教学设计:圆的切线的判定定理
- 格式:doc
- 大小:61.00 KB
- 文档页数:5
圆的切线判定和性质(教案)第一章:圆的切线判定1.1 引入:通过实际问题引入圆的切线判定定理。
1.2 讲解:讲解圆的切线判定定理,即圆外一点与圆只有一个交点的直线是圆的切线。
1.3 例题:讲解几个典型的圆的切线判定例题,让学生理解并掌握切线判定定理。
1.4 练习:给出一些练习题,让学生运用切线判定定理进行解答。
第二章:圆的切线性质2.1 引入:通过实际问题引入圆的切线性质。
2.2 讲解:讲解圆的切线性质,即切线与半径垂直,切线长度等于半径长度。
2.3 例题:讲解几个典型的圆的切线性质例题,让学生理解并掌握切线性质。
2.4 练习:给出一些练习题,让学生运用切线性质进行解答。
第三章:圆的切线方程3.1 引入:通过实际问题引入圆的切线方程。
3.2 讲解:讲解圆的切线方程的求法,即利用切点坐标和半径长度求解切线方程。
3.3 例题:讲解几个典型的圆的切线方程例题,让学生理解并掌握切线方程的求法。
3.4 练习:给出一些练习题,让学生运用切线方程进行解答。
第四章:圆的切线与圆的位置关系4.1 引入:通过实际问题引入圆的切线与圆的位置关系。
4.2 讲解:讲解圆的切线与圆的位置关系的判定方法,即切线与圆相切、相离、相交的判定。
4.3 例题:讲解几个典型的圆的切线与圆的位置关系例题,让学生理解并掌握切线与圆的位置关系的判定。
4.4 练习:给出一些练习题,让学生运用切线与圆的位置关系的判定进行解答。
第五章:圆的切线综合应用5.1 引入:通过实际问题引入圆的切线综合应用。
5.2 讲解:讲解圆的切线在实际问题中的应用,如求解几何问题、设计图案等。
5.3 例题:讲解几个典型的圆的切线综合应用例题,让学生理解并掌握切线在实际问题中的应用。
5.4 练习:给出一些练习题,让学生运用切线综合应用进行解答。
第六章:圆的切线与圆的切点6.1 引入:通过实际问题引入圆的切线与圆的切点。
6.2 讲解:讲解圆的切线与圆的切点的关系,即切线与圆的切点是切线与圆的唯一交点。
圆的切线判定和性质(教案)第一章:圆的切线定义和判定1.1 圆的切线定义引入圆的切线概念,讲解切线的定义和特点展示圆的切线示意图,让学生理解切线与圆的关系1.2 圆的切线判定条件讲解圆的切线的判定条件通过示例和练习,让学生掌握如何判断一条直线是否为圆的切线第二章:圆的切线性质2.1 圆的切线性质介绍圆的切线的性质,如切线与半径垂直、切线与圆心连线垂直等展示切线性质的示意图,让学生理解并记忆这些性质2.2 圆的切线定理讲解圆的切线定理,如切线定理、切线长定理等通过示例和练习,让学生掌握切线定理的应用和证明方法第三章:圆的切线方程3.1 圆的切线方程的定义和特点讲解圆的切线方程的定义和特点展示切线方程的示意图,让学生理解切线方程的形式和含义3.2 圆的切线方程的求法讲解如何求解圆的切线方程通过示例和练习,让学生掌握求解切线方程的方法和技巧第四章:圆的切线与圆的位置关系4.1 圆的切线与圆相切讲解圆的切线与圆相切的情况和特点展示切线与圆相切的示意图,让学生理解切线与圆的切点、切线与半径的关系4.2 圆的切线与圆相离讲解圆的切线与圆相离的情况和特点通过示例和练习,让学生掌握如何判断切线与圆的位置关系第五章:圆的切线应用5.1 圆的切线与圆的切点应用讲解如何利用切点性质解决问题,如求解切线长度、切线与半径的关系等通过示例和练习,让学生掌握切点性质的应用方法5.2 圆的切线与圆的方程应用讲解如何利用切线方程解决问题,如求解切线方程、判断切线与圆的位置关系等通过示例和练习,让学生掌握切线方程的应用方法第六章:圆的切线与圆的交点应用6.1 