其中所有正确结论的编号是( D )
A.①④
B.②③ C.①②③ D.①③④
[解析] 已知 f(x)=sinωx+π5(ω>0)在[0,2π]有且仅有 5 个零点,如图, 其图象的右端点的横坐标在[a,b)上,此时 f(x)在(0,2π)有且仅有 3 个极
大值点,但 f(x)在(0,2π)可能有 2 或 3 个极小值点,所以①正确,②不正 确;当 x∈[0,2π]时,ωx+π5∈5π,2πω+π5,由 f(x)在[0,2π]有且仅有 5 个 零点可得 5π≤2πω+π5<6π,得 ω 的取值范围是152,2190,所以④正确; 当 x∈0,1π0时,π5<ωx+π5<π1ω0 +π5<41090π<π2,所以 f(x)在0,1π0单调递 增,所以③正确.
三角函数的零点、不等式问题的求解思路 (1)把函数表达式转化为正弦型函数情势y=Asin(ωx+φ)+B(A>0, ω>0). (2)画出长度为一个周期的区间上的函数图象. (3)利用图象解决有关三角函数的零点、不等式问题.
[题组突破]
1.(2021·佛山四校联考)已知x0=
π 3
是函数f(x)=sin(2x+φ)的一个极大值
点,则f(x)的一个单调递减区间是( B )
A.6π,23π C.2π,π
B.3π,56π D.23π,π
角,∴2A=π3,A=π6,故tan
A=
3 3.
确定y=Asin(ωx+φ)+b(A>0,ω>0)的步骤和方法 (1)求A,b.确定函数的最大值M和最小值m, 则A=M-2 m,b=M+2 m. (2)求ω.确定函数的最小正周期T,则ω=2Tπ.
(3)求φ常用的方法: ①代入法:把图象上的一个已知点代入(此时A,ω,b已知)或代入 图象与直线y=b的交点求解(此时要注意交点在上升区间上还是在 降落区间上). ②特殊点法:确定φ值时,往往以寻找“最值点”为突破口.具体 如下: