高中数学专题练习-三角函数及解三角形
- 格式:doc
- 大小:7.10 MB
- 文档页数:21
高考数学专题复习:三角函数与解三角形第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.(2011·宁夏银川一中检测)y =(sin x +cos x )2-1是( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为π的奇函数[答案] D[解析] y =(sin x +cos x )2-1=2sin x cos x =sin2x ,所以函数y =(sin x +cos x )2-1是最小正周期为π的奇函数.2.(2011·宁夏银川月考、山东聊城一中期末)把函数y =sin(ωx +φ)(ω>0,|φ|<π)的图象向左平移π6个单位,再将图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)所得的图象解析式为y =sin x ,则( )A .ω=2,φ=π6B .ω=2,φ=-π3C .ω=12,φ=π6D .ω=12,φ=π12[答案] B[分析] 函数y =sin(ωx +φ)经过上述变换得到函数y =sin x ,把函数y =sin x 的图象经过上述变换的逆变换即可得到函数y =sin(ωx +φ)的图象.[解析] 把y =sin x 图象上所有点的横坐标缩小到原来的12倍得到的函数解析式是y =sin2x ,再把这个函数图象向右平移π6个单位,得到的函数图象的解析式是y =sin2⎝⎛⎭⎫x -π6=sin ⎝⎛⎭⎫2x -π3,与已知函数比较得ω=2,φ=-π3. [点评] 本题考查三角函数图象的变换,试题设计成逆向考查的方式更能考查出考生的分析解决问题的灵活性,本题也可以根据比较系数的方法求解,根据已知的变换方法,经过两次变换后函数y =sin(ωx +φ)被变换成y =sin ⎝⎛⎭⎫ωx 2+ωπ6+φ比较系数也可以得到问题的答案.3.(2011·辽宁沈阳二中阶段检测)若函数f (x )=sin ωx +cos ωx (ω>0)的最小正周期为1,则它的图像的一个对称中心为( )A.⎝⎛⎭⎫-π8,0 B.⎝⎛⎭⎫π8,0C .(0,0) D.⎝⎛⎭⎫-π4,0 [答案] A[分析] 把函数化为一个角的一种三角函数,根据函数的最小正周期求出ω的值,根据对称中心是函数图象与x 轴的交点进行检验或直接令f (x )=0求解.[解析] f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π4,这个函数的最小正周期是2πω,令2πω=1,解得ω=2,故函数f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎫2x +π4,把选项代入检验知点⎝⎛⎭⎫-π8,0为其一个对称中心.[点评] 函数y =A sin(ωx +φ)的图象的对称中心,就是函数图象与x 轴的交点. 4.(2011·江西南昌市调研)已知函数y =A sin(ωx +φ)+m (A >0,ω>0)的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则符合条件的函数解析式是( )A .y =4sin ⎝⎛⎭⎫4x +π6B .y =2sin ⎝⎛⎭⎫2x +π3+2 C .y =2sin ⎝⎛⎭⎫4x +π3+2 D .y =2sin ⎝⎛⎭⎫4x +π6+2 [答案] D[解析] 由最大值为4,最小值为0得⎩⎪⎨⎪⎧ A +m =4-A +m =0,∴⎩⎪⎨⎪⎧A =2m =2, 又因为正周期为π2,∴2πω=π2,∴ω=4,∴函数为y =2sin(4x +φ)+2,∵直线x =π3为其对称轴,∴4×π3+φ=π2+k π,k ∈Z ,∴φ=k π-5π6,取k =1知φ=π6,故选D.5.(文)(2011·北京朝阳区期末)要得到函数y =sin ⎝⎛⎭⎫2x -π4的图象,只要将函数y =sin2x 的图象( )A .向左平移π4个单位B .向右平移π4个单位C .向右平移π8个单位D .向左平移π8个单位[答案] C[解析] y =sin ⎝⎛⎭⎫2x -π4=sin2⎝⎛⎭⎫x -π8,故只要将y =sin2x 的图象向右平移π8个单位即可.因此选C.(理)(2011·东北育才期末)已知a =(cos x ,sin x ),b =(sin x ,cos x ),记f (x )=a ·b ,要得到函数y =cos 2x -sin 2x 的图像,只需将函数y =f (x )的图像( )A .向左平移π2个单位长度B .向右平移π2个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度[答案] C[解析] f (x )=a ·b =cos x sin x +sin x cos x =sin2x ,y =cos 2x -sin 2x =cos2x =sin ⎝⎛⎭⎫π2+2x =sin2⎝⎛⎭⎫x +π4,可将f (x )的图象向左平移π4个单位长度得到,故选C. 6.(文)(2011·北京西城区期末)已知△ABC 中,a =1,b =2,B =45°,则角A 等于( ) A .150° B .90° C .60° D .30°[答案] D[解析] 根据正弦定理得1sin A =2sin45°,∴sin A =12,∵a <b ,∴A 为锐角,∴A =30°,故选D.(理)(2011·福州期末)黑板上有一道解答正确的解三角形的习题,一位同学不小心把其中一部分擦去了,现在只能看到:在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知a =2,……,解得b = 6.根据以上信息,你认为下面哪个选项可以作为这个习题的其余已知..条件..( ) A .A =30°,B =45° B .c =1,cos C =13C .B =60°,c =3D .C =75°,A =45° [答案] D[分析] 可将选项的条件逐个代入验证. [解析] ∵2sin30°≠6sin45°,∴A 错;∵cos C =a 2+b 2-c 22ab =4+6-146≠13,∴B 错;∵a 2+c 2-b 22ac =4+9-612=712≠cos60°,∴C 错,故选D.7.(文)(2011·黄冈市期末)已知函数y =A sin(ωx +φ)+b 的一部分图象如图所示,如图A >0,ω>0,|φ|<π2,则( )A .φ=-π6B .φ=-π3[答案] D[解析] 由图可知⎩⎪⎨⎪⎧ A +b =4-A +b =0,∴⎩⎪⎨⎪⎧A =2b =2, 又T 4=5π12-π6=π4,∴T =π,∴ω=2, ∴y =2sin(2x +φ)+2,将⎝⎛⎭⎫5π12,2代入得sin ⎝⎛⎭⎫5π6+φ=0,结合选项知选D. (理)(2011·蚌埠二中质检)函数y =cos(ωx +φ)(ω>0,0<φ<π)为奇函数,该函数的部分图象如右图所表示,A 、B 分别为最高与最低点,并且两点间的距离为22,则该函数的一条对称轴为( )A .x =2πB .x =π2C .x =1D .x =2[答案] C[解析] ∵函数y =cos(ωx +φ)为奇函数,0<φ<π,∴φ=π2,∴函数为y =-sin ωx ,又ω>0,相邻的最高点与最低点A 、B 之间距离为22,∴ω=π2,∴y =-sin π2x ,其对称轴方程为π2x=k π+π2,即x =2k +1(k ∈Z ),令k =0得x =1,故选C.8.(文)(2011·安徽百校联考)已知cos ⎝⎛⎭⎫3π2-φ=32,且|φ|<π2,则tan φ等于( ) A .-33B.33C. 3 D .- 3[答案] D[解析] 由cos ⎝⎛⎭⎫3π2-φ=32得,sin φ=-32, 又|φ|<π2,∴cos φ=12,∴tan φ=- 3.(理)(2011·山东日照调研)已知cos α=-45且α∈⎝⎛⎭⎫π2,π,则tan ⎝⎛⎭⎫α+π4等于( )C.17 D .7[答案] C[解析] ∵cos α=-45,π2≤α≤π,∴sin α=35,∴tan α=-34,∴tan ⎝⎛⎭⎫α+π4=tan α+tan π41-tan α·tan π4=-34+11-⎝⎛⎭⎫-34×1=17,故选C. 9.(2011·巢湖质检)如图是函数y =sin(ωx +φ)的图象的一部分,A ,B 是图象上的一个最高点和一个最低点,O 为坐标原点,则OA →·OB →的值为( )A.12π B.19π2+1 C.19π2-1 D.13π2-1 [答案] C[解析] 由图知T 4=5π12-π6=π4,∴T =π,∴ω=2,∴y =sin(2x +φ),将点⎝⎛⎭⎫-π12,0的坐标代入得sin ⎝⎛⎭⎫-π6+φ=0, ∴φ=π6,∴A ⎝⎛⎭⎫π6,1,B ⎝⎛⎭⎫2π3,-1,∴OA →·OB →=π29-1,故选C. 10.(2011·潍坊一中期末)已知函数f (x )=2sin ωx (ω>0)在区间[-π3,π4]上的最大值是2,则ω的最小值等于( )A.23B.32 C .2 D .3[答案] C[解析] 由条件知f ⎝⎛⎭⎫π4=2sin π4ω=2,∴ω=8k +2,∵ω>0,∴ω最小值为2. 11.(文)(2011·烟台调研)已知tan α=2,则2sin 2α+1sin2α=( )A.53 B .-134C.135D.134[答案] D[解析] ∵tan α=2,∴2sin 2α+1sin2α=3sin 2α+cos 2α2sin αcos α=3tan 2α+12tan α=134.(理)(2011·四川广元诊断)tan10°+tan50°+tan120°tan10°·tan50°的值应是( )A .-1B .1C .- 3 D. 3 [答案] C [解析]原式=tan (10°+50°)(1-tan10°tan50°)-tan60°tan10°tan50°=3-3tan10°tan50°-3tan10°tan50°=- 3.12.(2011·温州八校期末)在△ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,设命题p :a sin B =b sin C =csin A,命题q :△ABC 是等边三角形,那么命题p 是命题q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件[答案] C[解析] ∵a sin B =b sin C =csin A ,∴由正弦定理得sin A sin B =sin B sin C =sin Csin A,∴sin A =sin B =sin C ,即a =b =c ,∴p ⇔q ,故选C.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(文)(2011·山东日照调研)在△ABC 中,若a =b =1,c =3,则∠C =________. [答案]2π3[解析] cos C =a 2+b 2-c 22ab =1+1-32=-12,∴C =2π3.(理)(2011·四川资阳模拟)在△ABC 中,∠A =π3,BC =3,AB =6,则∠C =________.[答案] π4[解析] 由正弦定理得3sin π3=6sin C ,∴sin C =22,∵AB <BC ,∴C <A ,∴C =π4.14.(2011·山东潍坊一中期末)若tan α=2,tan(β-α)=3,则tan(β-2α)的值为________. [答案] 17[解析] tan(β-2α)=tan[(β-α)-α] =tan (β-α)-tan α1+tan (β-α)·tan α=3-21+3×2=17.15.(2011·安徽百校论坛联考)已知f (x )=2sin ⎝⎛⎭⎫2x -π6-m 在x ∈[0,π2]上有两个不同的零点,则m 的取值范围是________.[答案] [-1,2][解析] f (x )在[0,π2]上有两个不同零点,即方程f (x )=0在[0,π2]上有两个不同实数解,∴y =2sin ⎝⎛⎭⎫2x -π6,x ∈[0,π2]与y =m 有两个不同交点, ∵0≤x ≤π2,∴-π6≤2x -π6≤5π6,∴-12≤sin(2x -π6)≤1,∴-1≤y ≤2,∴-1≤m ≤2.16.(2011·四川广元诊断)对于函数f (x )=2cos 2x +2sin x cos x -1(x ∈R )给出下列命题:①f (x )的最小正周期为2π;②f (x )在区间[π2,5π8]上是减函数;③直线x =π8是f (x )的图像的一条对称轴;④f (x )的图像可以由函数y =2sin2x 的图像向左平移π4而得到.其中正确命题的序号是________(把你认为正确的都填上).[答案] ②③[解析] f (x )=cos2x +sin2x =2sin ⎝⎛⎭⎫2x +π4,最小正周期T =π;由2k π+π2≤2x +π4≤2k π+3π2(k ∈Z )得k π+π8≤x ≤k π+5π8,故f (x )在区间[π2,5π8]上是减函数;当x =π8时,2x +π4=π2,∴x =π8是f (x )的图象的一条对轴称;y =2sin2x 的图象向左平移π4个单位得到的图象对应函数为y =2sin2⎝⎛⎭⎫x +π4,即y =2sin ⎝⎛⎭⎫2x +π2,因此只有②③正确. 三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)(2011·烟台调研)向量m =(a +1,sin x ),n =(1,4cos(x +π6)),设函数g (x )=m ·n (a ∈R ,且a 为常数).(1)若a 为任意实数,求g (x )的最小正周期;(2)若g (x )在[0,π3)上的最大值与最小值之和为7,求a 的值.[解析] g (x )=m ·n =a +1+4sin x cos(x +π6)=3sin2x -2sin 2x +a +1 =3sin2x +cos2x +a =2sin(2x +π6)+a(1)g (x )=2sin(2x +π6)+a ,T =π.(2)∵0≤x <π3,∴π6≤2x +π6<5π6当2x +π6=π2,即x =π6时,y max =2+a .当2x +π6=π6,即x =0时,y min =1+a ,故a +1+2+a =7,即a =2.18.(本小题满分12分)(2011·四川资阳模拟)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)在x =π6取得最大值2,方程f (x )=0的两个根为x 1、x 2,且|x 1-x 2|的最小值为π.(1)求f (x );(2)将函数y =f (x )图象上各点的横坐标压缩到原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在[-π4,π4]上的值域.[解析] (1)由题意A =2,函数f (x )最小正周期为2π,即2πω=2π,∴ω=1.从而f (x )=2sin(x +φ),∵f ⎝⎛⎭⎫π6=2,∴sin ⎝⎛⎭⎫π6+φ=1,则π6+φ=π2+2k π,即φ=π3+2k π, ∵0<φ<π,∴φ=π3.故f (x )=2sin ⎝⎛⎭⎫x +π3. (2)可知g (x )=2sin ⎝⎛⎭⎫2x +π3, 当x ∈[-π4,π4]时,2x +π3∈[-π6,5π6],则sin ⎝⎛⎭⎫2x +π3∈[-12,1],故函数g (x )的值域是[-1,2].19.(本小题满分12分)(2011·山西太原调研)在△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,已知a +b =5,c =7,且4sin 2A +B 2-cos2C =72.(1)求角C 的大小; (2)求△ABC 的面积.