密码学论文
- 格式:doc
- 大小:44.50 KB
- 文档页数:3
破解密码密码学专业毕业论文密码学作为一门应用数学科学,经过多年的发展与探索,已经成为信息安全领域中不可或缺的重要学科。
而在密码学专业的学习中,毕业论文是对学生全面能力的一次综合考核,也是展示学术研究成果的平台。
本文将探讨破解密码的方法与技术,以及密码学专业毕业论文的撰写要点。
一、破解密码的方法与技术破解密码是密码学专业中的核心研究领域之一,旨在通过对密码系统的分析和攻击,揭示其中的安全弱点,以提升密码系统的安全性。
下面将介绍几种常见的密码破解方法和技术。
1.1 暴力破解法暴力破解法是密码破解中最常见的方法之一。
它通过穷举所有可能的密码组合,逐个尝试来找出正确的密码。
该方法的优点是能够保证找到正确的密码,但缺点是耗时较长,特别是对于密码较复杂的情况下。
1.2 字典攻击法字典攻击法是一种基于预先准备好的密码词典的方法。
攻击者通过将密码词典与被破解的密码进行对比,如果匹配成功,即可找到正确的密码。
这种方法相对于暴力破解法而言,耗时较短,特别是在密码使用常见单词或常见组合时。
1.3 差分攻击法差分攻击法是一种特殊的密码分析方法,它通过对密码系统中的特定差异进行观察,从而获取密码信息。
该方法要求攻击者对密码系统的设计和运行机制有一定的理解和专业知识,因此是一种相对高级的密码破解技术。
1.4 混合攻击法混合攻击法是多种密码破解方法的综合应用,其目的是为了提高破解密码的效率和准确性。
通过结合暴力破解、字典攻击和差分攻击等多种技术手段,攻击者能够更快速地找到密码系统的弱点并进行破解。
二、密码学专业毕业论文撰写要点在撰写密码学专业毕业论文时,需要注意以下几个要点:2.1 研究背景与目的毕业论文的引言部分应清晰地阐述研究背景和目的,说明该研究对密码学领域的重要性和意义。
2.2 相关研究综述在论文的文献综述部分,要对相关的密码破解技术、密码系统设计原理等进行全面深入的探讨,分析前人的研究成果,并指出他们的不足之处。
2.3 研究方法与实验设计详细描述自己的研究方法和实验设计,包括使用的工具和算法,实验参数设置等。
数学在密码学中的应用浅析密码学论文写作范例论文-V1正文:密码学作为一种保障隐私和安全的技术,其应用范围愈发广泛。
而在密码学中,数学的应用尤为重要。
本文将就数学在密码学中的应用进行浅析,并给出密码学论文写作范例,以供参考。
一、数学在密码学中的应用密码学的核心问题是保护信息的安全,而数学提供的基础和工具是解决这一问题的关键。
1. 整数论在密码学中,整数论最常见的应用是在RSA加密算法中。
RSA算法基于整数的因式分解难题,通过大数的质因数分解实现加密。
在该算法中,质数是加密和解密过程中的关键因素,因此整数论的相关理论成为RSA 算法可行性的前提。
2. 群论群论是密码学中使用最为广泛的数学分支之一。
在密码学中,群论可以用来描述密码学中各个算法的密钥空间、明文和密文的转换、算法的复杂度等。
例如,Diffie-Hellman密钥交换算法就是基于群论的,用来方便地协商出双方的密钥。
此外,AES对称加密算法也使用了群论的相关理论,其密钥扩展算法利用了有限域的结构。
3. 椭圆曲线椭圆曲线密码学是当前流行的密码学分支之一,在移动终端等资源受限场景下有着十分广泛的应用。
在椭圆曲线密码学中,数学中的椭圆曲线理论是其核心基础。
通过椭圆曲线的相关理论,密钥交换、数字签名等广泛应用的密码学问题都可以得到切实可行的解决方案。
此外,椭圆曲线密码学还具有安全性高、密钥长度短、运算速度快等优点。
二、密码学论文写作范例在密码学研究中,必须得对算法进行一定的改进才能应对攻击,提高其安全性。
在撰写论文的过程中,应着力于解决某个具体问题,清晰表述研究思路,并结合实验结果进行论述。
以下为密码学论文写作范例:第一部分:引言在此部分中,需要对密码学的定义进行解释,并讨论研究算法的重要性和关键问题。
第二部分:问题描述在此部分中,需要详细描述所研究的算法、现有的问题和存在的威胁。
第三部分:技术方案在此部分中,需要介绍自己提出的算法,同时应包括解释和理论的基础,以及应用实现和结果分析。
数学在密码学中的应用浅析密码学论文写作范例论文(一)随着信息技术的发展,网络安全问题日益引起关注。
密码学作为信息安全领域中的一门基础学科,已经成为保护网络信息安全的一种重要手段。
而数学作为密码学的基础,更是不可或缺的一部分。
数学在密码学中的应用主要体现在加密算法、密钥的生成和数字签名等方面。
其中,加密算法是密码学中最基础的部分。
目前,对称加密和非对称加密是应用最广泛的两种加密方式。
对称加密就是指加密和解密使用同一个密钥的方式,非对称加密则是指加密和解密分别使用两个不同的密钥。
而这两种加密方式的安全性都与数学有着密不可分的关系。
对于对称加密,它主要是利用数学运算中的异或(XOR)和同或(XNOR)运算、置换和代换等操作,将明文转换为密文。
例如,DES(Data Encryption Standard)算法就是利用置换和代换操作实现加密的。
而非对称加密主要是利用数学中的大数因式分解和离散对数问题,如RSA 算法和椭圆曲线(Elliptic Curve)算法。
除了加密算法外,数学在密钥的生成和数字签名方面也有着重要的应用。
密钥的生成通常是指生成对称密钥和非对称密钥对的过程。
这个过程需要利用到数学中的大数质因数分解和离散对数问题,以确保生成出来的密钥安全可靠。
而数字签名则是通过数学中的哈希函数、公钥加密和私钥解密等方法,实现对数字文档进行签名认证的过程。
在写密码学论文的时候,我们需要清晰地阐述数学在密码学中的应用,并且采用恰当的数据陈述和相关例子来支撑我们的观点。
我们还需要关注密码学的发展历程和应用现状,以便为我们的论文提供足够的背景信息。