圆的切线与圆的交点性质讲解圆的切线与圆的交点的性质,如切线与圆的交点与圆心连线垂直、交点到圆心的距离等于半径等展示切线与圆的交点性质的示意图,让学生理解并记忆这些性质6.2 圆的切线与圆的交点应用讲解如何利用切线与圆的交点解决问题,如求解交点坐标、判断交点与圆的关系等通过示例和练习,让学生掌握切线与圆的交点的应用方法第七章:圆的切线与圆的切线应用7.1 圆的切线与圆的切线相交讲解圆的切线与圆的切线相交的情况和特点展示切线与切线相交的示意图,让学生理解切线与切线的交点、切线与半径的关系7.2 圆的切线与圆的切线平行讲解圆的切线与圆的切线平行的情况和特点通过示例和练习,让学生掌握如何判断切线与切线的位置关系第八章:圆的切线与圆的切线综合应用8.1 圆的切线与圆的切线相切讲解圆的切线与圆的切线相切的情况和特点展示切线与切线相切的示意图,让学生理解切线与切线的切点、切线与半径的关系8.2 圆的切线与圆的切线综合应用讲解如何利用切线与切线综合解决问题,如求解切线与切线的交点、判断切线与圆的位置关系等通过示例和练习,让学生掌握切线与切线综合的应用方法第九章:圆的切线与圆的应用实例9.1 圆的切线与圆的切割应用实例讲解圆的切线与圆的切割应用实例,如切割线段、切割角度等展示切割应用实例的示意图,让学生理解切割原理和应用9.2 圆的切线与圆的轨迹应用实例讲解圆的切线与圆的轨迹应用实例,如轨迹方程、轨迹图形等通过示例和练习,让学生掌握切线与圆的轨迹的应用方法第十章:圆的切线综合练习10.1 圆的切线综合练习题提供一系列圆的切线综合练习题,让学生巩固所学知识通过解答练习题,让学生提高解题能力和综合运用能力10.2 圆的切线综合练习解答提供练习题的解答和解析,帮助学生理解和掌握解题方法通过练习解答,让学生巩固知识,提高学习效果重点和难点解析一、圆的切线定义和判定(第一章)重点关注内容:圆的切线的定义和特点,以及如何判断一条直线是否为圆的切线。
圆的切线的判定(教案)第一章:圆的切线定义与性质1.1 圆的切线定义引入圆的切线概念,讲解圆的切线是如何与圆相切的。
通过图形和实例,让学生理解圆的切线的特点。
1.2 圆的切线性质讲解圆的切线的性质,包括切线与半径垂直、切线与圆心连线垂直等。
提供相关的定理和公式,让学生能够熟练掌握。
第二章:圆的切线判定定理2.1 第一判定定理讲解第一判定定理,即如果一条直线与圆相切,这条直线的斜率等于过切点的半径的斜率。
提供定理的证明和相关的例题,让学生能够理解和应用。
2.2 第二判定定理讲解第二判定定理,即如果一条直线与圆相切,这条直线与圆的切点处的切线垂直于直线。
提供定理的证明和相关的例题,让学生能够理解和应用。
第三章:圆的切线方程3.1 切线方程的定义讲解切线方程的定义,即切线的一般式和点斜式。
引导学生理解切线方程与圆的切线的关系。
3.2 切线方程的求法讲解如何求解圆的切线方程,包括给定圆的方程和切点的坐标等。
提供相关的例题和练习题,让学生能够熟练掌握。
第四章:圆的切线与圆的位置关系4.1 切线与圆相离讲解切线与圆相离的情况,即切线与圆没有交点。
提供相关的例题和练习题,让学生能够理解和应用。
4.2 切线与圆相切讲解切线与圆相切的情况,即切线与圆只有一个交点。
提供相关的例题和练习题,让学生能够理解和应用。
第五章:圆的切线综合应用5.1 切线与圆的交点问题讲解如何求解切线与圆的交点,包括切线与圆的方程联立等。
提供相关的例题和练习题,让学生能够熟练掌握。
5.2 切线与圆的切点问题讲解如何求解切线与圆的切点,包括切线的斜率和切线方程等。
提供相关的例题和练习题,让学生能够熟练掌握。