[解析] (1)∵A +B +C =180°,4sin 2A +B 2-cos2C =72.∴4cos 2C 2-cos2C =72,∴4·1+cos C 2-(2cos 2C -1)=72,∴4cos 2C -4cos C +1=0,解得cos C =12,∵0°<C <180°,∴C =60°. (2)∵c 2=a 2+b 2-2ab cos C , ∴7=(a +b )2-3ab ,解得ab =6. ∴S △ABC =12ab sin C =12×6×32=332.20.(本小题满分12分)(2011·辽宁大连联考)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f (x )的解析式;(2)若f ⎝⎛⎭⎫α2=45,0<α<π3,求cos α的值. [解析] (1)由图象知A =1f (x )的最小正周期T =4×⎝⎛⎭⎫5π12-π6=π,故ω=2πT =2 将点⎝⎛⎭⎫π6,1代入f (x )的解析式得sin ⎝⎛⎭⎫π3+φ=1, 又|φ|<π2,∴φ=π6故函数f (x )的解析式为f (x )=sin ⎝⎛⎭⎫2x +π6 (2)f ⎝⎛⎭⎫α2=45,即sin ⎝⎛⎭⎫α+π6=45,又0<α<π3,∴π6<α+π6<π2,∴cos ⎝⎛⎭⎫α+π6=35. 又cos α=[(α+π6)-π6]=cos ⎝⎛⎭⎫α+π6cos π6+sin ⎝⎛⎭⎫α+π6sin π6=33+410. 21.(本小题满分12分)(文)(2011·浙江宁波八校联考)A 、B 是单位圆O 上的动点,且A 、B 分别在第一、二象限,C 是圆O与x 轴正半轴的交点,△AOB 为等腰直角三角形.记∠AOC =α.(1)若A 点的坐标为⎝⎛⎭⎫35,45,求sin 2α+sin2αcos 2α+cos2α的值; (2)求|BC |2的取值范围. [解析] (1)∵tan α=4535=43,∴原式=tan 2α+2tan α2-tan 2α=20.(2)A (cos α,sin α),B (cos(α+π2),sin(α+π2)),且C (1,0)|BC |2=[cos(α+π2)-1]2+sin 2(α+π2)=2+2sin α而A ,B 分别在第一、二象限,α∈⎝⎛⎭⎫0,π2, ∴|BC |2的取值范围是(2,4).(理)(2011·华安、连城、永安、漳平、龙海、泉港六校联考)A 、B 、C 为△ABC 的三个内角,且其对边分别为a 、b 、c ,若m =⎝⎛⎭⎫-cos A 2,sin A 2,n =⎝⎛⎭⎫cos A 2,sin A 2,且m ·n =12. (1)求角A 的大小;(2)若a =23,三角形面积S =3,求b +c 的值. [解析] (1)m ·n =-cos 2A 2+sin 2A 2=-cos A =12,∴cos A =-12,∵A ∈(0°,180°),∴A =120°.(2)S △ABC =12bc sin120°= 3含详解答案 ∴bc =4,又∵a 2=b 2+c 2-2bc cos120°=b 2+c 2+bc =(b +c )2-bc =12,∴b +c =4.22.(本小题满分12分)(2011·黑龙江哈六中期末)在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3. (1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin2A ,求△ABC 的面积.[解析] (1)由余弦定理及已知条件得,a 2+b 2-ab =4,又因为△ABC 的面积等于3,所以12ab sin C =3,得ab =4.联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2. (2)由题意得sin(B +A )+sin(B -A )=4sin A cos A ,即sin B cos A =2sin A cos A ,当cos A =0时,A =π2,B =π6,a =433,b =233, 当cos A ≠0时,得sin B =2sin A ,由正弦定理得b =2a ,联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a , 解得a =233,b =433. 所以△ABC 的面积S =12ab sin C =233.。
高考数学-三角函数及解三角形(含22年真题讲解)1.【2022年全国甲卷】将函数f(x)=sin (ωx +π3)(ω>0)的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是( ) A .16 B .14C .13D .12【答案】C 【解析】 【分析】先由平移求出曲线C 的解析式,再结合对称性得ωπ2+π3=π2+kπ,k ∈Z ,即可求出ω的最小值.【详解】由题意知:曲线C 为y =sin [ω(x +π2)+π3]=sin(ωx +ωπ2+π3),又C 关于y 轴对称,则ωπ2+π3=π2+kπ,k ∈Z ,解得ω=13+2k,k ∈Z ,又ω>0,故当k =0时,ω的最小值为13. 故选:C.2.【2022年全国甲卷】沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,AB ⌢是以O 为圆心,OA 为半径的圆弧,C 是的AB 中点,D 在AB ⌢上,CD ⊥AB .“会圆术”给出AB ⌢的弧长的近似值s 的计算公式:s =AB +CD 2OA.当OA =2,∠AOB=60°时,s =( )A .11−3√32B .11−4√32C .9−3√32D .9−4√32【解析】【分析】连接OC,分别求出AB,OC,CD,再根据题中公式即可得出答案. 【详解】解:如图,连接OC,因为C是AB的中点,所以OC⊥AB,又CD⊥AB,所以O,C,D三点共线,即OD=OA=OB=2,又∠AOB=60°,所以AB=OA=OB=2,则OC=√3,故CD=2−√3,所以s=AB+CD2OA =2+(2−√3)22=11−4√32.故选:B.3.【2022年全国甲卷】设函数f(x)=sin(ωx+π3)在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是()A.[53,136)B.[53,196)C.(136,83]D.(136,196]【答案】C 【解析】由x 的取值范围得到ωx +π3的取值范围,再结合正弦函数的性质得到不等式组,解得即可. 【详解】解:依题意可得ω>0,因为x ∈(0,π),所以ωx +π3∈(π3,ωπ+π3),要使函数在区间(0,π)恰有三个极值点、两个零点,又y =sinx ,x ∈(π3,3π)的图象如下所示:则5π2<ωπ+π3≤3π,解得136<ω≤83,即ω∈(136,83]. 故选:C .4.【2022年全国乙卷】函数f (x )=cosx +(x +1)sinx +1在区间[0,2π]的最小值、最大值分别为( ) A .−π2,π2 B .−3π2,π2C .−π2,π2+2 D .−3π2,π2+2【答案】D 【解析】 【分析】利用导数求得f (x )的单调区间,从而判断出f (x )在区间[0,2π]上的最小值和最大值. 【详解】f ′(x )=−sinx +sinx +(x +1)cosx =(x +1)cosx ,所以f (x )在区间(0,π2)和(3π2,2π)上f ′(x )>0,即f (x )单调递增; 在区间(π2,3π2)上f ′(x )<0,即f (x )单调递减, 又f (0)=f (2π)=2,f (π2)=π2+2,f (3π2)=−(3π2+1)+1=−3π2, 所以f (x )在区间[0,2π]上的最小值为−3π2,最大值为π2+2.5.【2022年新高考1卷】记函数f(x)=sin(ωx+π4)+b(ω>0)的最小正周期为T.若2π3<T<π,且y=f(x)的图象关于点(3π2,2)中心对称,则f(π2)=()A.1B.32C.52D.3【答案】A【解析】【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.【详解】由函数的最小正周期T满足2π3<T<π,得2π3<2πω<π,解得2<ω<3,又因为函数图象关于点(3π2,2)对称,所以3π2ω+π4=kπ,k∈Z,且b=2,所以ω=−16+23k,k∈Z,所以ω=52,f(x)=sin(52x+π4)+2,所以f(π2)=sin(54π+π4)+2=1.故选:A6.【2022年新高考2卷】若sin(α+β)+cos(α+β)=2√2cos(α+π4)sinβ,则()A.tan(α−β)=1B.tan(α+β)=1C.tan(α−β)=−1D.tan(α+β)=−1【答案】C【解析】【分析】由两角和差的正余弦公式化简,结合同角三角函数的商数关系即可得解.【详解】由已知得:sinαcosβ+cosαsinβ+cosαcosβ−sinαsinβ=2(cosα−sinα)sinβ,即:sinαcosβ−cosαsinβ+cosαcosβ+sinαsinβ=0,即:sin(α−β)+cos(α−β)=0,所以tan(α−β)=−1,故选:C7.【2022年北京】已知函数f(x)=cos2x−sin2x,则()A.f(x)在(−π2,−π6)上单调递减B.f(x)在(−π4,π12)上单调递增C.f(x)在(0,π3)上单调递减D.f(x)在(π4,7π12)上单调递增【答案】C【解析】【分析】化简得出f(x)=cos2x,利用余弦型函数的单调性逐项判断可得出合适的选项.【详解】因为f(x)=cos2x−sin2x=cos2x.对于A选项,当−π2<x<−π6时,−π<2x<−π3,则f(x)在(−π2,−π6)上单调递增,A错;对于B选项,当−π4<x<π12时,−π2<2x<π6,则f(x)在(−π4,π12)上不单调,B错;对于C选项,当0<x<π3时,0<2x<2π3,则f(x)在(0,π3)上单调递减,C对;对于D选项,当π4<x<7π12时,π2<2x<7π6,则f(x)在(π4,7π12)上不单调,D错.故选:C.8.【2022年浙江】设x∈R,则“sinx=1”是“cosx=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】【分析】由三角函数的性质结合充分条件、必要条件的定义即可得解.【详解】因为sin2x+cos2x=1可得:当sinx=1时,cosx=0,充分性成立;当cosx=0时,sinx=±1,必要性不成立;所以当x∈R,sinx=1是cosx=0的充分不必要条件.故选:A.9.【2022年浙江】为了得到函数y =2sin3x 的图象,只要把函数y =2sin (3x +π5)图象上所有的点( )A .向左平移π5个单位长度B .向右平移π5个单位长度C .向左平移π15个单位长度D .向右平移π15个单位长度【答案】D 【解析】 【分析】根据三角函数图象的变换法则即可求出. 【详解】因为y =2sin3x =2sin [3(x −π15)+π5],所以把函数y =2sin (3x +π5)图象上的所有点向右平移π15个单位长度即可得到函数y =2sin3x 的图象.故选:D.10.【2022年新高考2卷】(多选)已知函数f(x)=sin(2x +φ)(0<φ<π)的图像关于点(2π3,0)中心对称,则( ) A .f(x)在区间(0,5π12)单调递减B .f(x)在区间(−π12,11π12)有两个极值点 C .直线x =7π6是曲线y =f(x)的对称轴D .直线y =√32−x 是曲线y =f(x)的切线 【答案】AD 【解析】 【分析】根据三角函数的性质逐个判断各选项,即可解出. 【详解】由题意得:f (2π3)=sin (4π3+φ)=0,所以4π3+φ=k π,k ∈Z , 即φ=−4π3+k π,k ∈Z ,又0<φ<π,所以k =2时,φ=2π3,故f(x)=sin (2x +2π3). 对A ,当x ∈(0,5π12)时,2x +2π3∈(2π3,3π2),由正弦函数y =sinu 图象知y =f(x)在(0,5π12)上是单调递减;对B ,当x ∈(−π12,11π12)时,2x +2π3∈(π2,5π2),由正弦函数y =sinu 图象知y =f(x)只有1个极值点,由2x +2π3=3π2,解得x =5π12,即x =5π12为函数的唯一极值点; 对C ,当x =7π6时,2x +2π3=3π,f(7π6)=0,直线x =7π6不是对称轴; 对D ,由y′=2cos (2x +2π3)=−1得:cos (2x +2π3)=−12,解得2x +2π3=2π3+2k π或2x +2π3=4π3+2k π,k ∈Z ,从而得:x =k π或x =π3+k π,k ∈Z , 所以函数y =f(x)在点(0,√32)处的切线斜率为k =y′|x=0=2cos2π3=−1,切线方程为:y −√32=−(x −0)即y =√32−x .故选:AD .11.【2022年全国甲卷】已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当AC AB取得最小值时,BD =________.【答案】√3−1##−1+√3 【解析】 【分析】设CD =2BD =2m >0,利用余弦定理表示出AC 2AB 2后,结合基本不等式即可得解.【详解】设CD =2BD =2m >0,则在△ABD 中,AB 2=BD 2+AD 2−2BD ⋅ADcos∠ADB =m 2+4+2m , 在△ACD 中,AC 2=CD 2+AD 2−2CD ⋅ADcos∠ADC =4m 2+4−4m , 所以AC 2AB 2=4m 2+4−4m m 2+4+2m =4(m 2+4+2m)−12(1+m)m 2+4+2m=4−12(m+1)+3m+1≥42√(m+1)⋅3m+1=4−2√3,当且仅当m +1=3m+1即m =√3−1时,等号成立,所以当ACAB 取最小值时,m =√3−1. 故答案为:√3−1.12.【2022年全国乙卷】记函数f(x)=cos(ωx +φ)(ω>0,0<φ<π)的最小正周期为T ,若f(T)=√32,x =π9为f(x)的零点,则ω的最小值为____________.【答案】3 【解析】 【分析】首先表示出T ,根据f (T )=√32求出φ,再根据x =π9为函数的零点,即可求出ω的取值,从而得解; 【详解】解: 因为f (x )=cos (ωx +φ),(ω>0,0<φ<π) 所以最小正周期T =2πω,因为f (T )=cos (ω⋅2πω+φ)=cos (2π+φ)=cosφ=√32, 又0<φ<π,所以φ=π6,即f (x )=cos (ωx +π6),又x =π9为f (x )的零点,所以π9ω+π6=π2+kπ,k ∈Z ,解得ω=3+9k,k ∈Z , 因为ω>0,所以当k =0时ωmin =3; 故答案为:313.【2022年北京】若函数f(x)=Asinx −√3cosx 的一个零点为π3,则A =________;f(π12)=________.【答案】 1 −√2 【解析】 【分析】先代入零点,求得A 的值,再将函数化简为f(x)=2sin(x −π3),代入自变量x =π12,计算即可.【详解】∵f(π3)=√32A−√32=0,∴A=1∴f(x)=sinx−√3cosx=2sin(x−π3)f(π12)=2sin(π12−π3)=−2sinπ4=−√2故答案为:1,−√214.【2022年浙江】我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是S=√14[c2a2−(c2+a2−b22)2],其中a,b,c是三角形的三边,S是三角形的面积.设某三角形的三边a=√2,b=√3,c=2,则该三角形的面积S=___________.【答案】√234.【解析】【分析】根据题中所给的公式代值解出.