此外,我们可以从需求、流程、应用、安全等角度对密码学进行全面分析,从而更好地展示数学在密码学中的应用。
总之,数学在密码学中的应用不可忽视。
无论是对称加密还是非对称加密,都需要依靠数学的算法和理论来保证加密的安全性。
因此,了解数学在密码学中的应用是我们研究和保护信息安全的必要基础。
数学在密码学中的应用浅析密码学论文写作范例论文(1)密码学是一门保护信息安全的学科,而在密码学中,数学发挥着重要的作用。
本文将从数学在密码学中的应用入手,分析密码学论文写作范例。
首先,密码学中最基本的概念是加密算法,而加密算法的核心就是数学运算。
例如,常见的对称加密算法中,采用的是一些基于数学的算法,如DES和AES。
这些算法采用了一些数学计算来将原文转化为难以识别的密文,可以保护数据不被窃取或篡改。
因此,在写作密码学论文时,要深挖加密算法中数学知识的应用,从算法实现原理这一层面论述加密的必要性,这将有助于提高论文的可信度。
其次,公钥密码学也离不开数学。
如RSA算法就是基于数学的算法,而RSA算法实现的核心原理是基于数论的。
这个算法利用了数学中一些简单的数学概念,但要运用得当却不简单,因为RSA算法中的数学概念也涉及的比较复杂,如大素数和欧拉函数。
因此,在写作密码学论文时,要具备专业的背景知识,从概念阐述和应用运用两个方面来阐述公钥算法以及它的核心原理。
最后,密码学的理论发展也是离不开数学的思想。
密码学的发展需要从数学的角度来看待安全性的问题,并针对安全性问题去创造各种加密算法,使其符合严格的数学证明方法。
因此,在写作密码学论文时,需要重点关注密码学方法的数学基础,如攻击模型和安全证明等,从而使论文更加严谨和可信。
总之,数学在密码学中发挥了重要的作用。
要写好密码学论文,除了对密码学的基本概念有充分的理解外,对数学应用的相关知识也应有一定的熟悉和掌握,从中提炼本质,优化方法,达到优化和理解论文的目的。
第一章绪论AES高级加密标准随着Internet的迅猛发展,基于Internet的各种应用也日新月异,日益增长。
但是,由于Int ernet是一个极度开放的环境,任何人都可以在任何时间、任何地点接入Internet获取所需的信息,这也使得在Internet上信息传输及存储的安全问题成为影响Internet应用发展的重要因素。
正因为如此,信息安全技术也就成为了人们研究Internet应用的新热点。
信息安全的研究包括密码理论与技术、安全协议与技术、安全体系结构理论、信息对抗理论与技术、网络安全与安全产品等诸多领域。
在其中,密码算法的理论与实现研究是信息安全研究的基础。
而确保数据加密算法实现的可靠性和安全性对于算法理论应用到各种安全产品中起到了至关重要的作用。
对各类电子信息进行加密,以保证在其存储,处理,传送以及交换过程中不会泄露,是对其实施保护,保证信息安全的有效措施。
1977年1月数据加密标准DES(Data Encryption Standard)正式向社会公布,它是世界上第一个公认的实用分组密码算法标准。
但DES在经过20年的实践应用后,现在已被认为是不可靠的。
1997年1月2日NIST发布了高级加密标准(AES-FIPS)的研发计划,并于同年9月12日正式发布了征集候选算法公告,NIST希望确定一种保护敏感信息的公开、免费并且全球通用的算法作为AES,以代替DES,用以取代DES的商业应用。
在征集公告中,NIST对算法的基本要求是:算法必须是私钥体制的分组密码,支持128bits分组长度和128,192,256bits密钥长度。
经过三轮遴选,Rijndael最终胜出。
2000年10月2日,NIST宣布采用Rijndael算法作为新一代高级加密标准。
Rijndael的作者是比利时的密码专家Joan Daemon博士和Vincent Rijmen博士。
美国国家标准和技术研究所(NIST)在1999年发布了FIPS PUB 46-3,该标准指出DES只能用于遗留系统,同时3DES将取代DES。
信息安全技术论文密码学密码算法概述摘要:密码学是研究编制密码和破译密码的技术科学。
研究密码变化的客观规律,应用于编制密码以保守通信秘密的,称为编码学;应用于破译密码以获取通信情报的,称为破译学。
总称密码学。
密码是通信双方按约定的法则进行明密特殊变换的一种重要保密手段。
依照这些法则,变明文为密文,称为加密变换;变密文为明文,称为脱密变换。
密码在早期仅对文字或数码进行加、脱密变换,随着通信技术的发展,对语音、图像、数据等都可实施加、脱密变换。
关键字:密码学对称密码学密钥密码学[1](在西欧语文中之源于希腊语kryptós,“隐藏的”,和gráphein,“书写”)是研究如何隐密地传递信息的学科。
在现代特别指对信息以及其传输的数学性研究,常被认为是数学和计算机科学的分支,和信息论也密切相关。
著名的密码学者Ron Rivest解释道:“密码学是关于如何在敌人存在的环境中通讯”,自工程学的角度,这相当于密码学与纯数学的异同。
密码学是信息安全等相关议题,如认证、访问控制的核心。
密码学的首要目的是隐藏信息的涵义,并不是隐藏信息的存在。
密码学也促进了计算机科学,特别是在于电脑与网络安全所使用的技术,如访问控制与信息的机密性。
密码学已被应用在日常生活:包括自动柜员机的芯片卡、电脑使用者存取密码、电子商务等等。
直到现代以前,密码学几乎专指加密(encryption)算法:将普通信息(明文,plaintext)转换成难以理解的资料(密文,ciphertext)的过程;解密(decryption)算法则是其相反的过程:由密文转换回明文;加解密包含了这两种算法,一般加密即同时指称加密(encrypt或encipher)与解密(decrypt或decipher)的技术。
