 2θ+2n cos n 2θ≤2n ( sin 2θ+cos 2θ) =2n ,故不等式(1-x)n +(1+x)n ≤2n 成立.例4 求证:-1≤21x --x ≤2.证明:∵1-x 2≥0,∴-1≤x ≤1,故可设x = cos θ,其中0≤θ≤π. 则21x --x =θ2cos 1--cos θ= sin θ-cos θ=2sin(θ-4π), ∵-4π≤θ-4π≤43π, ∴-1≤2sin(θ-4π)≤2,即-1≤21x --x ≤2. 三、增量代换法 在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如a >b >c)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简.例7 已知a ,b ∈R ,且a +b = 1,求证:(a +2)2+(b +2)2≥225. 证明:∵a ,b ∈R ,且a +b = 1,∴设a =21+t ,b=21-t , (t ∈R) 则(a +2)2+(b +2)2= (21+t +2)2+(21-t +2)2= (t +25)2+(t -25)2= 2t 2+225≥225. ∴(a +2)2+(b +2)2≥225. 例8 已知a 1+a 2+…+a n = 1,求证:21a +22a +…+2n a ≥n1. 证明:设a 1= t 1+n 1,a 2= t 2+n 1,…,a n = t n +n1,其中t 1+t 2+…+t n = 0,则21a +22a +…+2n a = (t 1+n 1)2+(t 2+n 1)2+…+(t n +n 1)2= n ·21n+2×n 1( t 1+t 2+…+t n )+…+21t +22t +…+2n t =n 1+21t +22t +…+2n t ≥n 1. 四、放缩法放缩法是在顺推法逻辑推理过程中,有时利用不等式的传递性,作适当的放大或缩小,证明不原不等式更强的不等式来代替原不等式的证明.这种证题方法的实质是非等价转化,而它的证题方法没有一定的准则和程序,需按题意适当..放缩,否则是达不到目的.利用放缩法证明不等式,要根据不等式两端的特征及已知条件,采取舍掉式中一些正项或负项,或者在分式中放大或缩小分子、分母、把和式中的某些项换以较大或较小的数,从而达到证明不等式的目的.此类证法要慎审地采取措施,进行恰当地放缩,任何不适宜的放缩(放的过大或过小)都会导致推证的失败.例5 设n 为自然数,求证:91+251+…+2)12(1+n <41. 证明:∵2)12(1+k =14412++k k <k k 4412+=41(k1-11+k ), ∴91+251+…+2)12(1+n <41[(1-21)+(21-31)+…+(n 1-11+n ) =41(1-11+n )<41. ∴91+251+…+2)12(1+n <41[(1-21)+(21-31)+…+(n 1-11+n ) =41(1-11+n )<41. 例5 已知a n =21⨯+32⨯+…+)1(+n n ,其中n 为自然数, 求证:21n(n +1)<a n <21(n +1)2. 证明:∵)1(+k k <21++k k =212+k 对任意自然数k 都成立, ∴a n =21⨯+32⨯+…+)1(+n n <23+25+27+…+212+n =21[3+5+7+…+(2n +1)] =21(n +2n)<21(n +2n +1) =21(n +1)2. 又)1(+k k >2k = k ,∴a n =21⨯+32⨯+…+)1(+n n >1+2+3+…+n =21n(n +1), ∴21n(n +1)<a n <21(n +1)2. 评析:根据要证不等式的结构特征,应用均值不等式“放大”a n 为一个等差数列的和,求和后再添加一个数1,直到“放大”到要证的右边;而左边是通过“缩小”a n 的方法去根号而转化为等差数列的和.放大或缩小的技巧很多,如添项、减项、分子、分母加或减一个数,或利用函数的单调性、有界性等等,但要注意放缩要适度.11.设a 、b 为不相等的两正数,且a 3-b 3= a 2-b 2,求证:1<a + b <34. 证明:由题意得a 2+ab +b 2= a + b ,于是(a +b)2= a 2+2ab +b 2>a 2+ab +b 2= a + b ,故a + b >1,又(a +b)2>4ab ,而(a +b)2= a 2+2ab +b 2= a +b +ab <a +b +4)(2b a +, 即43(a +b)2<a +b ,解得a + b <34. ∴1<a + b <34. 例12 已知a 、b 、c 、d 都是正数,求证:1<c b a b +++d c b c +++a d c d +++ba d a ++<2. 证明:∵d cb a b +++<c b a b ++<ba b +, d c b a c +++<d c b c ++<dc c +,d c b a d +++<a d c d ++<dc d +, d c b a a +++<b a d a ++<ba a +, 将上述四个同向不等式两边分别相加,得:1<c b a b +++d c b c +++a d c d +++ba d a ++<2.。
不等式证明一(比较法)比较法是证明不等式的一种最重要最基本的方法。
比较法分为:作差法和作商法 一、 作差法若a ,b ∈R ,则: a —b >0⇔a >b ;a —b =0⇔a =b ;a —b <0⇔a <b 它的三个步骤:作差——变形——判断符号(与零的大小)——结论. 作差法是当要证的不等式两边为代数和形式时,通过作差把定量比较左右的大小转化为定性判定左—右的符号,从而降低了问题的难度。
作差是化归,变形是手段,变形的过程是因式分解(和差化积)或配方,把差式变形为若干因子的乘积或若干个完全平方的和,进而判定其符号,得出结论.例1、求证:x 2 + 3 > 3x 证:∵(x 2 + 3) 3x = 043)23(3)23()23(32222>+-=+-+-x x x ∴x 2 + 3 > 3x例2、 (课本P 22例2)已知a, b, m 都是正数,并且a < b ,求证:bam b m a >++ 证:)()()()()(m b b a b m m b b m b a m a b b a m b m a +-=++-+=-++ ∵a,b,m 都是正数,并且a<b ,∴b + m > 0 , b a > 0 ∴0)()(>+-m b b a b m 即:bam b m a >++变式:若a > b ,结果会怎样?若没有“a < b ”这个条件,应如何判断?例3、 已知a, b 都是正数,并且a b ,求证:a 5 + b 5 > a 2b 3 + a 3b 2 证:(a 5 + b 5 )(a 2b 3 + a 3b 2) = ( a 5 a 3b 2) + (b 5 a2b 3)= a 3 (a 2b 2 )b 3 (a 2b 2) = (a 2b 2 )(a 3 b 3)= (a + b )(a b )2(a 2 + ab + b 2)∵a, b 都是正数,∴a + b, a 2 + ab + b 2 > 0又∵a b ,∴(a b )2 > 0 ∴(a + b )(a b )2(a 2 + ab + b2) > 0即:a 5 + b 5 > a 2b 3 + a 3b 2例4、 甲乙两人同时同地沿同一路线走到同一地点,甲有一半时间以速度m 行走,另一半时间以速度n 行走;有一半路程乙以速度m 行走,另一半路程以速度n 行走,如果m n ,问:甲乙两人谁先到达指定地点?解:设从出发地到指定地点的路程为S ,甲乙两人走完全程所需时间分别是t 1, t 2,则:21122,22t n S m S S n t m t=+=+可得:mnn m S t n m S t 2)(,221+=+= ∴)(2)()(2])(4[2)(22221n m mn n m S mn n m n m mn S mn n m S n m S t t +--=++-=+-+=- ∵S, m, n 都是正数,且m n ,∴t 1 t 2 < 0 即:t 1 < t 2从而:甲先到到达指定地点。
浅谈高中数学不等式的证明方法姜堰市罗塘高级中学 李鑫摘要:不等式是中学数学的重要知识,本文介绍了几种不等式的证明方法,并举例进一步加强对各种不等式的理解。
关键字:比较法,分析法,综合法,反证法,放缩法,数学归纳法,换元法,均值不等式,柯西不等式,导数法不等式在中学数学中占有重要地位,因此在历年高考中颇为重视。
由于不等式的形式各异, 所以证明没有固定的程序可循,技巧多样,方法灵活,因此有关不等式的证明是中学数学的难点之一。
本文从不等式的各个方面进行讲解和研究。
一.比较法所谓比较法,就是通过两个实数a 与b 的差或商的符号(范围)确定a 与b 大小关系的方法,即通过“0a b ->,0a b -=,0a b -<;或1a b >,1a b =,1a b <”来确定a ,b 大小关系的方法,前者为作差法,后者为作商法。
例1 已知:0>a ,0>b ,求证:ab b a ≥+2. 分析:两个多项式的大小比较可用作差法证明 02)(2222≥-=-+=-+b a ab b a ab b a , 故得 ab b a ≥+2. 例2 设0>>b a ,求证:a b b a b a b a >.分析:对于含有幂指数类的用作商法证明 因为 0>>b a ,所以 1>ba ,0>-b a . 而 1>⎪⎭⎫ ⎝⎛=-b a a b b a b a b a b a ,故 a b b a b a b a >二.分析法从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立,这种方法叫做分析法。
例3:求证3<证明:960+>> 5456<成立运用分析法时,需积累一些解题经验,总结一些常规思路,这样可以克服无目的的乱碰,从而加强针对性,较快地探明解题途。