【详解】因为S=√14[c2a2−(c2+a2−b22)2],所以S=√14[4×2−(4+2−32)2]=√234.故答案为:√234.15.【2022年浙江】若3sinα−sinβ=√10,α+β=π2,则sinα=__________,cos2β=____ _____.【答案】3√10104 5【解析】【分析】先通过诱导公式变形,得到α的同角等式关系,再利用辅助角公式化简成正弦型函数方程,可求出α,接下来再求β.【详解】α+β=π2,∴sinβ=cosα,即3sinα−cosα=√10,即√10(3√1010sinα−√1010cosα)=√10,令sinθ=√1010,cosθ=3√1010,则√10sin(α−θ)=√10,∴α−θ=π2+2kπ,k∈Z,即α=θ+π2+2kπ,∴sinα=sin(θ+π2+2kπ)=cosθ=3√1010,则cos2β=2cos2β−1=2sin2α−1=45.故答案为:3√1010;45.16.【2022年全国乙卷】记△ABC的内角A,B,C的对边分别为a,b,c﹐已知sinCsin(A−B)= sinBsin(C−A).(1)若A=2B,求C;(2)证明:2a2=b2+c2【答案】(1)5π8;(2)证明见解析.【解析】【分析】(1)根据题意可得,sinC=sin(C−A),再结合三角形内角和定理即可解出;(2)由题意利用两角差的正弦公式展开得sinC(sinAcosB−cosAsinB)=sinB(sinCcosA−cosCsinA),再根据正弦定理,余弦定理化简即可证出.(1)由A=2B,sinCsin(A−B)=sinBsin(C−A)可得,sinCsinB=sinBsin(C−A),而0<B<π2,所以sinB∈(0,1),即有sinC=sin(C−A)>0,而0<C<π,0<C−A<π,显然C≠C−A,所以,C+C−A=π,而A=2B,A+B+C=π,所以C=5π8.(2)由sinCsin(A−B)=sinBsin(C−A)可得,sinC(sinAcosB−cosAsinB)=sinB(sinCcosA−cosCsinA),再由正弦定理可得,accosB−bccosA=bccosA−abcosC,然后根据余弦定理可知,1 2(a2+c2−b2)−12(b2+c2−a2)=12(b2+c2−a2)−12(a2+b2−c2),化简得:2a2=b2+c2,故原等式成立.17.【2022年全国乙卷】记△ABC的内角A,B,C的对边分别为a,b,c,已知sinCsin(A−B)=sinBsin(C−A).(1)证明:2a2=b2+c2;(2)若a=5,cosA=2531,求△ABC的周长.【答案】(1)见解析(2)14【解析】【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证;(2)根据(1)的结论结合余弦定理求出bc,从而可求得b+c,即可得解.(1)证明:因为sinCsin(A−B)=sinBsin(C−A),所以sinCsinAcosB−sinCsinBcosA=sinBsinCcosA−sinBsinAcosC,所以ac⋅a2+c2−b22ac −2bc⋅b2+c2−a22bc=−ab⋅a2+b2−c22ab,即a2+c2−b22−(b2+c2−a2)=−a2+b2−c22,所以2a2=b2+c2;(2)解:因为a=5,cosA=2531,由(1)得b2+c2=50,由余弦定理可得a2=b2+c2−2bccosA,则50−5031bc=25,所以bc=312,故(b+c)2=b2+c2+2bc=50+31=81,所以b+c=9,所以△ABC的周长为a+b+c=14.18.【2022年新高考1卷】记△ABC的内角A,B,C的对边分别为a,b,c,已知cosA1+sinA =sin2B1+cos2B.(1)若C=2π3,求B;(2)求a2+b2c2的最小值.【答案】(1)π6; (2)4√2−5. 【解析】 【分析】(1)根据二倍角公式以及两角差的余弦公式可将cosA 1+sinA =sin2B1+cos2B 化成cos (A +B )=sinB ,再结合0<B <π2,即可求出; (2)由(1)知,C =π2+B ,A =π2−2B ,再利用正弦定理以及二倍角公式将a 2+b 2c 2化成4cos 2B +2cos 2B−5,然后利用基本不等式即可解出.(1)因为cosA1+sinA =sin2B1+cos2B =2sinBcosB 2cos 2B=sinBcosB ,即sinB =cosAcosB −sinAsinB =cos (A +B )=−cosC =12,而0<B <π2,所以B =π6; (2)由(1)知,sinB =−cosC >0,所以π2<C <π,0<B <π2, 而sinB =−cosC =sin (C −π2), 所以C =π2+B ,即有A =π2−2B . 所以a 2+b 2c 2=sin 2A+sin 2Bsin 2C=cos 22B+1−cos 2Bcos 2B=(2cos 2B−1)2+1−cos 2Bcos 2B=4cos 2B +2cos 2B −5≥2√8−5=4√2−5.当且仅当cos 2B =√22时取等号,所以a 2+b 2c 2的最小值为4√2−5.19.【2022年新高考2卷】记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为S 1,S 2,S 3,已知S 1−S 2+S 3=√32,sinB =13.(1)求△ABC 的面积; (2)若sinAsinC =√23,求b .【答案】(1)√28(2)12 【解析】 【分析】(1)先表示出S 1,S 2,S 3,再由S 1−S 2+S 3=√32求得a 2+c 2−b 2=2,结合余弦定理及平方关系求得ac ,再由面积公式求解即可; (2)由正弦定理得b 2sin 2B=acsinAsinC ,即可求解. (1)由题意得S 1=12⋅a 2⋅√32=√34a 2,S 2=√34b 2,S 3=√34c 2,则S 1−S 2+S 3=√34a 2−√34b 2+√34c 2=√32, 即a 2+c 2−b 2=2,由余弦定理得cosB =a 2+c 2−b 22ac,整理得accosB =1,则cosB >0,又sinB=13,则cosB =√1−(13)2=2√23,ac =1cosB=3√24,则S △ABC =12acsinB =√28; (2)由正弦定理得:bsinB =asinA =csinC ,则b 2sin 2B =asinA ⋅csinC =acsinAsinC =3√24√23=94,则b sinB =32,b =32sinB =12.20.【2022年北京】在△ABC 中,sin2C =√3sinC . (1)求∠C ;(2)若b =6,且△ABC 的面积为6√3,求△ABC 的周长. 【答案】(1)π6 (2)6+6√3 【解析】 【分析】(1)利用二倍角的正弦公式化简可得cosC 的值,结合角C 的取值范围可求得角C 的值; (2)利用三角形的面积公式可求得a 的值,由余弦定理可求得c 的值,即可求得△ABC 的周长. (1)解:因为C ∈(0,π),则sinC >0,由已知可得√3sinC =2sinCcosC ,可得cosC =√32,因此,C =π6.(2)解:由三角形的面积公式可得S △ABC =12absinC =32a =6√3,解得a =4√3.由余弦定理可得c 2=a 2+b 2−2abcosC =48+36−2×4√3×6×√32=12,∴c =2√3,所以,△ABC 的周长为a +b +c =6√3+6.21.【2022年浙江】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知4a =√5c,cosC =35. (1)求sinA 的值;(2)若b =11,求△ABC 的面积.【答案】(1)√55;(2)22. 【解析】 【分析】(1)先由平方关系求出sinC ,再根据正弦定理即可解出; (2)根据余弦定理的推论cosC =a 2+b 2−c 22ab以及4a =√5c 可解出a ,即可由三角形面积公式S=12absinC 求出面积.(1)由于cosC =35, 0<C <π,则sinC =45.因为4a =√5c , 由正弦定理知4sinA =√5sinC ,则sinA =√54sinC =√55.(2)因为4a =√5c ,由余弦定理,得cosC =a 2+b 2−c 22ab =a 2+121−165a 222a=11−a 252a=35,即a 2+6a −55=0,解得a =5,而sinC =45,b =11, 所以△ABC 的面积S =12absinC =12×5×11×45=22.1.(2022·宁夏·银川一中模拟预测(文))已知点12P ⎛- ⎝⎭在角θ的终边上,且[)0,2πθ∈,则角θ的大小为( ). A .π3B .2π3C .5π3D .4π3【答案】B 【解析】 【分析】根据给定条件,确定角θ的范围,再利用三角函数定义求解作答. 【详解】依题意,点12P ⎛- ⎝⎭在第二象限,又[)0,2πθ∈,则ππ2θ<<,而tan θ=所以2π3θ=. 故选:B2.(2022·安徽省舒城中学三模(理))将函数π()2sin()(0)3f x x ωω=->的图象向左平移3ωπ个单位,得到函数()y g x =的图象,若()y g x =在π[0,]4上为增函数,则ω最大值为( )A .2B .3C .4D .52【答案】A 【解析】 【分析】根据平移法则求出函数()g x 的解析式,进而求出()g x 的含有数0的单调区间,再借助集合的包含关系即可解出. 【详解】依题意,()2sin[()]2sin 33g x x x ππωωω=+-=,由ππ22x ω-≤≤,0>ω得:ππ22x ωω-≤≤,于是得()y g x =的一个单调递增区间是ππ,22[]ωω-,因()y g x =在π[0,]4上为增函数,因此,ππ[π[0,]2]24,ωω-⊆,即有ππ24ω≥,解得02ω<≤,即ω最大值为2. 故选:A.3.(2022·甘肃·武威第六中学模拟预测(理))已知函数()12sin 32f x x πϕϕ⎛⎫⎛⎫=+< ⎪⎪⎝⎭⎝⎭,直线x π=-为()f x 图象的一条对称轴,则下列说法正确的是( )A .6π=ϕ B .()f x 在区间,2ππ⎡⎤--⎢⎥⎣⎦单调递减C .()f x 在区间[],ππ-上的最大值为2D .()f x θ+为偶函数,则()23k k Z θππ=+∈【答案】D 【解析】 【分析】由已知得()2sin 23f ππϕ⎛⎫-=-+= ⎪⎝⎭,由2πϕ<可求得ϕ,可判断A 选项,由此有()12sin 36x f x π⎛⎫=- ⎪⎝⎭;对于B ,由,2x ππ⎡⎤∈--⎢⎥⎣⎦得12363x πππ-≤-≤-,由正弦函数的单调性可判断;对于C ,由[],x ππ∈-得12366x πππ-≤-≤,由此得()f x 在区间[],ππ-上的最大值为2sin16π=;对于D ,()11+2sin +336f x x πθθ⎛⎫=- ⎪⎝⎭,由()1+362k k Z ππθπ-=∈,解得()23k k Z θππ=+∈.【详解】解:因为函数()12sin 32f x x πϕϕ⎛⎫⎛⎫=+< ⎪⎪⎝⎭⎝⎭,直线x π=-为()f x 图象的一条对称轴,所以()2sin 23f ππϕ⎛⎫-=-+=± ⎪⎝⎭,所以+,32k k Z ππϕπ-+=∈,又2πϕ<,所以6πϕ=-,故A 不正确;所以()12sin 36x f x π⎛⎫=- ⎪⎝⎭,对于B ,当,2x ππ⎡⎤∈--⎢⎥⎣⎦时,12363x πππ-≤-≤-,所以()f x 在区间,2ππ⎡⎤--⎢⎥⎣⎦单调递增,故B 不正确;对于C ,当[],x ππ∈-时,12366x πππ-≤-≤,()f x 在区间[],ππ-上的最大值为2sin 16π=,故C 不正确;对于D ,若()f x θ+为偶函数,则()()111+2sin +2sin +36336f x x x ππθθθ⎡⎤⎛⎫=-=- ⎪⎢⎥⎣⎦⎝⎭,所以()1+362k k Z ππθπ-=∈,解得()23k k Z θππ=+∈,故D 正确,故选:D.4.(2022·全国·模拟预测)已知α,()0,πβ∈,πtan 3α⎛⎫+= ⎪⎝⎭,πcos 6β⎛⎫+= ⎪⎝⎭,则()cos 2αβ-=( )A. B.CD【答案】D 【解析】 【分析】根据待求式的结构,πππ22362αβαβ⎛⎫⎛⎫-=+-+- ⎪ ⎪⎝⎭⎝⎭求解即可.【详解】解:因为πππππcos(2)cos 2sin 236236αβαβαβ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=+-+-=+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦=ππsin 2()cos()36αβ++-ππcos 2()sin()36αβ++.222πππ2tan 2sin()cos()πππ333sin 22sin()cos()πππ333sin ()cos ()tan 1333ααααααααα⎛⎫+++ ⎪⎡⎤⎛⎫⎝⎭+=++=== ⎪⎢⎥⎛⎫⎝⎭⎣⎦+++++ ⎪⎝⎭,22222222π1tan cos ()sin ()π1333cos 2cos ()sin ()π3333cos ()sin ()tan 1333ππαααππαααππααα⎛⎫-++-+ ⎪⎡⎤⎛⎫⎝⎭+=+-+=== ⎪⎢⎥⎛⎫⎝⎭⎣⎦+++++ ⎪⎝⎭;πcos 6β⎛⎫+ ⎪⎝⎭ππ0,62β⎛⎫⎛⎫+∈ ⎪ ⎪⎝⎭⎝⎭,所以πsin 6β⎛⎫+ ⎪⎝⎭故cos(2)αβ-=. 故选:D.5.(2022·全国·模拟预测(文))已知函数()()()sin 0f x x ωϕω=+>的一个对称中心为,03π⎛-⎫⎪⎝⎭,()f x 在区间5,6ππ⎛⎫⎪⎝⎭上不单调,则ω的最小正整数值为( ) A .1 B .2 C .3 D .4【答案】B【分析】根据题意可得()sin()033f ππωϕ-=-+=,所以13k πϕωπ=+,1k Z ∈,由()f x 在区间5,6ππ⎛⎫⎪⎝⎭上不单调可得()()cos 0f x x ωωϕ'=+=在区间5,6ππ⎛⎫⎪⎝⎭上有解,所以22()2x k k Z πωϕπ+=+∈,在区间5,6ππ⎛⎫ ⎪⎝⎭上有解,最终可得23k x ππωπ+=+,k Z ∈,取值即可得解.【详解】由函数()()()sin 0f x x ωϕω=+>的一个对称中心为,03π⎛-⎫⎪⎝⎭,可得()sin()033f ππωϕ-=-+=,所以13k πωϕπ-+=,1k Z ∈,13k πϕωπ=+,1k Z ∈,()()cos f x x ωωϕ'=+,由()f x 在区间5,6ππ⎛⎫⎪⎝⎭上不单调, 所以()()cos 0f x x ωωϕ'=+=在区间5,6ππ⎛⎫⎪⎝⎭上有解, 所以22()2x k k Z πωϕπ+=+∈,在区间5,6ππ⎛⎫⎪⎝⎭上有解, 所以122()32x k k k Z ππωωππ++=+∈,所以23k x ππωπ+=+,21k k k Z =-∈,又5,6x ππ⎛⎫∈⎪⎝⎭,所以74(,)363x πππ+∈, 所以36362(,)873k k k x ππωπ+++=∈+, 当2k =时,1515(,)87ω∈,此时ω的最小正整数为2.6.(2022·河南省杞县高中模拟预测(理))已知π02θ<<,若πsin 24θ⎛⎫-= ⎪⎝⎭,则sin cos θθ+=( )A B C D 【答案】B 【解析】 【分析】根据题中所给的角的范围以及三角函数值,可以确定πcos 24θ⎛⎫- ⎪⎝⎭和角正弦求得3sin 25θ=,从而求得()28sin cos 1sin 25θθθ+=+=,根据角的范围确定符号,开方即可得结果. 