加解密的具体运作由两部分决定:一个是算法,另一个是密钥。
密钥是一个用于加解密算法的秘密参数,通常只有通讯者拥有。
历史上,密钥通常未经认证或完整性测试而被直接使用在密码机上。
通过这个学期对应用密码学的学习,我深刻地体会到应用密码学的魅力,也认识到随着科学的发展,密码学越来越成为一个国家不可缺少的一项科学技术。
密码学是研究编制密码和破译密码的技术科学。
研究密码变化的客观规律,应用于编制密码以保守通信秘密的,称为编码学;应用于破译密码以获取通信情报的,称为破译学,总称密码学。
密码是通信双方按约定的法则进行信息特殊变换的一种重要保密手段。
依照这些法则,变明文为密文,称为加密变换;变密文为明文,称为脱密变换。
密码在早期仅对文字或数码进行加、脱密变换,随着通信技术的发展,对语音、图像、数据等都可实施加、脱密变换。
密码学是在编码与破译的斗争实践中逐步发展起来的,并随着先进科学技术的应用,已成为一门综合性的尖端技术科学。
它与语言学、数学、电子学、声学、信息论、计算机科学等有着广泛而密切的联系。
它的现实研究成果,特别是各国政府现用的密码编制及破译手段都具有高度的机密性。
密码学主要经历了三个阶段:古代加密方法、古代密码和近代密码。
首先,古代加密方法处于手工阶段,其源于应用的无穷需求总是来推动技术发明和进步的直接动力。
存于石刻或史书中的记载表明,许多古代文明,包括埃及人、希伯来人、亚述人都在实践中逐步发明了密码系统。
从某种意义上说,战争是科学技术进步的催化剂。
人类自从有了战争,就面临着通信安全的需求,密码技术源远流长。
古代加密方法大约起源于公元前440年出现在古希腊战争中的隐写术。
当时为了安全传送军事情报,奴隶主剃光奴隶的头发,将情报写在奴隶的光头上,待头发长长后将奴隶送到另一个部落,再次剃光头发,原有的信息复现出来,从而实现这两个部落之间的秘密通信。
公元前 400 年,斯巴达人就发明了“塞塔式密码” ,即把长条纸螺旋形地斜绕在一个多棱棒上,将文字沿棒的水平方向从左到右书写,写一个字旋转一下,写完一行再另起一行从左到右写,直到写完。
解下来后,纸条上的文字消息杂乱无章、无法理解,这就是密文,但将它绕在另一个同等尺寸的棒子上后,就能看到原始的消息。
密码学网络安全论文2篇今天店铺就要跟大家分享下关于密码学网络安全论文有哪些~那么对此感兴趣的网友可以多来了解了解下。
下面就是具体内容密码学网络安全论文一:1. 引言随着国家网络信息化建设的飞速发展,越来越多的人通过Internet网络来学习与工作,但是,由于因特网的全球性,开放性。
无缝连通性,共享性和动态发展,任何人都可以自由的介入,使得人们在享受网络提供的更加开放的空间和丰富资源的同时,也面临着前所未有的网络安全的威胁。
愈演愈烈的黑客攻击事件以及非法信息的不断蔓延、网络病毒的爆发、邮件蠕虫的扩散,也给网络蒙上了阴影。
因此,网络安全问题已逐渐成为世人关注的社会问题。
2. 密码学的涵义和特点密码学是研究如何隐密地传递信息的学科。
在现代特别指对信息以及其传输的数学性研究,常被认为是数学和计算机科学的分支,和信息论也密切相关。
密码学的基本要素是加密算法和密钥管理,密码就是一组含有参数k的变换E。
设已知信息m,通过变换E得到密文c。
即c=Ek(m)这个过程称之为加密,参数k称为密钥。
不是所有含参数k的变换都可以作为密码,它的要求是计算Ek(m)不困难:而且若第三者不掌握密钥k,即使截获了密文c,他也无法从c恢复信息m。
从密文c恢复明文m的过程称之为解密。
解密算法D是加密算法E的逆运算,解密算法也是含参数k的变换。
密码体制从原理上可分为两大类,即单钥体制和双钥体制。
单钥体制的加密密钥k和解密密钥k相同,采用双钥体制的每个用户都有一对选定的密钥:一个是可以公开的,称为公钥;另一个则是秘密的,称为私钥。
3. 密码学如何促进网络安全(里面可包含几个小点)密码学是计算机网络安全的基础,计算机网络与分布式系统的安全包含两个主要内容:保密性――即防止非法地获悉数据;完整性――即防止非法地修改数据,要想解决这些问题,就需要用到现代密码学。
下面就为大家介绍密码学在网络安全中的常见应用。
3.1 对称加密方式对称密码算法有时又叫传统密码算法,就是加密密钥能够从解密密钥中推算出来,反过来也成立。
密码学是一门古老而深奥的学科,从古代的加密军书到如今的手机解锁,密码研究已有数千年的历史。
密码学也经历了从古典密码学到现代密码学的演变,虽然密码学的科技在不断地进步,古典密码的难度已经不足一提,但是古老的密码学思想奠定了密码学发展的基础,至今仍然被广泛使用。
密码学是信息安全的一门科学,密码技术是信息安全的核心,现代密码学所涉及的学科很广,包括信息论、概率论、数论、计算复杂性理论、近世代数、离散数学、代数几何学和数字逻辑等。
密码学主要包括两大分支,一是密码编码学,二是密码分析学。
密码学是对这两门分支学进行综合分析、系统研究的科学,是保护信息安全最主要的手段之一。
编码学与分析学是相互对立、相互依存,正是因为这种对立统一的关系,才推动了密码学自身的发展,下面将对这两门学科分别进行介绍。
1.密码编码学密码编码学是研究密码体制的设计的一门学问,主要内容是对信息进行编码密码,以实现对信息的加密。
密码编码技术的主要任务是寻求产生安全性高的有效密码算法和协议,以满足对消息进行加密或认证的要求。
2.密码分析学密码分析学是研究如何破解被加密信息的一门学问,即通过破译密码,来获取到所加密的信息。
经历了多个发展阶段。
密码分析技术的主要任务是破译密码或伪造认证信息,实现窃取机密信息或进行诈骗破坏活动。
密码学的基本思想是通过改变原有信息的顺序或者用不同的字母、数字、汉字等字符去替换原有字符,使原始信息变成混乱无章的乱码,保证了即使被非法获得信息后,也无法了解传送双方在信息中想表达的含义。