第六章:圆的切线与圆的性质6.1 切线与圆的切点性质讲解切线与圆的切点的性质,如切点处的切线与半径垂直。
提供相关的定理和公式,让学生能够熟练掌握。
6.2 切线与圆的切线性质讲解切线与圆的切线的性质,如切线与圆心连线垂直。
提供相关的定理和公式,让学生能够熟练掌握。
圆的切线的判定(教案)章节一:圆的切线的定义与性质1.1 教学目标让学生了解圆的切线的定义。
让学生掌握圆的切线的性质。
1.2 教学内容圆的切线的定义。
圆的切线的性质。
1.3 教学步骤1.3.1 引入利用实物或图片展示圆和切线,引导学生思考圆的切线的定义。
1.3.2 讲解讲解圆的切线的定义,强调圆的切线与圆的接触点是切点。
讲解圆的切线的性质,如切线与半径垂直,切线与圆的切点处的切线斜率为0等。
1.3.3 练习提供一些图形,让学生判断哪些是圆的切线,并解释原因。
1.4 教学评价通过学生的练习和提问,评估学生对圆的切线的定义和性质的理解程度。
章节二:圆的切线的判定定理2.1 教学目标让学生了解圆的切线的判定定理。
让学生能够运用判定定理判断一条直线是否为圆的切线。
2.2 教学内容圆的切线的判定定理。
判定定理的应用。
2.3 教学步骤2.3.1 引入回顾上一章节的圆的切线的性质,引导学生思考如何判断一条直线是否为圆的切线。
2.3.2 讲解讲解圆的切线的判定定理,包括定理的表述和证明过程。
讲解判定定理的应用,如何通过已知条件判断一条直线是否为圆的切线。
2.3.3 练习提供一些题目,让学生运用判定定理判断直线是否为圆的切线,并提供解题思路和步骤。
2.4 教学评价通过学生的练习和提问,评估学生对圆的切线的判定定理的理解程度和应用能力。
章节三:圆的切线方程的求法3.1 教学目标让学生了解圆的切线方程的求法。
让学生能够运用求法求出圆的切线方程。
3.2 教学内容圆的切线方程的求法。
切线方程的求法应用。
3.3 教学步骤3.3.1 引入回顾上一章节的内容,引导学生思考如何求出圆的切线方程。
3.3.2 讲解讲解圆的切线方程的求法,包括切线方程的一般形式和求法步骤。
讲解切线方程的求法应用,如何根据已知条件求出圆的切线方程。
3.3.3 练习提供一些题目,让学生运用求法求出圆的切线方程,并提供解题思路和步骤。
3.4 教学评价通过学生的练习和提问,评估学生对圆的切线方程的求法的理解程度和应用能力。
圆的切线判定和性质【教学目标】(一)知识与技能:1.掌握圆的切线判定和性质,并能熟练运用切线的判定与性质进行证明和计算。
2.掌握圆的切线常用添加辅助线的方法(二)过程与方法:1.运用圆的切线的性质与判定解决数学问题的过程中,进一步培养学生运用已有知识综合解决问题的能力;2.进一步感悟数形结合、转化和分类的思想的重要性,培养观察、分析、归纳、总结的能力。
(三)情感态度与价值观:形成知识体系,教育学生用动态的眼光、运动的观点看待数学问题。
【教学重点】对切线的判定方法及其性质的准确、熟练、灵活地运用。
【教学难点】综合型例题分析和论证的思维过程。
【教学方法】先学后教,当堂训练【教学过程】一、一学一归纳:1、作图1:过⊙O外一点P作直线,复习指导:1、通过作图1,你能发现直线与圆有几种位置关系吗?2、你能用数量关系来确定直线与圆的位置关系吗?(设计意图:通过简单作图和复习指导,①回顾直线与圆的三种位置关系:相交、相切、相离,并能从公共点个数判断,得出切线概念;②从数的角度即数量关系上体会圆的切线判别方法:当圆心到直线的距离等于半径时,直线与圆相切,体会数形结合思想)P O A作图2:若点A 为⊙O 上的一点,如何过点A 作⊙O 的切线呢?(请学生上黑板按要求作图,并尝试说出作法)提问:你是怎样判断所作直线是圆的切线的?(设计意图:利用作图,体会切线的判定方法:①圆心到直线的距离等于半径②定义③经过半径的外端并且垂直于半径)2.已知⊙O 直径为8cm ,直线L 到圆心O 的距离为4 cm ,则直线L与⊙O 的位置关系为 。