【详解】 因为π02θ<<,所以ππ3π2444θ-<-<,又πsin 24θ⎛⎫-= ⎪⎝⎭,所以ππ2044θ-<-<,所以πcos 24θ⎛⎫- ⎪⎝⎭所以ππππππ3sin 2sin 2sin 2cos cos 2sin 4444445θθθθ⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以()28sin cos 1sin 25θθθ+=+=,又sin cos 0θθ+>,sin cos θθ+= 故选:B .7.(2022·全国·模拟预测(理))函数()f x 的图象按以下次序变换:①横坐标变为原来的12;②向左平移23π个单位长度;③向上平移一个单位长度;④纵坐标变为原来的2倍,得到sin y x =的图象,则()f x 的解析式为( )A .()112sin 1223f x x π⎛⎫=-- ⎪⎝⎭B .()11sin 1223f x x π⎛⎫=-- ⎪⎝⎭C .()12sin 2123f x x π⎛⎫=-- ⎪⎝⎭D .()1sin 2123f x x π⎛⎫=-- ⎪⎝⎭【答案】A 【解析】 【分析】根据三角函数图象变换的性质逆推求解即可 【详解】由题意,④纵坐标变为原来的2倍,得到sin y x =的图象,故④变换前为1sin 2y x =;③向上平移一个单位长度,故③变换前为1sin 12y x =-;②向左平移23π个单位长度,故②变换前为1si 123n 2y x π⎛⎫=-- ⎪⎝⎭;①横坐标变为原来的12,故①变换前为211si 3n 122y x π⎛⎫=-- ⎪⎝⎭,故()f x 的解析式为()112sin 1223f x x π⎛⎫=-- ⎪⎝⎭故选:A8.(2022·黑龙江·哈九中三模(文))已知函数()()()sin 0,0,0πf x A x A ωϕωϕ=+>><<的部分图象如图所示,且13π23f ⎛⎫= ⎪⎝⎭.将()f x 图象上所有点的横坐标缩小为原来的14,再向上平移一个单位长度,得到()g x 的图象.若()()129g x g x =,1x ,[]20,4πx ∈,则21x x -的最大值为( )A .πB .2πC .3πD .4π【答案】C 【解析】 【分析】根据函数图象求得()12sin 23f x x π⎛⎫=+ ⎪⎝⎭,再根据图象变换可得()g x 的解析式,结合()()129g x g x =,1x ,[]20,4x π∈,求得21,x x 的值,可得答案.【详解】设()f x 的最小正周期为T ,则由图可知372433T ππ⎛⎫=-- ⎪⎝⎭,得4T π=,则212T πω==,所以()1sin 2f x A x ϕ⎛⎫=+ ⎪⎝⎭,又由题图可知()f x 图象的一个对称中心为点2,03π⎛⎫-⎪⎝⎭, 故1223k πϕπ⎛⎫⨯-+= ⎪⎝⎭,Z k ∈,故3k πϕπ=+,Z k ∈, 因为0ϕπ<<,所以3πϕ=,所以()1sin 23f x A x π⎛⎫=+ ⎪⎝⎭.又因为1323f π⎛⎫= ⎪⎝⎭,故131135sin sin sin 2323322f A A A A πππππ⎛⎫⎛⎫=⨯+==== ⎪ ⎪⎝⎭⎝⎭, 所以()12sin 23f x x π⎛⎫=+ ⎪⎝⎭;将()f x 图象上所有点的横坐标缩小为原来的14,再向上平移一个单位长度,得到()2sin 213g x x π⎛⎫=++ ⎪⎝⎭的图象;因为()()129g x g x =,所以12,x x 同时令()g x 取得最大值3,由()2sin 2133g x x π⎛⎫=++= ⎪⎝⎭,可得()11212k x π+=,Z k ∈,又[]12,0,4x x π∈,要求21x x -的最大值,故令0k =,得112x π=;令3k =,得23712x π=,所以21x x -的最大值为3731212πππ-=, 故选:C.9.(2022·全国·模拟预测)为了得到函数4sin 23y x π⎛⎫=+⎪⎝⎭的图象,只需将函数sin 26y x π⎛⎫=+ ⎪⎝⎭的图象( ) A .向左平移712π个单位长度 B .向左平移76π个单位长度 C .向右平移712π个单位长度 D .向右平移76π个单位长度 【答案】A 【解析】 【分析】根据图像平移的规律,算出答案即可. 【详解】由题意,由于函数477sin(2)sin(2)sin 2()366126y x x x πππππ⎡⎤=+=++=++⎢⎥⎣⎦, 观察发现可由函数sin 26y x π⎛⎫=+ ⎪⎝⎭向左平移712π个单位长度,得到函数4sin 23y x π⎛⎫=+⎪⎝⎭的图象, 故选:A.10.(2022·贵州·贵阳一中模拟预测(文))如图是函数()()sin (0,0,0)2f x A x A πωϕωϕ=+>><<的图像的一部分,则要得到该函数的图像,只需要将函数()2cos2g x x x -的图像( )A .向左平移4π个单位长度 B .向右平移4π个单位长度 C .向左平移2π个单位长度D .向右平移2π个单位长度【答案】A 【解析】 【分析】先由图像求得()2sin 32f x x π⎛⎫=+ ⎪⎝⎭,再由辅助角公式化简()g x ,最后由三角函数的平移变换即可求解. 【详解】 由题图知:712,1234T T ππππω-=∴==,又()()0,2,sin 2f x A x ωωϕ>∴=∴=+,20,sin 0,0332f A πππϕϕ⎛⎫⎛⎫=∴+=<< ⎪ ⎪⎝⎭⎝⎭,解得(),sin 233f x A x ππϕ⎛⎫=∴=+ ⎪⎝⎭,又()()()0sin2,2sin 2,cos233f A A f x x g x x x ππ⎛⎫=∴==∴=+=-= ⎪⎝⎭2sin 26x π⎛⎫- ⎪⎝⎭,将()g x 向左平移4π得()2sin 22sin 22sin 246263x x x f x πππππ⎡⎤⎛⎫⎛⎫⎛⎫+-=+-=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故选:A.11.(2022·青海西宁·二模(文))在①6a =;②8a =;③12a =这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求cos A 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,且2224a b c S +-=,c =________?【答案】答案不唯一,具体见解析 【解析】 【分析】根据题干条件及余弦定理、面积公式,可求得角C 的值,若选①6a =,根据正弦定理,可求得sin A 的值,根据大边对大角原则,可得角A 只有一解,根据同角三角函数关系,可求得cos A 的值;若选②8a =,根据正弦定理,可求得sin A 的值,根据大边对大角原则,可得角A 有两解,根据同角三角函数关系,可求得cos A 的值;若选③12a =,根据正弦定理,可求得sin A 的值,因为sin 1A >,则三角形无解. 【详解】由题意可知在ABC 中, 因为2224a b c S +-=,且in 12s S ab C =, 所以222sin 2a b c C ab+-=, 由余弦定理可知222cos 2a b c C ab+-=, 所以cos sin C C = 因为(0,)C π∈, 所以4Cπ;若选①6a =,由正弦定理可得sin sin a cA C=,解得3sin sin5a A C c ==,在ABC 中,因为c a >,所以C A >, 又因为4Cπ,则角A 只有一解,且0,4A π⎛⎫∈ ⎪⎝⎭,所以4cos 5A ==.若选②8a =,由正弦定理可得sin sin a c A C=,解得4sin sin5a A C c ==, 在ABC 中,因为c a <,所以C A <, 又因为4Cπ,则角A 有两解,所以3cos 5A ==±.若选③12a =,由正弦定理可得sin sin a c A C=,解得6sin sin5a A C c ==, 因为sin 1A >,所以ABC 无解,即三角形不存在.12.(2022·河南·开封市东信学校模拟预测(理))在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sinsin 2B Cb a B +=. (1)求角A 的大小;(2)若D 为BC 边中点,且2AD =,求a 的最小值. 【答案】(1)π3【解析】 【分析】(1)利用三角恒等变形及正弦定理即可求解; (2)利用余弦定理及基本不等式即可求解. (1)△sinsin 2B C b a B +=,△πsin sin 2A b aB -=,即cos sin 2Ab a B =.由正弦定理得cos sin sin 2sin AB A B ⋅=⋅. △sin 0B ≠,△cos sin 2sin cos 222A A A A ==. △cos02A ≠,△1sin 22A =,又△π022A <<, △π26A =,△π3A =;(2)△D 为BC 边中点,△2AD AB AC =+,即224()AD AB AC =+, △2AD =,△22162cos c b bc A =++,△2216b c bc +=-,△22216bc b c bc ≤+=-,即163≤bc , 当且仅当b c ==, △222222cos 162a b c bc A b c bc bc =+-=+-=-,△2161616233a ≥-⨯=,即a .故a . 13.(2022·山东聊城·三模)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin cos()6b Cc B π=-.(1)求角B ;(2)若b =4,求ABC 周长的最大值. 【答案】(1)3B π=;(2)12. 【解析】 【分析】(1)利用差角的余弦公式,结合正弦定理,化简计算作答. (2)利用余弦定理,结合均值不等式求出a +c 的最大值 (1)因为sin cos()6b C c B π=-,则1sin sin )2b Cc B B =+,在ABC 中,由正弦定理得,1sin sin sin sin )2B C C B B =+,而(0,π)C ∈,即sin 0C >,整理得sin B B =,即tan B =()0,πB ∈,解得π3B =, 所以π3B =. (2)在ABC 中,由余弦定理2222cos b a c ac B =+-得:2216a c ac =+-,即()2163a c ac +-=, 而2()2a c ac +≤,于是得()264a c +≤,当且仅当a =c =4时取“=”, 因此,当a =c =4时,a +c 取最大值8,从而a +b +c 取最大值12, 所以ABC 周长的最大值为12.14.(2022·河南·平顶山市第一高级中学模拟预测(理))在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且22(cos )2b a b c a B -=-.(1)求角A 的大小;(2)若8c =,ABC 的面积为BC 边上的高. 【答案】(1)3A π=【解析】 【分析】(1)由余弦定理化简可得答案;(2)由三角形的面积公式可得b 值,由余弦定理可得a 值,结合面积公式可得高. (1)22cos 2b a b c a B ⎛⎫-=- ⎪⎝⎭,即222()2cos a b ca B bc -=-.222222()a b c a b bc ∴-=+--,222b c a bc ∴+-=,2221cos =22b c a A bc +-∴=.又(0,)A π∈,3A π∴=.(2)11sin 8sin 223S bc A b π==⨯⨯==2b ∴=.故由余弦定理可知a ==而1122S ah h ==⨯=解得h =,所以BC . 15.(2022·四川省泸县第二中学模拟预测(理))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c cos A A +=b =①:2a =,222sin sin sin B A C >+;条件②:a b <,21cos cos sin 2a A C c A a =+.这两个条件中选择一个作为已知,求:(1)tan 2A 的值; (2)c 和面积S 的值.【答案】(1)条件选择见解析,tan 2A =(2)条件选择见解析,2c =,S =【解析】 【分析】(1)若选①,由已知条件可得πsin 6A ⎛⎫+= ⎪⎝⎭,得π6A =或π2,由于a b <,则可得π6A =,进而可求出tan 2A ,若选②,由已知条件可得πsin 6A ⎛⎫+ ⎪⎝⎭,得π6A =或π2,由于a b <,则可得π6A =,进而可求出tan 2A ,(2)若选①,由正弦定理得sin B =222sin sin sin B A C >+得222b a c >+,再由余弦定理得cos 0B <,则2π3B =,求得π6C =,然后利用三角形面积公式可求得结果,若选②,由正弦定理结合三角函数恒等变换公式可得1cos 2B =-,从而可得2π3B =,则π6C =,然后利用三角形面积公式可求得结果, (1)若选①:2a =,222sin sin sin B A C >+,在ABC cos A A +=πsin 6A ⎛⎫+= ⎪⎝⎭,而ππ7π,666A ⎛⎫+∈ ⎪⎝⎭,故ππ63A +=或2π3, 则π6A =或π2,△2a b =<=π6A =,△πtan 2tan3A == 若选②:a b <,21cos cos sin 2a A C c A a =+在ABC cos A A +=πsin 6A ⎛⎫+= ⎪⎝⎭,而ππ7π,666A ⎛⎫+∈ ⎪⎝⎭,故ππ63A +=或2π3,则π6A =或π2,由a b <,得:π6A =,△πtan 2tan 3A ==(2)若选①:2a =,222sin sin sin B A C >+,由正弦定理得:sin sin a b A B =,2πsin 6=sin B =, 由222222sin sin sin B A C b a c >+⇒>+知:222cos 02a c b B ac+-=<,故2π3B =, 则π6C =,△2c a ==,11πsin 2sin 226S ab C ==⨯⨯= 若选②:a b <,21cos cos sin 2a A C c A a =+由正弦定理得:21sin cos cos sin sin sin 2A A C C A A =+,△sin 0A ≠△1cos cos sin sin 2A C A C -=,即()1cos 2A C +=,1cos 2B =-, △0πB <<,故2π3B =,则π6C =, △a c =△由余弦定理得2222cos b a c ac B =+-,22211222c c c ⎛⎫=+-⋅- ⎪⎝⎭,得2c =,△11πsin 2sin 226S bc A ==⨯⨯=。