由于传送双方在事先进行了约定,接收方会根据某种规则,通过乱码来恢复出原始的信息含义。
伴随着信息科技不断地发展,现如今的密码学应用领域也不仅仅局限于信息的加密,也扩展到了对身份的识别和电子的认证等方面,比如日常所使用的手机指纹识别、解锁图案等,都属于密码学的范畴。
综上所述,密码学思想主要分为加密和解密两大部分,常用的方法有顺序法则和替代法则。
《基于时空混沌的密码学算法研究》篇一一、引言密码学作为信息安全领域的重要组成部分,一直以来都是学术界和工业界研究的热点。
近年来,随着网络技术的发展和应用的广泛普及,密码学面临着越来越多的挑战和需求。
传统的密码学算法在应对复杂多变的安全威胁时,其局限性逐渐显现。
因此,研究新的密码学算法,特别是基于复杂动态系统的密码学算法,具有重要的理论意义和应用价值。
本文将重点研究基于时空混沌的密码学算法,探讨其原理、性质及在密码学中的应用。
二、时空混沌理论概述时空混沌理论是一种描述动态系统中复杂行为的数学理论。
在密码学领域,时空混沌理论被广泛应用于设计新型的加密算法。
时空混沌系统具有高度的复杂性和随机性,能够为密码学提供强大的安全保障。
该系统通过非线性动力学方程描述空间和时间上的变化,产生复杂的混沌行为。
在密码学算法中,可以利用这种复杂性来增强算法的安全性。
三、基于时空混沌的密码学算法原理基于时空混沌的密码学算法利用时空混沌系统的复杂性和随机性,通过特定的映射关系和加密策略,将明文转化为密文。
该类算法通常包括混沌映射、密钥生成、加密和解密等步骤。
其中,混沌映射是算法的核心部分,通过非线性动力学方程描述时空混沌系统的行为。
密钥生成则是根据混沌映射产生的序列生成加密密钥。
在加密过程中,明文经过密钥的映射和变换,转化为密文;在解密过程中,密文通过反向的映射和变换,还原为明文。
四、基于时空混沌的密码学算法性质基于时空混沌的密码学算法具有以下性质:1. 高度复杂性:算法利用时空混沌系统的复杂性,使得加密过程具有高度的复杂性,难以被破解。
2. 随机性:算法中的混沌映射产生的序列具有随机性,保证了密钥的空间复杂性和难以预测性。
3. 抗攻击性:由于算法的高度复杂性和随机性,使得攻击者难以通过暴力破解或数学分析等方式获取明文信息。
4. 灵活性:算法可以根据具体的应用场景和需求进行定制和优化,具有较强的灵活性。
五、基于时空混沌的密码学算法应用基于时空混沌的密码学算法在信息安全领域具有广泛的应用。
《计算机密码学》期末论文学院:计算机科学与技术专业:计算机科学与技术班级:学号:姓名:教师:2016年月日密码学在网络通信加密中的应用摘要:介绍了网络加密方式,分析了DES、RSA等基本的安全技术。
关键词:Internet DES RSA 加密随着科技的发展,Internet的有关技术越来越成熟,现在,Internet在我们的生活中扮演了重要的角色。
Internet对我们的生活越来越重要,人们已经离不开Internet。
随着它的迅猛发展,全球经济和社会生活都产生了巨大变化。
Internet的应用领域极其广阔,如许多高等学校,公司等都已建立自己局域网并与Internet相连。
作为获得信息的重要途径,商业界也在积极地建立企业内部网络并通过Internet向公众提供种类繁多的信息服务,其中最引人注目的当属电子商务,电子商务正是在Internet快速发展的浪潮下应运而生的,它是信息时代社会生产与社会消费之间发生的一次革命。
Internet在为人们带来无限商机的同时,也引起了许多安全问题。
如何保证各种网络应用的安全性,成了我们必须考虑的问题。
例如:电子商务中网上购物是在线付款,用户的信用卡号等许多信息都是敏感信息,而这些网上传输的敏感数据和存放敏感信息的站点正是网络黑客的重点攻击对象。
因此,人们在开展各种网络业务时,首先考虑的是这种网络业务是否能够保证安全,如果不能保证安全,人们也就不会接受这种业务。
网络通信的数据加密包括以下几个方面:(1)数据传输的安全性。
数据传输的安全性即是要保证在公网上传输的数据不被第三方窃。
(2)数据的完整性。
对数据的完整性需求是指数据在传输过程中不被篡改。
通常情况下,网络通信中所采用的安全技术主要有防火墙技术、数据加密技术和身份认证技术等。
本文讨论的重点是数据加密技术在网络通信安全策略中的应用。
一. 开放系统互联参考模型和TCP/ IP分层模型1.1开放系统互连参考模型开放系统互连参考模型(Open System Interconnect 简称OSI)是国际标准化组织(ISO)和国际电报电话咨询委员会(CCITT)联合制定的开放系统互连参考模型,为开放式互连信息系统提供了一种功能结构的框架。
传统加密技术论文软件学院计算机科学与技术07999222李文龙网络信息的飞速发展给人类社会带来巨大的推动与冲击,同时也产生了网络系统安全问题。
计算机网络的安全问题越来越受到人们的重视。
密码技术是保护计算机信息安全的主要手段之一,使用密码技术可以保证信息的机密性,还可以保证信息的完整性和确定性,防止信息被篡改、伪造和假冒。
说道密码技术,以下先了解什么是加密技术。
加密技术包括两个元素:算法和密钥。
算法是将普通的文本(或者可以理解的信息)与一串数字(密钥)的结合,产生不可理解的密文的步骤,密钥是用来对数据进行编码和解码的一种算法。
在安全保密中,可通过适当的密钥加密技术和管理机制来保证网络的信息通讯安全。
密钥加密技术的密码体制分为对称密钥体制和非对称密钥体制两种。
相应地,对数据加密的技术分为两类,即对称加密(私人密钥加密)和非对称加密(公开密钥加密)。