3.PA 切⊙O 于点A ,PA=4,OP=5,则⊙O 的半径是____(设计意图:应用圆的切线判别方法及性质解决简单数学问题,同时归纳出切线性质,并在性质应用时体现辅助线做法指导:见切线,连半径,得垂直,体会转化和数形结合的数学思想,至此形成知识体系。
)二、二学二归纳:4.已知:直线AB 经过⊙O 上的点C ,并且OA=OB ,CA =CB .①求证:直线AB 是⊙O 的切线。
切线的判定和性质数学教案标题:切线的判定与性质——数学教案一、教学目标1. 知识目标:理解和掌握圆的切线的定义,以及切线的判定和性质。
2. 能力目标:通过解决相关问题,提高学生的逻辑推理能力和空间想象能力。
3. 情感态度价值观目标:培养学生积极思考、勇于探索的学习态度,增强学生对数学学习的兴趣。
二、教学重点与难点1. 教学重点:切线的判定方法和性质。
2. 教学难点:理解并应用切线的判定定理和性质解决实际问题。
三、教学过程(一)引入新课教师引导学生回顾上节课关于圆的知识,提出问题:“如何判断一条直线是否为圆的切线?”以此引出本节课的主题——切线的判定和性质。
(二)讲解新知1. 切线的定义:与圆只有一个公共点的直线叫做圆的切线。
2. 切线的判定:(1) 判定定理1:经过半径的外端并且垂直于这条半径的直线是圆的切线。
(2) 判定定理2:到圆心的距离等于半径的直线是圆的切线。
3. 切线的性质:(1) 性质1:过圆心且垂直于切线的直线必经过切点。
(2) 性质2:从圆外一点引圆的两条切线,它们的切线长相等。
(三)课堂练习设计一些相关的练习题,让学生在实践中巩固所学知识。
如:例题1:已知OA,OB为圆O的两条半径,∠AOB=60°,P为劣弧AB上的动点,过P作圆O的切线PC,设∠APB=α,求证:tanα=2sinα。
例题2:已知△ABC中,∠A=90°,AB=AC,D是BC边的中点,E是AC边上的任意一点,DE与以C为圆心,CA为半径的圆相切于F点,证明:AF⊥BE。
(四)课堂小结引导学生总结本节课的主要内容,包括切线的定义、判定定理和性质,并强调这些知识在解题中的重要性。
(五)课后作业布置适量的课后作业,帮助学生进一步巩固和应用所学知识。
四、教学反思在教学过程中,应注重引导学生主动参与,鼓励他们通过独立思考和合作交流来解决问题。
同时,要关注学生的个体差异,提供有针对性的教学指导,以满足他们的不同学习需求。
圆的切线的判定(教案)第一章:圆的切线定义与性质1.1 圆的切线定义引入圆的切线的概念,给出圆的切线的定义。
通过图形和实例解释圆的切线的性质和特点。
1.2 圆的切线性质探讨圆的切线的性质,如切线与半径垂直、切线与圆只有一个交点等。
通过几何证明和实例来加深对圆的切线性质的理解。
第二章:圆的切线判定定理2.1 切线判定定理的引入引入圆的切线判定定理,并解释其意义和作用。
通过图形和实例来展示切线判定定理的应用。
2.2 切线判定定理的证明几何证明切线判定定理,解释定理的证明过程和逻辑推理。
通过证明过程来加深对切线判定定理的理解和应用。
第三章:圆的切线方程3.1 切线方程的引入引入圆的切线方程,并解释其意义和作用。
通过图形和实例来展示切线方程的应用。
3.2 切线方程的求解学习如何求解圆的切线方程,包括斜率存在和不存在的情况。
通过例题和练习来掌握切线方程的求解方法。
第四章:圆的切线与圆的位置关系4.1 切线与圆相切探讨切线与圆相切的情况,包括切线与圆的切点和切线与圆的切线。
通过图形和实例来展示切线与圆相切的特点和性质。
4.2 切线与圆相离和相交探讨切线与圆相离和相交的情况,包括切线与圆的交点和切线与圆的内切。
通过图形和实例来展示切线与圆相离和相交的特点和性质。
第五章:圆的切线在实际问题中的应用5.1 切线在几何问题中的应用探讨圆的切线在几何问题中的应用,如求解角度、距离等问题。
通过例题和练习来展示切线在几何问题中的应用方法。
5.2 切线在实际生活中的应用探讨圆的切线在实际生活中的应用,如自行车轮子、圆形操场等。
通过实例来展示切线在日常生活中的重要性和作用。
第六章:圆的切线判定定理的拓展6.1 切线判定定理的推广探讨将切线判定定理应用到更一般的情况下,如非圆形的曲线。
通过图形和实例来展示切线判定定理的推广应用。
6.2 切线判定定理与其他数学概念的联系探讨切线判定定理与其他数学概念的联系,如代数、几何等。
通过例题和练习来展示切线判定定理与其他数学概念的结合应用。
课题:第二十四单元第九课时----- 圆的切线1研目标知识技能1、理解圆的切线判定与性质 2、会利用圆的切线判定与性质解题情感态度培养学生自主学习的水平和团结协助精神重点使用切线的判定定理与性质定理解题难点1、如何证垂直于半径2、适当添加辅助线过程与方法学生预习、自主学习、小组讨论、合作探究、教师点拔、讲解学情分析与设计意图圆的切线是圆这个章书的重点内容,也是中考考核重点知识。
因为本人所任教的九(2)、(3)班的学生数学基础不是很扎实,接受新知识的水平也不是很强。
所以这节课先解决圆的切线判定与性质中比较简单的问题,以此增强后进生的学习兴趣。
另外为了让成绩好的同学有所提升于是在设计中加入了拓展提升这个环节以激发他们的求知欲。
研学过程设计研学环节研学内容设计意图自主学习预习小组讨论合作探究一、【预习作业】:温故知新:直线和圆的位置关系公共点个数圆心距d与半径r的关系相交1d>r1、已知圆心O到直线l的距离为5cm,直线l与○·O相交,则○·O的半径r的取值范围是______.2、已知○·O的半径为3cm,若○·O与直线l的距离为3cm则直线l与○·O的位置关系是,它们有个公共点3、如上图,在○·O中,经过半径OA的外端点A直线l⊥OA,则圆心O到直线l的距离是,这个距离与○·O的半径的数量关系,所以直线l与○·O的位置关系是。
二、【小组合作探究】:1、小组合作讨论上面的问题。
2、结合上面第3小题的练习小组合作探究切线的判定定理:经过半径的并且这条半径的直线是圆的切线用数学语言表达为:∵。
∴直线l是○·O的切线3、练习:如右图○·O上有一点B,请作出○·O的切线使它经过点B.三、【探究展示】:1、2题复习旧知识3题引出新知识1、2题通过小组合作探究新知识3题巩固切线判定定理lOAB自主学习教师点拔讲解小组讨论合作探究自主学习教师点拔讲解1、如图,AB是⊙O的直径,∠ABT=45°,AT=AB.求证:AT是⊙O的切线.2、如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,求证直线AB是⊙O的切线。
《圆的切线的判定定理》教学设计
学习目标:
1.理解并掌握切线的判定定理,熟练应用切线的判定定理证明圆的切线。
2.在探究和学习中培养学生的识图能力和说理能力,提高学生分析问题和解决问题的能力
学习重点:切线的判定定理的应用 学习难点:理解并应用切线的判定定理 学习课时:1课时 学习过程:
学习交流一:知识回顾
1、直线和圆有哪几种位置关系?
2、目前有几种判定直线和圆位置关系的方法?
3、你已经学过哪些圆的切线的判断方法?