高中数学三角函数与解三角形多选题专题复习附答案一、三角函数与解三角形多选题1.在ABC 中,角,,A B C 所对的边分别为,,a b c ,下列命题正确的是( )A .若::4:5:6a b c =,ABC 的最大内角是最小内角的2倍B .若cos cos a B b A c -=,则ABC 一定为直角三角形 C .若4,5,6a b c ===,则ABCD .若()()()cos cos cos 1A B B C C A ---=,则ABC 一定是等边三角形 【答案】ABD 【分析】对于A 选项,求得2A C =,由此确定选项正确.对于B 选项,求得2A π=,由此确定选项正确.对于C 选项,利用正弦定理求得ABC 外接圆半径,由此确定选项错误.对于D 选项,证得()()()cos cos cos 1A B B C C A -=-=-=,得到A B C ==,确定选项正确. 【详解】对于A 选项,A 角最小,C 角最大.由余弦定理得253616453cos 0256604A +-===>⨯⨯,16253651cos 0245408C +-===>⨯⨯,2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭,cos2cos A C =.0,022A C ππ<<<<,则02A π<<,所以2A C =,所以A 选项正确.对于B 选项,cos cos a B b A c -=,由正弦定理得sin cos sin cos sin A B B A C -=,()sin cos cos sin sin sin cos cos sin A B A B A B A B A B -=+=+,cos sin 0=A B ,由于0,0A B ππ<<<<,所以2A π=,故B 选项正确.对于C 选项,16253651cos 245408C +-===⨯⨯,0C π<<,sin C ==, 设三角形ABC 外接圆半径为R,则2sin 2sin c cR R C C=⇒===,故C 选项错误.对于D 选项,0,0,A B A B ππππ<<-<-<-<-<,故()1cos 1A B -<-≤,同理可得()()1cos 1,1cos 1B C C A -<-≤-<-≤, 要使()()()cos cos cos 1A B B C C A ---=, 则需()()()cos cos cos 1A B B C C A -=-=-=,所以0,0,0A B B C C A -=-=-=,所以A B C ==,所以D 选项正确. 故选:ABD 【点睛】利用正弦定理可求得三角形外接圆的半径R ,要注意公式是2sin aR A=,而不是sin aR A =.2.ABC 中,2BC =,BC 边上的中线2AD =,则下列说法正确的有( ) A .AB AC →→⋅为定值B .2210AC AB += C .co 415s A << D .BAD ∠的最大值为30【答案】ABD 【分析】A 利用向量的加减法及向量的数量积公式运算即可,B 根据余弦定理及角的互补运算即可求值,C 利用余弦定理及基本不等式求出cos A 范围即可,D 根据余弦定理及基本不等式求出cos BAD ∠的最小值即可. 【详解】 对于A ,22413AB AC AD DB AD DB AD DB →→→→→→→→⎛⎫⎛⎫⋅=+-=-=-= ⎪⎪⎝⎭⎝⎭,AB AC →→∴⋅为定值,A 正确; 对于B ,cos cos ADC ADB∠=-∠2222222cos 2cos AC AB AD DC AD DC ADC AD DB AD DB ADB ∴+=+-⋅⋅∠++-⋅⋅∠2222AD DB DC =++ 2221110=⨯++=,故B 正确;对于C ,由余弦定理及基本不等式得224242122b c bc cosA bc bc bc+--=≥=-(当且仅当b c =时,等号成立),由A 选项知cos 3bc A =,22cos cos 1133cos AA A∴≥-=-, 解得3cos 5A ≥,故C 错误; 对于D,2222213cos 4442c c BAD c c c +-+∠==≥=(当且仅当c =立),因为BAD ABD ∠<∠,所以(0,)2BAD π∠∈,又cos 2BAD ∠≥,所以BAD ∠的最大值30,D 选项正确. 故选:ABD 【点睛】本题主要考查了向量的数量积运算,余弦定理,基本不等式,考查了推理能力,属于难题.3.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且::4:5:6a b c =,则下列结论正确的是( )A .sin :sin :sin 4:5:6ABC = B .ABC 是钝角三角形C .ABC 的最大内角是最小内角的2倍D .若6c =,则ABC外接圆半径为7【答案】ACD 【分析】由正弦定理可判断A ;由余弦定理可判断B ;由余弦定理和二倍角公式可判断C ;由正弦定理可判断D. 【详解】解:由::4:5:6a b c =,可设4a x =,5b x =,6c x =,()0x >, 根据正弦定理可知sin :sin :sin 4:5:6A B C =,选项A 描述准确;由c 为最大边,可得2222221625361cos 022458a b c x x x C ab x x +-+-===>⋅⋅,即C 为锐角,选项B 描述不准确;2222222536163cos 22564b c a x x x A bc x x +-+-===⋅⋅,291cos 22cos 121cos 168A A C =-=⨯-==, 由2A ,C ()0,π∈,可得2A C =,选项C 描述准确;若6c =,可得2sin 7c R C===,ABC外接圆半径为7,选项D 描述准确. 故选:ACD. 【点睛】本题考查三角形的正弦定理和余弦定理,二倍角公式,考查化简运算能力,属于中档题.4.(多选题)已知22tan 2tan 10x y --=,则下列式子成立的是( ) A .22sin 2sin 1y x =+B .22sin 2sin 1y x =--C .22sin 2sin 1y x =-D .22sin 12cos y x =-【答案】CD 【分析】对原式进行切化弦,整理可得:222222sin cos 2sin cos cos cos x y y x y x ⋅-⋅=⋅,结合因式分解代数式变形可得选项. 【详解】∵22tan 2tan 10x y --=,2222sin sin 210cos cos x yx y-⋅-=, 整理得222222sin cos 2sin cos cos cos x y y x y x ⋅-⋅=⋅,∴()()()22222221cos 1sin sin cos cos sin cos x x y x y y x ---⋅=+, 即22222221cos sin sin cos sin cos cos x y y x y x x --+⋅-⋅=, 即222sin 12cos 2sin 1y x x =-=-,∴C 、D 正确. 故选:CD 【点睛】此题考查三角函数的化简变形,根据弦切关系因式分解,结合平方关系变形.5.已知2π-<θ2π<,且sin θ+cos θ=a ,其中a ∈(0,1),则关于tan θ的值,在以下四个答案中,可能正确的是( ) A .﹣3 B .13C .13-D .12-【答案】CD 【分析】先由已知条件判断cos 0θ>,sin 0θ<,得到sin 1tan 0cos θθθ-<=<,对照四个选项得到正确答案. 【详解】∵sin θ+cos θ=a ,其中a ∈(0,1),∴两边平方得:1+22sin cos =a θθ,∴21sin cos =02a θθ-<,∵22ππθ-<<,∴可得cos 0θ>,sin 0θ<,∴sin tan 0cos θθθ=<, 又sin θ+cos θ=a 0>,所以cos θ>﹣sin θ,所以sin tan 1cos θθθ=>-所以sin 1tan 0cos θθθ-<=<, 所以tan θ的值可能是13-,12-.故选:CD 【点睛】关键点点睛:求出tan θ的取值范围是本题解题关键.6.已知函数()()()sin 0,0,0πf x A x B A ωϕωϕ=++>><<的部分自变量、函数值如下表所示,下列结论正确的是( ).A .函数解析式为()5π3sin 226f x x ⎛⎫ ⎝=⎪⎭++ B .函数()f x 图象的一条对称轴为2π3x =- C .5π,012⎛⎫-⎪⎝⎭是函数()f x 图象的一个对称中心 D .函数()f x 的图象左平移π12个单位,再向下移2个单位所得的函数为奇函数 【答案】ABD 【分析】首先根据表格,利用最值求A 和B ,再根据周期求ω,以及根据最小值点求ϕ,求得函数的解析式,再分别代入23x π=-和512x π=-,判断BC 选项,最后根据平移规律求平移后的解析式. 【详解】由表格可知,2B =, 函数的最大值是5,所以25A B A +=+=,即3A =, 当3x π=时,函数取得最小值,最小值点和相邻的零点间的距离是71234πππ-=,所以12244ππωω⨯=⇒=,当3x π=时,322,32k k Z ππϕπ⨯+=+∈,解得:526k πϕπ=+,0ϕπ<<, 56πϕ∴=,所以函数()53sin 226f x x π⎛⎫=++ ⎪⎝⎭,故A 正确; B.当23x π=-时,252362πππ⎛⎫⨯-+=- ⎪⎝⎭,能使函数取得最小值,所以23x π=-是函数的一条对称轴,故B 正确; C.当512x π=-时,5520126ππ⎛⎫⨯-+= ⎪⎝⎭,此时2y =,所以5,212π⎛⎫- ⎪⎝⎭是函数的一个对称中心,故C 不正确; D.函数向左平移12π个单位后,再向下平移2个单位后,得()53sin 2223sin 23sin 2126y x x x πππ⎡⎤⎛⎫=+++-=+=- ⎪⎢⎥⎝⎭⎣⎦,函数是奇函数,故D 正确.故选:ABD 【点睛】思路点睛:本题考查()sin y A ωx φ=+的解析式和性质的判断,可以整体代入验证的方法判断函数性质:(1)对于函数()sin y A ωx φ=+,其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此判断直线0x x =或点()0,0x 是否是函数的对称轴和对称中心时,可通过验证()0f x 的值进行判断;(2)判断某区间是否是函数的单调区间时,也可以求x ωϕ+的范围,验证次区间是否是函数sin y x =的增或减区间.7.函数()()()2sin 0,f x x ωϕωϕπ=+><的部分图象如图所示,则下列结论正确的是( )A .1()2sin 36f x x π⎛⎫=-⎪⎝⎭B .若把()f x 的横坐标缩短为原来的23倍,纵坐标不变,得到的函数在[],ππ-上是增函数C .若把函数()f x 的图像向左平移2π个单位,则所得函数是奇函数 D .函数()y f x =的图象关于直线4x π=-对称【答案】ACD 【分析】根据函数的图象求出函数的解析式,得选项A 正确; 求出213263x πππ--得到函数在[],ππ-上不是增函数,得选项B 错误;求出图象变换后的解析式得到选项C 正确; 求出函数的对称轴方程,得到选项D 正确. 【详解】 A, 如图所示:1732422T πππ=-=, 6T π∴=,∴2163πωπ==,(2)2f π=,∴2(2)2sin()23f ππϕ=+=,即2sin()13πϕ+=, ∴22()32k k Z ππϕπ+=+∈, ∴2()6k k Z πϕπ=-∈,||ϕπ<,∴6πϕ=-,∴1()2sin()36f x x π=-,故选项A 正确;B, 把()y f x =的横坐标缩短为原来的23倍,纵坐标不变,得到的函数12sin()26y x π=-,[x π∈-,]π,∴213263x πππ--,∴12sin()26y x π=-在[π-,]π上不单调递增,故选项B 错误;C, 把()y f x =的图象向左平移2π个单位,则所得函数12sin[()]2sin 3223xy x ππ=-+=,是奇函数,故选项C 正确; D, 设1,,32,362x k k Z x k πππππ-=+∈∴=+当24k x π=-⇒=-,所以函数()y f x =的图象关于直线4x π=-对称,故选项D 正确.故选:ACD 【点睛】方法点睛:求三角函数的解析式,一般利用待定系数法,一般先设出三角函数的解析式sin()y A wx k ,再求待定系数,,,A w k ,最值确定函数的,A k ,周期确定函数的w ,非平衡位置的点确定函数的φ.8.已知函数()()()2sin 0,0f x x ωϕωϕπ=+><<的部分图象如图所示,则下列说法正确的是( )A .23ϕπ=B .()f x 的最小正周期为πC .()f x 的图象关于直线12x π=对称D .()f x 的图象关于点5,06π⎛⎫⎪⎝⎭对称 【答案】BCD 【分析】利用图象,把(3代入求ϕ,利用周期求出2ω=,从而2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,研究对称轴和对称中心. 【详解】由图可知2sin 3ϕ=3sin 2ϕ=,根据图象可知0x =在()f x 的单调递增区间上,又0ϕπ<<,所以3πϕ=,A 项错误;因为()2sin 3f x x πω⎛⎫=+⎪⎝⎭,所以结合图像,由五点法得33ωπππ+=,解得2ω=,则()f x 的最小正周期2T ππω==,B 项正确;将12x π=代入2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,得2sin 21263f πππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象关于直线12x π=对称,C 项正确﹔将56x π=代入可得552sin 0633f πππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以点5,06π⎛⎫ ⎪⎝⎭是()f x 图象的一个对称中心,D 项正确. 故选:BCD. 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.9.已知4παπ≤≤,32ππβ≤≤,4sin 25α=,cos()10αβ+=-,则( )A .cos 10α=- B .sin cos 5αα-=C .34πβα-= D .cos cos 5αβ=-【答案】BC 【分析】先根据4sin 25α=,判断角α的范围,再根据cos2α求cos α; 根据平方关系,判断sin cos αα-的值;利用公式cos()cos[()2]βααβα-=+-求值,并根据角的范围判断角βα-的值;利用公式()cos βα+和()cos βα-,联合求cos cos αβ.【详解】 ①因为4παπ≤≤,所以222παπ≤≤,又4sin 205α=>,故有22παπ≤≤,42ππα≤≤,解出2231cos 22cos 1cos cos 55αααα=-=-⇒=⇒=,故A 错误; ②()21sin cos 1sin 25ααα-=-=,由①知:42ππα≤≤,所以sin cos αα>,所以sin cos 5αα-=,故B 正确; ③由①知:42ππα≤≤,而32ππβ≤≤,所以524παβπ≤+≤,又cos()010αβ+=-<,所以5342ππαβ≤+≤,解得sin()αβ+=所以34cos()cos[()2]1051052βααβα⎛⎫⎛⎫-=+-=--+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭又因为5342ππαβ≤+≤,22ππα-≤-≤-, 所以4πβαπ≤-≤,有34πβα-=,故C 正确;④由cos()cos cos sin sin 1010αβαβαβ+=-⇒-=-,由③知,cos()cos cos sin sin 2βααβαβ-=+=-,两式联立得:cos cos 10αβ=-,故D 错误. 故选:BC 【点睛】关键点点睛:本题的关键是三角函数恒等变形的灵活应用,尤其是确定角的范围,根据三角函数值4sin 25α=,确定22παπ≤≤,且cos()010αβ+=-<,进一步确定5342ππαβ≤+≤,这些都是确定函数值的正负,以及角的大小的依据.10.已知函数)()lg1( 2.7)x x f x x e e e -=+-+≈⋯,若不等式(sin cos )2(sin 2)f f t θθθ+<--对任意R θ∈恒成立,则实数t 的可能取值为( )A .1BC .3D .4【答案】CD 【分析】令)()lgx x g x x e e -=+-,则()()1f x g x =+,可判断()g x 是奇函数且单调递增,不等式可变形可得(sin cos )(sin 2)g g t θθθ+<-,所以sin cos sin 2t θθθ>++,令()sin cos sin 2h θθθθ=++,换元法求出()h θ的最大值,()max t h θ>即可.【详解】令)()lg x x g x x e e -=+-,则()()1f x g x =+, ()g x 的定义域为R ,))()()lg lg x x x x g x g x x e e x e e ---+=+-++-0=, 所以()()g x g x -=-,所以()g x 是奇函数,不等式(sin cos )2(sin 2)f f t θθθ+<--等价于[](sin cos )1(sin 2)1f f t θθθ+-<---,即(sin cos )(sin 2)(sin 2)g g t g t θθθθ+<--=-,当0x >时y x =单调递增,可得)lg y x =单调递增, x y e =单调递增,x y e -=单调递减,所以)()lg x x g x x e e -=+-在()0,∞+单调递增,又因为)()lgx x g x x e e -=+-为奇函数,所以)()lg x x g x x e e -=+-在R 上单调递增,所以sin cos sin 2t θθθ+<-,即sin cos sin 2t θθθ>++,令()sin cos sin 2h θθθθ=++,只需()max t h θ>,令sin cos m θθ⎡+=∈⎣,则21sin 2m θ=+,2sin 21m θ=-,所以()21h m m m =+-,对称轴为12m =-,所以m =()max 211h m ==,所以1t >可得实数t 的可能取值为3或4,故选:CD【点睛】关键点点睛:本题解题的关键点是构造函数()g x 奇函数且是增函数,将原不等式脱掉f 转化为函数恒成立问题.。
高三数学三角函数三角恒等变换解三角形试题答案及解析1.已知函数的图象上关于轴对称的点至少有3对,则实数的取值范围是()A.B.C.D.【答案】A【解析】原函数在轴左侧是一段正弦型函数图象,在轴右侧是一条对数函数的图象,要使得图象上关于轴对称的点至少有对,可将左侧的图象对称到轴右侧,即,应该与原来轴右侧的图象至少有个公共点如图,不能满足条件,只有此时,只需在时,的纵坐标大于,即,得.【考点】分段函数,函数图象,正弦型函数,对数函数2.若,则函数的最大值是___________.【答案】【解析】由题意因为,所以,所以函数的最大值是.【考点】求最大值.3.已知,,则下列不等式一定成立的是A.B.C.D.【答案】D【解析】,【考点】三角函数的性质4.若,且为第二象限角,则()A.B.C.D.【答案】B【解析】由得又为第二象限角,所以,选B.【考点】两角差余弦公式5.设函数对任意的,都有,若函数,则的值是()A.1B.-5或3C.-2D.【答案】C【解析】根据题意有是函数图像的对称轴,从而有,所以有,故选C.【考点】三角函数的性质.6.设的最小值为,则.【答案】【解析】,根据题意,结合二次函数在某个区间上的最值问题,对参数进行讨论,当时,其最小值为,所以不合题意,当时,其最小值为,解得,当时,其最小值为,无解,所以.【考点】倍角公式,二次函数在给定区间上的最值问题.7.设函数对任意的,都有,若函数,则的值是()A.1B.-5或3C.D.-2【答案】D【解析】根据题意有是函数图像的对称轴,从而有,所以有,故选D.【考点】三角函数的性质.8.下列函数中,以为最小正周期的偶函数是()A.y=sin2x+cos2xB.y=sin2xcos2xC.y=cos(4x+)D.y=sin22x﹣cos22x【答案】D【解析】因为A项为非奇非偶函数,B项是奇函数,C项是奇函数,只有D项是符合题意的,故选D.【考点】诱导公式,倍角公式,三角函数的奇偶性和周期.9.函数的最大值为.【答案】【解析】解析式表示过的直线的斜率,由几何意义,即过定点(4,3)与单位圆相切时的切线斜率为最值.所以设切线得斜率为k,则直线方程为,即 ,【考点】三角函数最值【方法点睛】本题主要考查三角函数最值问题及转化的思想,解决问题的根据是根据所给函数式子转化为直线与圆的位置关系问题,即将所给式子看做定点与单位圆上点的连线的斜率的范围问题,通过模型转化使问题定点巧妙解决,属于经典试题.10.(本题满分12分)如图,在中,边上的中线长为3,且,.(1)求的值;(2)求边的长.【答案】(1)(2)4【解析】(1)利用角的关系,再结合两角差正弦公式展开就可求解(2)先在三角形ABD中,由正弦定理解出BD长,即CD长:由正弦定理,得,即,解得…故;再在三角形ADC中由余弦定理解出AC:;AC= 4试题解析:(1)(2)在中,由正弦定理,得,即,解得…故,从而在中,由余弦定理,得;AC= 4 ;【考点】正余弦定理11.中,,则的最大值为.【答案】【解析】设,由余弦定理的推论,所以,设,代入上式得,,故,当时,此时,符合题意,因此最大值为,故答案为:.【考点】解三角形.【思路点睛】首先假设,然后再根据余弦定理的推论,可得,找到与的关系,再设,代入上式得,利用根的判别式,进而求出结果.本题的关键是利用余弦定理的推论.12.已知函数的部分图象如图所示.(1)求函数的解析式;(2)若,求函数在区间上的单调减区间.【答案】(1);(2),.【解析】(1)由图象中的最高点和最低点的纵坐标得到关于的方程组求得,再利用图象得到函数的周期,进而得到值,最后代入最低点坐标或最高点坐标结合的范围求出,即得到函数的解析式;(2)先求出,利用两角和差的正弦公式将其化为的形式,再利用整体思想求其单调递减区间.试题解析:(1)由图知,解得,又,所以,所以,将点代入,得,再由,得,所以;(2)因为由,解得;又,故所求的单调减区间为,.【考点】1.三角函数的图象与性质;2.三角恒等变形.13.已知角的终边经过点(-4,3),则= ,= ;【答案】;【解析】由题意可得.【考点】任意角三角函数的定义.14.在△ABC中,a、b、c分别是角A、B、C的对边,且.(Ⅰ)求角B的大小;(Ⅱ)若,求△ABC的面积.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)在解三角形的背景下,考查正弦定理,余弦定理,知值求值.(Ⅱ)综合余弦定理,求三角形的面积公式,需要把作为整体求之.试题解析:(Ⅰ)由正弦定理得将上式代入已知即,即.∵∵∵B为三角形的内角,∴.(Ⅱ)由余弦定理得,结合,可得,所以△ABC的面积.【考点】正弦定理,余弦定理,三角形的面积公式.15.在△中,角,,所对的边分别为,,,表示△的面积,若,,则.【答案】【解析】∵,∴,∴,∴,.∵,∴,∴,∴,∴.【考点】解三角形.【思路点睛】先利用余弦定理和三角形的面积公式可得,可得,再用正弦定理把中的边换成角的正弦,利用两角和公式化简整理可求得,最后根据三角形内角和,进而求得.16.中,角A,B,C的对边分别为a,b,c,若的面积,则 .【答案】【解析】由余弦定理,,又,,,即,,.【考点】1、余弦定理;2、同角三角函数的基本关系;3、三角形面积公式.【思路点睛】本题主要考查的是余弦定理、同角三角函数基本关系、三角形的面积公式,属于容易题.因为题目求,且的面积,边的平方的形式一般想到余弦定理,面积展开后利用余弦定理即可求得与的关系,从而利用同角三角函数的基本关系求得.17.(2012•安徽)设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC.(Ⅰ)求角A的大小;(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)根据2sinBcosA=sinAcosC+cosAsinC,可得2sinBcosA=sin(A+C),从而可得2sinBcosA=sinB,由此可求求角A的大小;(Ⅱ)利用b=2,c=1,A=,可求a的值,进而可求B=,利用D为BC的中点,可求AD的长.解:(Ⅰ)∵2sinBcosA=sinAcosC+cosAsinC∴2sinBcosA=sin(A+C)∵A+C=π﹣B∴sin(A+C)=sinB>0∴2sinBcosA=sinB∴cosA=∵A∈(0,π)∴A=;(Ⅱ)∵b=2,c=1,A=∴a2=b2+c2﹣2bccosA=3∴b2=a2+c2∴B=∵D为BC的中点,∴AD=.【考点】余弦定理;三角函数的恒等变换及化简求值.18.在中,已知.(Ⅰ)求sinA与角B的值;(Ⅱ)若角A,B,C的对边分别为的值.【答案】(Ⅰ);(Ⅱ),.【解析】(I)给出了关于角的两个三角函数值,利用诱导公式和同角三角函数的基本关系式可求得其正弦、余弦,再根据三角形的性质可求得的值;(II)在第一问的基础上,利用正弦定理可求得边,再由余弦定理求边,注意利用三角形基本性质舍解.试题解析:(Ⅰ)∵,,又∵,.∵,且,.(Ⅱ)由正弦定理得,,另由得,解得或(舍去),,.【考点】三角函数的诱导公式,同角三角函数的基本关系式及利用正、余弦定理在解三角形.19.已知,则的值为.【答案】.【解析】,故填:.【考点】三角恒等变形.20.在中,角A,B,C的对边分别为,,,若,则角的值为()A.或B.或C.D.【答案】A.【解析】,,∴或,故选A.【考点】余弦定理.【思路点睛】由已知条件,可先将切化弦,再结合正弦定理,将该恒等式的边都化为角,然后进行三角函数式的恒等变形,找出角之间的关系;或将角都化成边,然后进行代数恒等变形,可一题多解,多角度思考问题,从而达到对知识的熟练掌握.21.为了得到函数的图象,只需把函数图象上的所有点()A.横坐标缩短到原来的倍,纵坐标不变B.横坐标伸长到原来的2倍,纵坐标不变C.纵坐标缩短到原来的倍,横坐标不变D.纵坐标缩短到原来的2倍,横坐标不变【答案】A【解析】这是一个三角函数的图象变换问题,一般的为了得到函数的图象,只需把函数的图象上所有点的横坐标伸长()或缩短()到原来的倍(纵坐标不变)即可,因此为了得到函数的图象,只需把函数图象上的所有点横坐标缩短到原来的倍,纵坐标不变,故选A.【考点】三角函数的图象变换.【方法点睛】本题是一个三角函数的图象变换问题,属于容易题.一般的要得到函数(其中)的图像可按以下步骤进行:先把的图象向左()或向右()平移个单位,再将所得函数的图象上各点的横坐标扩大()或缩小()为原来的(纵坐标不变),再把所得函数图象上各点的纵坐标扩大()或缩小()为原来的倍(横坐标不变),最后再将所得图像向上()或向下()平移个单位,即可得到函数的图象.22.如图,在中,,,点在边上,且,.(I)求;(II)求的长.【答案】(Ⅰ);(Ⅱ),.【解析】(Ⅰ)由图可知,所以,又,所以,再由两角差的正弦公式可求得;(Ⅱ)由题意可用正弦定理、余弦定理即可求出、的长,在中,有,又从而可求得;在中,由余弦定理得,,从而可求出.试题解析:(Ⅰ)在中,因为,所以,所以(Ⅱ)在中,由正弦定理得,在中,由余弦定理得,所以【考点】1.解三角形;2.两角差的正弦公式.23.设的内角对边分别为,已知,且.(1)求角的大小;(2)若向量与共线,求的值.【答案】(1);(2)。
高二数学三角函数三角恒等变换解三角形试题1.已知⊿ABC和⊿BCD均为边长等于的等边三角形,且,则二面角的大小为()A.30°B.45°C.60°D.90°【答案】C【解析】略2.锐角中,已知,则的取值范围是()A.B.C.D.【答案】C【解析】由正弦定理可得,所以.因为为锐角三角形,所以.即.故C正确.【考点】1正弦定理;2三角函数化简求值.3.在中,三内角、、的对边分别是、、.(1)若求;(2)若,,试判断的形状.【答案】(1)或;(2)等边三角形【解析】(1)由题根据正弦定理得到,因为,所以,可得或;(2)根据正弦定理化简可得,结合条件,得到,判断三角形为等边三角形.试题解析:(1)由正弦定理得:又∴∴或(2)由得又是等边三角形.【考点】正弦定理;余弦定理4.圆锥的表面积是底面积的3倍,则该圆锥的侧面展开图扇形的圆心角的弧度数为.【答案】【解析】设母线长为R,底面半径为r,∴底面周长=,底面面积=,侧面面积,∵侧面积是底面积的3倍,∴,【考点】扇形和圆锥的相关计算5.在中,内角A 、B、C对的边长分别是a、b、c.(1)若c=2,C=,且的面积是,求a,b的值;(2)若,试判断的形状.【答案】(1)a=2, b=2(2)等腰三角形【解析】(Ⅰ)根据余弦定理,得,再由面积正弦定理得,两式联解可得到a,b的值;(Ⅱ)根据三角形内角和定理,得到sinC=sin(A+B),代入已知等式,展开化简合并,得sinBcosA=sinAcosA,最后讨论当cosA=0时与当cosA≠0时,分别对△ABC 的形状的形状加以判断,可以得到结论试题解析:(1)由余弦定理得又的面积为,得ab=4 解得 a=2, b=2(2)得得,为直角三角形;当时,A="B," 为等腰三角形【考点】1.正余弦定理解三角形;2.三角函数基本公式6.在中,,则边的长为()A.B.3C.D.7【答案】A【解析】由三角形的面积公式,得,解得;由余弦定理,得,即;故选A.【考点】1.三角形的面积公式;2.余弦定理.7.在△ABC中,A=60°,,,则B=()A.45°B.135°C.45°或135°D.以上答案都不对【答案】A【解析】由正弦定理,得,即,因为,所以,所以;故选A.【考点】正弦定理.【易错点睛】本题考查正弦定理的应用,属于基础题;在三角形中,若已知两边及其中一边的对角,则选用正弦定理求另一边的对角,但满足该条件的三角形并非唯一,可能一解、两解或无解,要根据题目中的条件合理取舍,如本题中由正弦定理得到后,部分学生会出现选C的错误答案,要注意利用“大边对大角”进行取舍.8.已知的三边长分别为,则的面积为__________.【答案】【解析】的边长由余弦定理得,,所以三角形的面积为.【考点】1、余弦定理的运用;2、三角形的面积公式.9.△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=()A. B. C. D.【解析】根据等比数列的性质,可得b=a,将c、b与a的关系结合余弦定理分析可得答案.解:△ABC中,a、b、c成等比数列,则b2=ac,由c=2a,则b=a,=,故选B.【考点】余弦定理;等比数列.10.(2015秋•河南期末)已知△ABC的三内角A,B,C成等差数列,且AB=1,BC=4,则该三角形面积为()A.B.2C.2D.4【答案】A【解析】由A,B,C成等差数列A+B+C=π可求B,利用三角形的面积公式S=bcsinA可求.解:∵△ABC三内角A,B,C成等差数列,∴B=60°又AB=1,BC=4,∴;故选A.【考点】三角形的面积公式.11.边长为5、7、8的三角形的最大角与最小角之和为()A.90°B.120°C.135°D.150°【答案】B【解析】长为7的边对应的角满足,,所以最大角与最小角之和为120°【考点】余弦定理解三角形12.(2015秋•珠海期末)△ABC内角A,B,C的对边分别为a,b,c.已知,则B= .【答案】45°.【解析】由已知及正弦定理可得sinB==,根据大边对大角由b<a可得B∈(0,60°),即可求B的值.解:△ABC中,∵,∴由正弦定理可得:sinB===,∵b<a,∴B∈(0,60°),∴B=45°.故答案为:45°.【考点】正弦定理.13.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(1)求角A的大小;(2)若a=4,b+c=8,求△ABC的面积.【答案】(1)(2)4【解析】(1)由正弦定理将已知等式化成角的正弦的形式,化简解出sinA=,再由△ABC是锐角三角形,即可算出角A的大小;(2)由余弦定理a2=b2+c2﹣2bccosA的式子,结合题意化简得b2+c2﹣bc=16,与联解b+c=8得到bc的值,再根据三角形的面积公式加以计算,可得△ABC的面积.解:(1)∵△ABC中,,∴根据正弦定理,得,∵锐角△ABC中,sinB>0,∴等式两边约去sinB,得sinA=∵A是锐角△ABC的内角,∴A=;(2)∵a=4,A=,∴由余弦定理a2=b2+c2﹣2bccosA,得16=b2+c2﹣2bccos,化简得b2+c2﹣bc=16,∵b+c=8,平方得b2+c2+2bc=64,∴两式相减,得3bc=48,可得bc=16.因此,△ABC的面积S=bcsinA=×16×sin=4.【考点】余弦定理;正弦定理.14.在中,角对边分别是,且满足.(1)求角的大小;(2)若,且的面积为,求.【答案】(1);(2).【解析】(1)利用正弦定理,化边为角,利用两角差的正弦公式,可得进而得,即可求解角的大小;(2)利用三角形的面积公式得,再利用余弦定理得,联立方程组即可求解的值.试题解析:(1);(2)①,利用余弦定理得:即②,联立①②,解得:.【考点】正弦定理、余弦定理及三角形的面积公式.15.在中,内角所对的边分别为,且.(1)求角的大小;(2)如果,求面积的最大值,并判断此时的形状。
专题05三角函数与解三角形历年考题细目表题型年份考点试题位置单选题2019 三角函数2019年新课标1理科11 单选题2017 三角函数2017年新课标1理科09 单选题2016 三角函数2016年新课标1理科12 单选题2015 三角函数2015年新课标1理科02 单选题2015 三角函数2015年新课标1理科08 单选题2014 三角函数2014年新课标1理科08 单选题2012 三角函数2012年新课标1理科09 单选题2011 三角函数2011年新课标1理科05 单选题2011 三角函数2011年新课标1理科11 单选题2010 三角函数2010年新课标1理科09 填空题2018 三角函数2018年新课标1理科16 填空题2015 解三角形2015年新课标1理科16 填空题2014 解三角形2014年新课标1理科16 填空题2013 三角函数2013年新课标1理科15 填空题2011 解三角形2011年新课标1理科16 填空题2010 解三角形2010年新课标1理科16 解答题2019 解三角形2019年新课标1理科17 解答题2018 解三角形2018年新课标1理科17 解答题2017 解三角形2017年新课标1理科17 解答题2016 解三角形2016年新课标1理科17 解答题2013 解三角形2013年新课标1理科17 解答题2012 解三角形2012年新课标1理科17历年高考真题汇编1.【2019年新课标1理科11】关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数②f(x)在区间(,π)单调递增③f(x)在[﹣π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③【解答】解:f(﹣x)=sin|﹣x|+|sin(﹣x)|=sin|x|+|sin x|=f(x)则函数f(x)是偶函数,故①正确,当x∈(,π)时,sin|x|=sin x,|sin x|=sin x,则f(x)=sin x+sin x=2sin x为减函数,故②错误,当0≤x≤π时,f(x)=sin|x|+|sin x|=sin x+sin x=2sin x,由f(x)=0得2sin x=0得x=0或x=π,由f(x)是偶函数,得在[﹣π,)上还有一个零点x=﹣π,即函数f(x)在[﹣π,π]有3个零点,故③错误,当sin|x|=1,|sin x|=1时,f(x)取得最大值2,故④正确,故正确是①④,故选:C.2.【2017年新课标1理科09】已知曲线C1:y=cos x,C2:y=sin(2x),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x)=cos(2x)=sin(2x)的图象,即曲线C2,故选:D.3.【2016年新课标1理科12】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|),x为f(x)的零点,x为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【解答】解:∵x为f(x)的零点,x为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则,即T,解得:ω≤12,当ω=11时,φ=kπ,k∈Z,∵|φ|,∴φ,此时f(x)在(,)不单调,不满足题意;当ω=9时,φ=kπ,k∈Z,∵|φ|,∴φ,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B.4.【2015年新课标1理科02】sin20°cos10°﹣cos160°sin10°=()A.B.C.D.【解答】解:sin20°cos10°﹣cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°.故选:D.5.【2015年新课标1理科08】函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ,kπ),k∈z B.(2kπ,2kπ),k∈zC.(k,k),k∈z D.(,2k),k∈z【解答】解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为2()=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得ϕ,k∈z,即ϕ,f(x)=cos(πx).由2kπ≤πx2kπ+π,求得2k x≤2k,故f(x)的单调递减区间为(,2k),k∈z,故选:D.6.【2014年新课标1理科08】设α∈(0,),β∈(0,),且tanα,则()A.3α﹣βB.3α+βC.2α﹣βD.2α+β【解答】解:由tanα,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin()=cosα成立.故选:C.7.【2012年新课标1理科09】已知ω>0,函数f(x)=sin(ωx)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C.D.(0,2]【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选:A.8.【2011年新课标1理科05】已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x 上,则cos2θ=()A.B.C.D.【解答】解:根据题意可知:tanθ=2,所以cos2θ,则cos2θ=2cos2θ﹣1=21.故选:B.9.【2011年新课标1理科11】设函数f(x)=sin(ωx+φ)+cos(ωx+φ)的最小正周期为π,且f(﹣x)=f(x),则()A.f(x)在单调递减B.f(x)在(,)单调递减C.f(x)在(0,)单调递增D.f(x)在(,)单调递增【解答】解:由于f(x)=sin(ωx+ϕ)+cos(ωx+ϕ),由于该函数的最小正周期为T,得出ω=2,又根据f(﹣x)=f(x),得φkπ(k∈Z),以及|φ|,得出φ.因此,f(x)cos2x,若x∈,则2x∈(0,π),从而f(x)在单调递减,若x∈(,),则2x∈(,),该区间不为余弦函数的单调区间,故B,C,D都错,A正确.故选:A.10.【2010年新课标1理科09】若,α是第三象限的角,则()A.B.C.2 D.﹣2【解答】解:由,α是第三象限的角,∴可得,则,应选A.11.【2018年新课标1理科16】已知函数f(x)=2sin x+sin2x,则f(x)的最小值是.【解答】解:由题意可得T=2π是f(x)=2sin x+sin2x的一个周期,故只需考虑f(x)=2sin x+sin2x在[0,2π)上的值域,先来求该函数在[0,2π)上的极值点,求导数可得f′(x)=2cos x+2cos2x=2cos x+2(2cos2x﹣1)=2(2cos x﹣1)(cos x+1),令f′(x)=0可解得cos x或cos x=﹣1,可得此时x,π或;∴y=2sin x+sin2x的最小值只能在点x,π或和边界点x=0中取到,计算可得f(),f(π)=0,f(),f(0)=0,∴函数的最小值为,故答案为:.12.【2015年新课标1理科16】在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.【解答】解:方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD x,AE x,DE x,CD=m,∵BC=2,∴(x+m)sin15°=1,∴x+m,∴0<x<4,而AB x+m x x,∴AB的取值范围是(,).故答案为:(,).方法二:如下图,作出底边BC=2的等腰三角形EBC,B=C=75°,倾斜角为150°的直线在平面内移动,分别交EB、EC于A、D,则四边形ABCD即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C时,AB趋近最小,为;②直线接近点E时,AB趋近最大值,为;故答案为:(,).13.【2014年新课标1理科16】已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sin A﹣sin B)=(c﹣b)sin C,则△ABC面积的最大值为.【解答】解:因为:(2+b)(sin A﹣sin B)=(c﹣b)sin C⇒(2+b)(a﹣b)=(c﹣b)c⇒2a﹣2b+ab﹣b2=c2﹣bc,又因为:a=2,所以:,△ABC面积,而b2+c2﹣a2=bc⇒b2+c2﹣bc=a2⇒b2+c2﹣bc=4⇒bc≤4所以:,即△ABC面积的最大值为.故答案为:.14.【2013年新课标1理科15】设当x=θ时,函数f(x)=sin x﹣2cos x取得最大值,则cosθ=.【解答】解:f(x)=sin x﹣2cos x(sin x cos x)sin(x﹣α)(其中cosα,sinα),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ,又sin2θ+cos2θ=1,联立得(2cosθ)2+cos2θ=1,解得cosθ.故答案为:15.【2011年新课标1理科16】在△ABC中,B=60°,AC,则AB+2BC的最大值为.【解答】解:设AB=cAC=bBC=a由余弦定理cos B所以a2+c2﹣ac=b2=3设c+2a=m代入上式得7a2﹣5am+m2﹣3=0△=84﹣3m2≥0 故m≤2当m=2时,此时a,c符合题意因此最大值为2另解:因为B=60°,A+B+C=180°,所以A+C=120°,由正弦定理,有2,所以AB=2sin C,BC=2sin A.所以AB+2BC=2sin C+4sin A=2sin(120°﹣A)+4sin A=2(sin120°cos A﹣cos120°sin A)+4sin Acos A+5sin A=2sin(A+φ),(其中sinφ,cosφ)所以AB+2BC的最大值为2.故答案为:216.【2010年新课标1理科16】在△ABC中,D为边BC上一点,BD DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=.【解答】解:由△ADC的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°,,则.故∠BAC=60°.17.【2019年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A ﹣sin B sin C.(1)求A;(2)若a+b=2c,求sin C.【解答】解:(1)∵△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A﹣sin B sin C.则sin2B+sin2C﹣2sin B sin C=sin2A﹣sin B sin C,∴由正弦定理得:b2+c2﹣a2=bc,∴cos A,∵0<A<π,∴A.(2)∵a+b=2c,A,∴由正弦定理得,∴解得sin(C),∴C,C,∴sin C=sin()=sin cos cos sin.18.【2018年新课标1理科17】在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:,即,∴sin∠ADB,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB,∵DC=2,∴BC5.19.【2017年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S△ABC ac sin B,∴3c sin B sin A=2a,由正弦定理可得3sin C sin B sin A=2sin A,∵sin A≠0,∴sin B sin C;(2)∵6cos B cos C=1,∴cos B cos C,∴cos B cos C﹣sin B sin C,∴cos(B+C),∴cos A,∵0<A<π,∴A,∵2R2,∴sin B sin C•,∴bc=8,∵a2=b2+c2﹣2bc cos A,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c∴周长a+b+c=3.20.【2016年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知等式利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin(π﹣(A+B))=sin C2cos C sin C=sin C∴cos C,∴C;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S ab sin C ab,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5.21.【2013年新课标1理科17】如图,在△ABC中,∠ABC=90°,AB,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB,求P A;(2)若∠APB=150°,求tan∠PBA.【解答】解:(I)在Rt△PBC中,,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得P A2=PB2+AB2﹣2PB•AB cos30°.∴P A.(II)设∠PBA=α,在Rt△PBC中,PB=BC cos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.22.【2012年新课标1理科17】已知a,b,c分别为△ABC三个内角A,B,C的对边,a cos C a sin C﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为,求b,c.【解答】解:(1)由正弦定理得:a cos C a sin C﹣b﹣c=0,即sin A cos C sin A sin C=sin B+sin C∴sin A cos C sin A sin C=sin(A+C)+sin C,即sin A﹣cos A=1∴sin(A﹣30°).∴A﹣30°=30°∴A=60°;(2)若a=2,△ABC的面积,∴bc=4.①再利用余弦定理可得:a2=b2+c2﹣2bc•cos A=(b+c)2﹣2bc﹣bc=(b+c)2﹣3×4=4,∴b+c=4.②结合①②求得b=c=2.考题分析与复习建议本专题考查的知识点为:同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形等.预测明年本考点题目会比较稳定,备考方向以同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等为重点较佳.最新高考模拟试题1.函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象如图所示.