对称加密以数据加密标准(DES,Data Encryption Standard)算法为典型代表,非对称加密通常以RSA(Rivest Shamir Ad1eman)算法为代表。
对称加密的加密密钥和解密密钥相同,而非对称加密的加密密钥和解密密钥不同,加密密钥可以公开而解密密钥需要保密。
对称密码是一种加密使用相同密钥的密码体制,也称为传统密码算法。
对称密码利用密钥和加密算法将明文变成密文。
运用相同的密钥和解密算法,而已从密文恢复出明文。
对密码的两种攻击方法是基于密码算法性质的密码分析和基于穷举密钥的穷举攻击。
传统对称密码(计算机出现前)使用代换和/或置换技术。
代换技术。
代换技术将明文元素(字符、比特)映射为密文元素,置换技术将明文元素的位置进行系统的置换。
转轮技术是计算机出现前使用代换技术的复杂硬件设备。
隐写技术是一种将秘密信息隐藏于其他更大信息中的一种技术,是得其他人无法区分它的存在或隐藏信息的内容。
传统经典加密主要采用了两种加密技术:替代技术和置换技术。
密码学论文(1)密码学论文班级:统计学(金融数学方向)姓名:鲁亚婷学号:110444061密码学论文在我们的生活中有许多的秘密和隐私,我们不想让其他人知道,更不想让他们去广泛传播或者使用。
对于我们来说,这些私密是至关重要的,它记载了我们个人的重要信息,其他人不需要知道,也没有必要知道。
为了防止秘密泄露,我们当然就会设置密码,保护我们的信息安全。
更有甚者去设置密保,以防密码丢失后能够及时找回。
我们要为信息添加安全锁,设置密码,那么密码到底是干什么的呢?其实,密码就是为了防止未被允许进入的陌生人进入你的“账户”、“系统”等读写你的文件和数据。
很简单的理解,就和门要上锁一样,如果不上锁,那别人去你的家就和去自己的家一样了。
有此可知,密码在生活中的重要性。
“密码”一词对人们来说并不陌生,人们可以举出许多有关使用密码的例子。
如保密通信设备中使用“密码”,个人在银行取款使用“密码”,在计算机登录和屏幕保护中使用“密码”,开启保险箱使用“密码”,儿童玩电子游戏中使用“密码”等等。
这里指的是一种特定的暗号或口令字。
现代的密码已经比古代有了长远的发展,并逐渐形成一门科学,吸引着越来越多的人们为之奋斗。
从专业上来讲,密码是通信双方按约定的法则进行信息特殊变换的一种重要保密手段。
依照这些法则,变明文为密文,称为加密变换;变密文为明文,称为脱密变换。
密码在早期仅对文字或数码进行加、脱密变换,随着通信技术的发展,对语音、图像、数据等都可实施加、脱密变换。
为了研究密码所以就有了密码学。
密码学是研究编制密码和破译密码的技术科学。
研究密码变化的客观规律,应用于编制密码以保守通信秘密的,称为编码学;应用于破译密码以获取通信情报的,称为破译学,总称密码学。
密码学是在编码与破译的斗争实践中逐步发展起来的,并随着先进科学技术的应用,已成为一门综合性的尖端技术科学。
它与语言学、数学、电子学、声学、信息论、计算机科学等有着广泛而密切的联系。
信息技术安全——密码学摘要随着网络已经逐步进入我们的生活,网络安全也随之倍受人们的关注,而在网络安全中起着举足轻重作用的正是密码学,文中简单的介绍有关密码学的发展,较为详细的对密码学中极为经典的算法DES和RSA进行解释,通过对这两个算法的理解,来认识当今密码学发展的前沿和动向。
关键词密码学,非对称加密算法,对称加密算法,数字签名,Abstract the security of webnet has been paid more attention When Internet has been involving into our life .The cryptography play a important role in the security of webnet .In this article I will discuss the development of the cryptography and I will thorough interpret these two algorithm about DES and RSA. We will recognize the forward position and tendency about cryptography though understand those two algorithm.Key words Cryptography , No-symmetric encryption algorithm , symmetric encryption algorithm, the digital signature密码学的发展历程随着信息化和数字化社会的发展,人们对信息安全和保密的重要性认识不断提高,而在信息安全中起着举足轻重作用的密码学也就成为信息安全课程中不可或缺的重要部分,密码学早在公元前400多年就已经产生,正如《破译者》一书中所说的“人类使用密码的历史几乎与使用文字的时间一样长”。
密码学论⽂写作论⽂密码学论⽂写作范例论⽂ 随着⽹络空间竞争与对抗的⽇益尖锐复杂,安全问题以前所未有的深度与⼴度向传统领域延伸。
随着移动互联⽹、下⼀代互联⽹、物联⽹、云计算、命名数据⽹、⼤数据等为代表的新型⽹络形态及⽹络服务的兴起,安全需求⽅式已经由通信双⽅都是单⽤户向⾄少有⼀⽅是多⽤户的⽅式转变。
如果你想深⼊了解这⽅⾯的知识,可以看看以下密码学论⽂。
题⽬:数学在密码学中的应⽤浅析 摘要:密码学作为⼀门交叉学科,涉及学科⼴泛,其中应⽤数学占很⼤⽐例,其地位在密码学中也越来越重要,本⽂简单介绍密码学中涉及数学理论和⽅法计算的各种算法基本理论及应⽤,并将密码学的发展史分为现代密码学和传统密码学,列举⼆者具有代表性的明⽂加密⽅法,并分别对其中⼀种⽅法进⾏加密思想的概括和阐述。