(设计意图:学生回顾直线与圆的位置关系,归纳已经学过的切线的两种判定方法,既为本课的学习做知识准备,又使学生完整了知识体系。
) 学习交流二:自主探究,合作交流
1、做一做:点A 是 ⊙O 上一点,作经过点A 的 直线l ,使直线l 与⊙O 相切,并请说明作图理由
(设计意图:让全班学生动手画图,并按要求独立完成探索过程,作图的理论依据的思考重在培养学生严谨的数学学习能力。
在大多数学生独立思考的过程后,再小组交流,达成共识,展示本组的学习成果:连接OA,过A 作OA 的垂线l ,依据是圆心到直线的距离等于半径,那么直线是圆的切线。
)
A
2、议一议:判断
(a )过半径的外端的直线是圆的切线( ) (b )与半径垂直的直线是圆的切线( )
(c )过半径的端点与半径垂直的直线是圆的切线(
)
3、归纳切线的判定定理:___________________________________ 几何语言:
(设计意图:学生对切线的判定定理的表述困难较大,设计此环节可以帮助学生对切线的判定定理的归纳及理解,使学生进一步体会数学的严谨性。
) 4、小试牛刀
如图, A 、B 是⊙O 上的两点,AC 是过A 点的一条直线, 如果∠AOB=120°,那么当∠CAB 的度数等于______时,AC 才能成为⊙O 的切线.
(设计意图:通过本题,使学生明确切线判定定理的应用:半径、垂直二者同时具备,即可证切线,也为后面的探究明确方向。
) 学习交流三:师生互动,达成共识 例1:已知:直线AB 经过⊙O 上的点C ,
并且OA=OB ,CA=CB. 求证:直线AB 是⊙O 的切线.
切
A
C
线的证明方法的应用,二是通过例题给学生以示范,规范书写证明的过程,同时教师指导学生分析解决几何问题时需关注条件和结论:(1)看条件,想结论,(2)要证结论,需证什么,对学生进行几何说理方法的指导) 例2:已知:O 为∠BAC 平分线上一点,OD ⊥AB 于D, 以O 为圆心,OD 为半径作⊙O. 求证:⊙O 与AC 相切.
(设计意图:本例要求学生在独学、对学的基础上正确添加辅助线,明确解题思路,进一步理解要证切线,半径、垂直二者缺一不可,并交流展示解题过程) 交流:例1与例2的证法有什么不同?(从条件、辅助线、证明方法的不同上看) (1)例1中已知直线AB 经过圆上一点C,则连结________,再证___________ 简记为:有交点, ______________,_______________
(2)例2中不知直线与圆是否有公共点,则作___________,再证______________ 简记为:没交点 ,_______________,___________________
(设计意图:通过学生对比例1、例2的不同,由学生归纳总结切线的证明的两种题型及常见辅助线的作法,通过交流,达成共识,教师及时点拨,对学生进行解题方法的指导)
学习交流四:课堂检测,展示成果
1、如图,已知AB 是⊙O 的直径,点D 在AB 的延长线上, 且BD=OB ,过点D 作射线DE ,使∠ADE=30°
求证:DE 是⊙O 的切线. (提示:没交点 作垂直,证半径)
2、如图,△ABC 中,AB=AC ,以AB 为直径的⊙O
交边BC于P,PE⊥AC
求证:PE是⊙O的切线,切点为E
(提示:有交点连半径,证垂直)(证明方法有多种)
(设计意图:通过课堂检测,一是巩固学生的学习成果,对切线证明的两种基本题型进行应用,二是及时反馈展示学习成果,特别是通过一题多解,拓展学生的思维,提高学生的分析能力和学习的自信心)
学习交流五:学习反思
通过本课的学习,你有什么收获?还有哪些困惑?
1、判定圆的切线有哪些方法?
(1)定义:和圆有且只有一个公共点的直线是圆的切线.
(2)数量(d = r):和圆心距离等于半径的直线是圆的切线.
(3)定理:经过半径外端且垂直于这条半径的直线是圆的切线.
2、证明圆的切线时常用的两种基本题型及辅助线的添加:
(1) 有交点连半径,证垂直。
(2) 没交点作垂直,证半径。
3、支你几招
(1)看条件,想结论
(2)要证结论,需证什么
课后反思:本课教学以学生探究为主线,在学生已有的认知基础上进行引导点拨,使学生感悟知识发生、发展的过程,使学生的思维细化、深化,不断创设新问题,让学生在变化中寻找不变的规律,充分调动学生的探索激情,鼓励学生发表自己思考和探索的结果,对于常见几何问题指导学生掌握其常规解法及思路,在以后
的解题中能有“法”可依,提高解题能力。
本课教学旨在让学生在学习中获得数学知识和技能上的发展,同时获得对数学的积极情感,达到了预期的学习目标,取得了较好的教学效果。
审阅人:薛艳慧。