关键词:密码学应⽤数学应⽤ 随着信息时代的⾼速发展,信息的安全越来越重要,⼩到个⼈信息,⼤到国家安全。
信息安全主要是将计算机系统和信息交流⽹络中的各种信息进⾏数学化的计算和处理,保护信息安全,⽽密码学在其中正是处于完成这些功能的技术核⼼。
在初期的学习当中,⾼等数学、线性代数、概率论等都是必须要学习的基础学科,但是涉及密码学的实际操作,数论和近世代数的'数学知识仍然会有不同程度的涉及和应⽤,本⽂在这⼀基础上,讨论密码学中⼀些基本理论的应⽤。
⼀、密码学的含义及特点 密码学是由于保密通信所需从⽽发展起来的⼀门科学,其保密通讯的接受过程如下:初始发送者将原始信息(明⽂)进⾏⼀定⽅式转换(加密)然后发送,接受者收到加密信息,进⾏还原解读(脱密) ,完成保密传输信息的所有过程,但是由于传输过程是经由有线电或⽆线电进⾏信息传输,易被窃取者在信息传输过程中窃取加密信息,在算法未知的情况下恢复信息原⽂,称为破译。
保密信息破译的好坏程度取决于破译者的技术及经验和加密算法的好坏。
实际运⽤的保密通信由两个重要⽅⾯构成:第⼀是已知明⽂,对原始信息进⾏加密处理,达到安全传输性的效果;第⼆是对截获的加密信息进⾏信息破译,获取有⽤信息。
现代密码学论文院(系)名称理学院专业班级计算131班学号********* 学生姓名王云英摘要现代密码学研究信息从发端到收端的安全传输和安全存储,是研究“知己知彼”的一门科学。
其核心是密码编码学和密码分析学。
前者致力于建立难以被敌方或对手攻破的安全密码体制,即“知己”,后者则力图破译敌方或对手已有的密码体制,即“知彼”。
人类有记载的通信密码始于公元前400年。
1881年世界上的第一个电话保密专利出现。
电报、无线电的发明使密码学成为通信领域中不可回避的研究课题。
现有的密码体制千千万万各不相同。
但是它们都可以分为私钥密码体制(如DES密码)和公钥密码(如公开密钥密码)。
前者的加密过程和脱密过程相同,而且所用的密钥也相同;后者,每个用户都有公开和秘密钥。
现代密码学是一门迅速发展的应用科学。
随着因特网的迅速普及,人们依靠它传送大量的信息,但是这些信息在网络上的传输都是公开的。
因此,对于关系到个人利益的信息必须经过加密之后才可以在网上传送,这将离不开现代密码技术。
PKI是一个用公钥概念与技术来实施和提供安全服务的具有普适性的安全基础设施。
PKI公钥基础设施的主要任务是在开放环境中为开放性业务提供数字签名服务。
现代密码学的算法研究密码算法主要分为对称密码算法和非对称密码算法两大类。
对称加密算法指加密密钥和解密密钥相同,或知道密钥之一很容易推导得到另一个密钥。
通常情况下,对称密钥加密算法的加\解密速度非常快,因此,这类算法适用于大批量数据的场合。
这类算法又分为分组密码和流密码两大类。
1.1 分组密码分组密码算法实际上就是密钥控制下,通过某个置换来实现对明文分组的加密变换。
为了保证密码算法的安全强度,对密码算法的要求如下。
1.分组长度足够大:当分组长度较小时,分组密码类似于古典的代替密码,它仍然保留了明文的统计信息,这种统计信息将给攻击者留下可乘之机,攻击者可以有效地穷举明文空间,得到密码变换本身。
2.密钥量足够大:分组密码的密钥所确定密码变换只是所有置换中极小一部分。
密码学原理及应用的小论文引言密码学是研究通信安全和信息安全的学科,它涉及到使用密码算法来保障数据的机密性、完整性和可用性。
随着互联网的快速发展,密码学变得越来越重要,它不仅应用于日常的网络通信,还广泛应用于金融、电子商务、军事等领域。
本文将介绍密码学的基本原理以及其在现实生活中的应用。
密码学的基本原理密码学的基本原理主要包括对称密码和非对称密码两种方式。
对称密码对称密码也称为私钥密码,它使用相同的密钥进行加密和解密。
发送方使用密钥对明文进行加密,并将密文传输给接收方,接收方再使用相同的密钥对密文进行解密。
常见的对称密码算法包括DES(Data Encryption Standard)、AES (Advanced Encryption Standard)等。
对称密码的优点是加解密速度快,适合对大量数据进行加密。
然而,由于发送和接收方需要共享同一个密钥,导致密钥管理变得困难,容易引发安全问题。
非对称密码非对称密码也称为公钥密码,它使用两个密钥:公钥和私钥。
发送方使用接收方的公钥对明文进行加密,并将密文传输给接收方。
接收方使用自己的私钥对密文进行解密。
常见的非对称密码算法包括RSA(Rivest-Shamir-Adleman)、DSA (Digital Signature Algorithm)等。
非对称密码的优点是密钥管理方便,安全性较高。
然而,加解密速度比对称密码慢,适合对少量数据进行加密。
密码学的应用网络通信安全网络通信安全是密码学应用的主要领域之一。
在网络通信中,不同的实体通过公网进行数据传输,为了保障数据的机密性和完整性,使用密码学进行加密是必要的。
例如,在网上购物中,消费者使用网银进行支付,需要通过密码学保障交易数据的安全性,防止被黑客篡改或窃取。
数字签名数字签名是密码学在数据完整性验证方面的一个重要应用。
使用私钥对数据进行签名,然后接收方使用发送方的公钥对签名进行验证。
如果验证通过,则说明数据完整且未被篡改。
密码学论文RSA加密算法解析摘要:描述了RSA算法,给出了RSA加密解密的算法原理并用一个实例进行详细描述,以及它的抗攻击能力和常见攻击方式,还有RSA算法的优缺点,最后进行(在VS2019下)RSA算法实现以及演示结果。
关键词:RSA;加密解密;攻击能力;攻击方法;安全性;算法优缺点;RSA实现简介:RSA加密算法是最常用的非对称加密算法,CFCA在证书服务中离不了它。
RSA是第一个比较完善的公开密钥算法,它既能用于加密,也能用于数字签名。
RSA以它的三个发明者Ron Rivest, Adi Shamir, Leonard Adleman的名字首字母命名,这个算法经受住了多年深入的密码分析,虽然密码分析者既不能证明也不能否定RSA的安全性,但这恰恰说明该算法有一定的可信性,目前它已经成为最流行的公开密钥算法。
RSA的安全基于大数分解的难度。
其公钥和私钥是一对大素数(100到200位十进制数或更大)的函数。
从一个公钥和密文恢复出明文的难度,等价于分解两个大素数之积。
RSA的公钥、私钥的组成,以及加密、解密的公式可见于下表:一、什么是“素数”?素数是这样的整数,它除了能表示为它自己和1的乘积以外,不能表示为任何其它两个整数的乘积。
例如,15=3*5,所以15不是素数;又如,12=6*2=4*3,所以12也不是素数。
另一方面,13除了等于13*1以外,不能表示为其它任何两个整数的乘积,所以13是一个素数。
素数也称为“质数”。
二、什么是“互质数”(或“互素数”)?定义:“公约数只有1的两个数,叫做互质数。
”这里所说的“两个数”是指自然数。
判别方法主要有以下几种:(1)两个质数一定是互质数。
例如,2与7、13与19。
(2)一个质数如果不能整除另一个合数,这两个数为互质数。
例如,3与10、5与26。
(3)1不是质数也不是合数,它和任何一个自然数在一起都是互质数。
如1和9908。
(4)相邻的两个自然数是互质数。
学院:计算机科学与教育软件学院专业:软件工程班级:软工075姓名:tangelyou密码学论文00一、密码学的定义和作用00密码学是主要研究通信安全和保密的学科,他包括两个分支:密码编码学和密码分析学。
密码编码学主要研究对信息进行变换,以保护信息在传递过程中不被敌方窃取、解读和利用的方法,而密码分析学则于密码编码学相反,它主要研究如何分析和破译密码。
这两者之间既相互对立又相互促进。
密码的基本思想是对机密信息进行伪装。
一个密码系统完成如下伪装:加密者对需要进行伪装机密信息(明文)进行伪装进行变换(加密变换),得到另外一种看起来似乎与原有信息不相关的表示(密文),如果合法者(接收者)获得了伪装后的信息,那么他可以通过事先约定的密钥,从得到的信息中分析得到原有的机密信息(解密变换),而如果不合法的用户(密码分析者)试图从这种伪装后信息中分析得到原有的机密信息,那么,要么这种分析过程根本是不可能的,要么代价过于巨大,以至于无法进行。
0二、密码学的发展历程人类有记载的通信密码始于公元前400年。
密码学的起源的确要追溯到人类刚刚出现,并且尝试去学习如何通信的时候,为了确保他们的通信的机密,最先是有意识的使用一些简单的方法来加密信息,通过一些(密码)象形文字相互传达信息。
接着由于文字的出现和使用,确保通信的机密性就成为一种艺术,古代发明了不少加密信息和传达信息的方法。
例如我国古代的烽火就是一种传递军情的方法,再如古代的兵符就是用来传达信息的密令。
就连闯荡江湖的侠士,都有秘密的黑道行话,更何况是那些不堪忍受压迫义士在秘密起义前进行地下联络的暗语,这都促进了密码学的发展。
事实上,密码学真正成为科学是在19世纪末和20世纪初期,由于军事、数学、通讯等相关技术的发展,特别是两次世界大战中对军事信息保密传递和破获敌方信息的需求,密码学得到了空前的发展,并广泛的用于军事情报部门的决策。
太平洋战争中,美军破译了日本海军的密码机,读懂了日本舰队司令官山本五十六发给各指挥官的命令,在中途岛彻底击溃了日本海军,导致了太平洋战争的决定性转折,而且不久还击毙了山本五十六。
密码学教学实践应用分析论文(共6篇)本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!第1篇:浅析密码学在信息安全中的应用随着人们生活水平的快速提高和现代电子信息技术的发展,互联网开始走进千家万户,不断改变着人们的生活和工作方式。
与此同时,也给人们的个人信息和隐私带来了极大的安全隐患。
相关的恶性事件也多次被新闻媒体曝光,对网络信息安全提出了巨大的挑战。
因此,密码学逐渐被业内人士发现并进行深入研究后,被广泛应用到网络信息安全中来,以确保网络信息达到真正意义上的安全。
1密码学技术主要的分类加密技术使确保网络信息安全的重要手段,工作原理就是将网络信息转化为密文,然后通过网络突进进行传送,即使被不法分子捕获,也无法识别其中的有效信息,在输出时,再将信息转化为人们交流使用的明文。
通过这种方式来确保网络信息的安全。
加密目前有两种主要的分类即专用密钥加密和非对称加密。
专用密钥加密或对称加密方法专用密钥加密或对称加密主要的特点就是加密密钥和解密密钥是同一种密钥,大大简化了对信息加密的过程。
传输双方要想获得有用的信息只需要共享就可以得到,不需要再进行交换彼此的算法[1]。
但是这种方法有一定的缺陷,就是在信息传输过程中无法识别信息的发起方和信息的最终方,而且只能是一一对应的映射方式。
专用密钥加密的密钥总共是56位,在传统的DES 加密技术的基础上,进一步优化改进成三重DES,大大加大了信息的安全性。
并且RCZ和RC4加密技术也逐渐被广泛应用,这种算法的密钥长度是可以改变的,可以根据不同的情况使用不同长度的密钥。
非对称加密或公共密钥加密方法在加密过程中,密钥被进一步分解成一对密钥,这一对密钥中的任何一个密钥都可以作为公开的密钥被大量使用,但是为确保信息安全必须把另外一把密钥保存起来,由一方单独掌握。
非对称密钥常用的加密方法就是RSA算法,它有一个明显的缺点就是运算的速度非常的缓慢[2]。
传统加密技术
对称密码是一种加密使用相同密钥的密码体制,也称为传统密码算法。
对称密码利用密钥和加密算法将明文变成密文。
运用相同的密钥和解密算法,而已从密文恢复出明文。
对密码的两种攻击方法是基于密码算法性质的密码分析和基于穷举密钥的穷举攻击。
传统对称密码(计算机出现前)使用代换和/或置换技术。
代换技术。
代换技术将明文元素(字符、比特)映射为密文元素,置换技术将明文元素的位置进行系统的置换。
转轮技术是计算机出现前使用代换技术的复杂硬件设备。
隐写技术是一种将秘密信息隐藏于其他更大信息中的一种技术,是得其他人无法区分它的存在或隐藏信息的内容。
下面介绍几种经典加密技术。
经典加密主要采用了两种加密技术:替代技术和置换技术。
(1)替代技术
替代技术是将明文中的每个元素(字母、比特、比特组合或字母组合)映射为另一个元素的技术。
明文的元素被其他元素所代替而形成密文。
在经典加密技术中使用的元素一般为字母或数字。
下面给出经典加密中几种有代表性的替代技术。
1)凯撒密码
凯撒密码是最早使用的替代密码。
定义1 凯撒密码将字母表视为一个循环的表,把明文中的字母用表中该字母后面第3个字母进行替代。
凯撤密码的明文字母和密文字母的对应关系如下:
明文字母:a b c d e f g h I j k l m n o p q r s t u v w x y z
密文字母:DEFGHIJKLMNOPQRSTUVWXYZABC
若让每个字母对应一个数值(a=0,b=1,……,z=25),则该算法可以表示为:。
定义2 将1算法一般化,即密文字母与明文字母的偏移可以是任意值,形成了所谓的移位密码,其算法可以表示为:
k就是加密算法的密钥,可以在1到25之间取值。
解密算法可以表示为:。
由于k的取值范围的限制,凯撒密码的密钥空间很小,难以抵御强行攻击密码分析。
攻击者最多尝试25次,就一定能够破译密码。
2)单字母替代密码
为了加大凯撒密码的密钥空间,可以采用单字母替代密码。
单字母替代密码是将密文字母的顺序打乱后与图文字母对应。
明文字母:a b c d e f g h I j k l m n o p q r s t u v w x y z
密文字母:OGR F C Y S A L X U B Z Q T W D V E H J M K P N I
此时的密钥空间大小为26!,约为4×1026。
即使每微秒试一个密钥,也需要花费约1010年才能穷举所有的密钥。
因此,强行攻击法不太适合。
3)Vigenere密码
Vigenere密码利用一个凯撤方阵来修正密文中字母的频率。
在明文中不同地方出现的同一字母在密文中一般用不同的字母替代。
凯撒方阵的形式为:
A B C D E F G … Y Z
B C D E F G H … Z A
C D E F G H I … A B
D E F G H I J … B C
…
Z A B C D E F … X Y
加密时,使用一个通信双方所共享的密钥字母串(如:HAPPYTIME),将密钥字母串重复书写在明文字母的上方。
对要加密的明文字母找到上方的密钥字母,然后比一下以确定凯撒方阵的某一行〔以该密钥字母开头的行〕。
最后利用该行的字母表,使用凯撒密码的加密方法进行替代:
例如:
密钥:H A P P Y T I E H A P P Y T I M
明文:p l e a s e s e n d t h e d a t a
明文中的第一个e用凯撒方阵中的P行(PQRSTU…O)进行加密,因此被T替代;第二个e用方阵中的T行(TUVWX…S)进行加密,因此被X替代。
即使只选择凯撒方阵中的任意m行,Vigenere密码的密钥字的长度将是26m,穷举密钥空间将需要很长时间,例如m=5,密钥空间超过11000000,已经足以阻止手工穷举密钥搜索。
在Vigenere密码中,一个字母能够映射成m个可能字母中的一个,这样的密码体制称为多表密码体制,一般情况下对多表密码体制的密码分析比单表困难。
(2)置换技术
置换是在不丢失信息的前提下对明文中的元素进行重新排列。
1)矩形转置密码
将明文写成矩形结构,然后通过控制其输出方向和输出顺序来获得密文。
例如,明文please send the
data在不同输出顺序下的密文如下图所示。
矩形方阵上方的数字和字母串为代表输出顺序的密钥,字母串按字母顺序输出(AEFRT)。
2)图形转置密码
一个三角形转置密码的例子如下图所示
传统密码的发展前景:
盖茨:传统密码将逐渐消失身份加密技术现身。
微软主席比尔-盖茨预言传统口令密码方式将死亡,因为这种加密方式无法应对保护关键信息安全的挑战。
微软主席比尔-盖茨预言传统口令密码方式将死亡,因为这种加密方式无法应对保护关键信息安全的挑战。
周三在RSA安全大会的讲演中,盖茨指出:随着时间流逝,毫无疑问,人们将越来越少地依赖于口令。
人们在不同的系统中使用同样的口令,人们写下口令,而口令恰恰无法满足你真地想要加密东西的挑战。
RSA正在与微软合作开发特别用于Windows SecurID(身份加密)技术。
两家公司都同意,必须去除员工采用不可靠口令加密方式的脆弱性。
SecurID是一种最著名的两因数认证制度,被许多大公司所应用。
这种技术在用户键入他们的正常密码或PIN时不断地改变数字顺序。
创造一个Windows用的特殊系统可能意味着在企业可以在整个公司里全面推出更便捷与更便宜的强大认证系统。
然而,盖茨指出,微软公司不会在内部采用SecurID系统,因为微软已经RSA公司的帮助下采用了Smart-card智能卡
ID卡软件,这是微软研究部门自己开发的。
小企业和大公司都可以用数码相机、喷墨打印机和商用卡扫描仪来制作身份卡。
微软研究部门开发经理称,这套系统的关键之处在于它不需要数据库,因为所有信息已经储存在卡里。
他还说,这套系统还可用来储存指纹。
当前,密码学发展面临着挑战和机遇。
计算机网络通信技术的发展和信息时代的到来,对密码学即使挑战也是机遇,密码学将迎来它的新纪元。