则函数()f x 的单调递增区间为( )A .,63k k ππππ轾犏-+犏臌,k z ∈B .,33k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈C .,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈D .,66k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈【答案】C 【解析】根据函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象, 可得:332113441264T ππππω=⋅=-=, 解得:2ω=, 由于点,26π⎛⎫⎪⎝⎭在函数图象上,可得:2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭,可得:2262k ππϕπ⨯+=+,k ∈Z ,解得:26k πϕπ=+,k ∈Z ,由于:0ϕπ<<, 可得:6π=ϕ,即2sin 26y x π⎛⎫=+ ⎪⎝⎭,令222262k x k πππππ-≤+≤+,k ∈Z 解得:36k x k ππππ-≤≤+,k ∈Z ,可得:则函数()f x 的单调递增区间为:,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈Z .故选C .2.将函数()2sin(2)3f x x π=+的图像先向右平移12π个单位长度,再向上平移1个单位长度,得到()g x 的图像,若()()129g x g x =且12,[2,2]x x ππ∈-,则122x x -的最大值为( ) A .4912π B .356π C .256π D .174π 【答案】C 【解析】由题意,函数()2sin(2)3f x x π=+的图象向右平移12π个单位长度,再向上平移1个单位长度,得到()2sin[2()]12sin(2)11236g x x x πππ=-++=++的图象, 若()()129g x g x =且12,[2,2]x x ππ∈-, 则()()123g x g x ==,则22,62x k k Z πππ+=+∈,解得,6x k k Z ππ=+∈,因为12,[2,2]x x ππ∈-,所以121157,{,,,}6666x x ππππ∈--, 当12711,66x x ππ==-时,122x x -取得最大值,最大值为711252()666πππ⨯--=, 故选C.3.将函数222()2cos4x f x ϕ+=(0πϕ-<<)的图像向右平移3π个单位长度,得到函数()g x 的图像,若()(4)g x g x π=-则ϕ的值为( )A .23-π B .3π-C .6π-D .2π-【答案】A 【解析】 因为222()2coscos()14x f x x ϕϕ+==++, 将其图像向右平移3π个单位长度,得到函数()g x 的图像, 所以()cos()13g x x πϕ=-++,又()(4)g x g x π=-,所以()g x 关于2x π=对称, 所以2()3k k Z ππϕπ-+=∈,即(2)()3k k Z πϕπ=+-∈,因为0πϕ-<<,所以易得23πϕ=-.故选A4.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的图象经过两点2(0,),(,0)24A B π, ()f x 在(0,)4π内有且只有两个最值点,且最大值点大于最小值点,则()f x =( ) A .sin 34x π⎛⎫+ ⎪⎝⎭B .3sin 54x π⎛⎫+⎪⎝⎭C .sin 74x π⎛⎫+⎪⎝⎭D .3sin 94x π⎛⎫+⎪⎝⎭【答案】D 【解析】根据题意可以画出函数()f x 的图像大致如下因为2(0)sin 2f ϕ==32,()4k k Z πϕπ=+∈ 又因为0ϕπ<<,所以34πϕ=,所以3()sin()4f x x πω=+, 因为3()sin()0444f πππω=+=,由图可知,3244k ππωππ+=+,解得18,k k Z ω=+∈, 又因为24T ππω=<,可得8ω>,所以当1k =时,9ω=, 所以3()sin(9)4f x x π=+, 故答案选D.5.已知函数()cos 3f x x x =-,则下列结论中正确的个数是( ). ①()f x 的图象关于直线3x π=对称;②将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象;③,03π⎛⎫- ⎪⎝⎭是()f x 图象的对称中心;④()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增. A .1 B .2C .3D .4【答案】A由题意,函数1()cos 2cos 2cos 23f x x x x x x π⎛⎫⎛⎫=-=-=+ ⎪ ⎪⎪⎝⎭⎝⎭, ①中,由22cos 133f ππ⎛⎫==-⎪⎝⎭不为最值,则()f x 的图象不关于直线3x π=对称,故①错; ②中,将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象,故②对; ③中,由2cos 023f π⎛⎫-== ⎪⎝⎭,可得,03π⎛⎫- ⎪⎝⎭不是()f x 图象的对称中心,故③错; ④中,由22,3k Z x k k ππππ-+≤∈≤,解得422,33k x k k Z ππππ-≤-∈≤,即增区间为42k ,2k ,33k Z ππππ⎡⎤--⎢⎥⎣⎦∈, 由22,3k x k k Z ππππ≤+≤+∈,解得22,233k x k k Z ππππ-≤≤+∈,即减区间为22,2,33k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,可得()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递减,故④错. 故选:A .6.在ABC ∆中,角A 、B 、C 的对边长分别a 、b 、c ,满足()22sin 40a a B B -++=,b =则ABC △的面积为A .BC .D 【答案】C 【解析】把22(sin )40a a B B -++=看成关于a 的二次方程,则2224(sin )164(3cos 4)B B sin B cos B B B =-=++-V24(2cos 3)4(cos 222)cos B B B B B =+-=+- 4[2sin(2)2]06B π=+-…,故若使得方程有解,则只有△0=,此时6B π=,b =代入方程可得,2440a a -+=,由余弦定理可得,2428cos3022c c+-︒=⨯,解可得,c =∴111sin 2222ABC s ac B ∆==⨯⨯=故选:C .7.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,则b 的取值范围为( )A .(0,4)B .(2,C .D .4)【答案】C 【解析】由锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,∴ 022A π<<,3A B A +=,32A ππ∴<< 63A ππ∴<<,04A π<<cos 22A <<2,2a B A ==Q ,由正弦定理得12cos 2b b A a ==,即4cos b A =4cos A ∴<<则b 的取值范围为,故选C.8.已知V ABC 的内角,,A B C 所对的边分别为,,a b c ,若6sin cos 7sin2C A A =,53a b =,则C =( ). A .3πB .23π C .34π D .56π 【答案】B 【解析】由题意,因为672sinCcosA sin A =,可得:614sinCcosA sinAcosA =, 即(614)0sinC sinA cosA -⋅=,可得∴614sinC sinA =或0cosA =, 又由a b <,则A 为锐角,所以0cosA =不符合舍去, 又由正弦定理可得:37c a =,即:73a c =, 由余弦定理可得22222257133cos 52223a a a a b c C a ab a ⎛⎫⎛⎫+- ⎪ ⎪+-⎝⎭⎝⎭===-⎛⎫⋅ ⎪⎝⎭, ∵(0,)C π∈,∴23C π=. 故选:B .9.若函数()2sin()f x x ωϕ=+ (01ω<<,02πϕ<<)的图像过点,且关于点(2,0)-对称,则(1)f -=_______. 【答案】1 【解析】函数()()2sin f x x ωϕ=+的图像过点(2sin ϕ∴=sin ϕ=02πϕ<<Q 3πϕ∴=又函数图象关于点()2,0-对称 2sin 203πω⎛⎫∴-+= ⎪⎝⎭,即:23k πωπ-+=,k Z ∈126k πωπ∴=-+,k Z ∈01ω<<Q 6πω∴=()2sin 63f x x ππ⎛⎫∴=+⎪⎝⎭,()12sin 2sin 1636f πππ⎛⎫∴-=-+== ⎪⎝⎭本题正确结果:110.若实数,x y 满足()()()2221122cos 11x y xyx y x y ++--+-=-+.则xy 的最小值为____________【答案】1.4【解析】∵()()()2221122cos 11x y xyx y x y ++--+-=-+,∴10x y -+>, ()()()()2221121111111x y xyx y x y x y x y x y ++---++==-++-+-+-+Q()()11121211x y x y x y x y ∴-++≥-+⋅=-+-+,当且仅当11x y -+=时即=x y 时取等号()22cos 12x y +-≥Q ,当且仅当()1x y k k Z π+-=∈时取等号∴()()()2221122cos 12111x y xyx y x y x y ,即++--=+-=-+=-+且()1x y k k Z π+-=∈,即()12k x y k Z π+==∈, 因此21124k xy π+⎛⎫=≥⎪⎝⎭(当且仅当0k =时取等号), 从而xy 的最小值为1.411.设函数()sin(2)3f x x π=+,若120x x <,且12()()0f x f x +=,则21x x -的取值范围是_______.【答案】(3π,+∞) 【解析】不妨设120x x <<,则2121x x x x -=-,由图可知210()33x x ππ->--=.故答案为:(3π,+∞) 12.已知角α为第一象限角,sin cos a αα-=,则实数a 的取值范围为__________.【答案】(1,2] 【解析】由题得sin 2sin()3a πααα==+,因为22,,2k k k Z ππαπ<<+∈所以52++2,,336k k k Z ππππαπ<<+∈ 所以1sin()1,12sin()2233ππαα<+≤∴<+≤. 故实数a 的取值范围为(1,2]. 故答案为:(1,2]13.已知函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,则cos 2ϕ=___. 【答案】35【解析】因为函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,322f f ππ⎛⎫⎛⎫∴= ⎪⎪⎝⎭⎝⎭, 即cos 2sin cos 2sin ϕϕϕϕ+=--,即cos 2sin ϕϕ=-, 即1tan 2ϕ=-, 则22222211cos sin 1tan 34cos 21cos sin 1tan 514ϕϕϕϕϕϕϕ---====+++, 故答案为35.14.如图,四边形ABCD 中,4AB =,5BC =,3CD =,90ABC ∠=︒,120BCD ∠=°,则AD 的长为______【答案】65123-【解析】连接AC,设ACBθ∠=,则120ACDθ∠=-o,如图:故在Rt ABC∆中,sin4141θθ==,()131343cos120cos22224141241θθθ-=-+=-=oQ,又Q在ACD∆中由余弦定理有()(222413435cos1202341241ADθ+---==⨯⨯o,解得265123AD=-即65123AD=-65123-15.在锐角ABC∆中,角A B C,,的对边分别为a b c,,.且cos cosA Ba b+=23sin C23b=.则a c+的取值范围为_____.【答案】(6,3]【解析】cos cos233A B Ca b a+=Q23cos cos sin3b A a B C∴+=∴由正弦定理可得:23sin cos sin cos sinB A A B B C+=,可得:sin()sin sin A B C B C +==,sin B ∴=, 又ABC ∆为锐角三角形,3B π∴=,∴可得:sin sin 24(sin sin )4sin 4sin sin sin 3b A b C a c A C A A B B π⎛⎫+=+=+=+- ⎪⎝⎭3A π⎛⎫=- ⎪⎝⎭ 2,3A A π-Q 均为锐角,可得:,62636A A πππππ<<-<-<,(6,a c ∴+∈.故答案为: (6,.16.在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________.【解析】因为1tan A ,1tan C ,1tan B 成等差数列, 所以211tan tan tan C A B =+,即2cos cos cos sin()sin sin sin sin sin sin sin sin C A B A B CC A B A B A B+=+==, 所以2sin 2cos sin sin C C A B =,由正弦定理可得2cos 2c C ab=,又由余弦定理可得222cos 2a b c C ab +-=,所以222222a b c c ab ab+-=,故2222a b c +=, 又因为AB 边上的中线1CM =,所以1CM =u u u u v ,因为()12CM CA CB u u u u v u u u v u u u v=+, 所以22222422cos CM CA CB CA CB CA CB CA CB C =++⋅=++u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,即22224232c b a ab c ab=++⋅=,解c =即AB 的长为3.17.在ABC ∆中,A B C ,,的对边分别a b c ,,,60,cos A B ︒==(Ⅰ)若D 是BC 上的点,AD 平分BAC ∠,求DCBD的值; (Ⅱ)若 ccos cos 2B b C +=,求ABC ∆的面积. 【答案】(Ⅰ)4;【解析】(Ⅰ)因为cos 3B =,∴sin 3B =, ()1sin sin sin cos cos sin 2C A B A B A B =+=+==, 由正弦定理得sin sin sin AD BD AD B BAD C ==∠,sin DCCAD∠, 因为AD 平分BAC ∠,所以sin 4sin DC BBD C ===.(Ⅱ)由cos cos 2c B b C +=,即222222cos cos 222a c b a b c c B b C c b a ac ab+-+-+=⋅+⋅==,所以sin sin a b A B =,∴sin sin 3a Bb A ==,故11sin 222ABC S ab C ==⨯=V 18.在ABC ∆中,角,,A B C 所对的边分别,,a b c ,()()()()2sin cos sin f x x A x B C x R =-++∈,函数()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称.(1)当0,2x π⎛⎫∈ ⎪⎝⎭时,求()f x 的值域;(2)若7a =且sin sin B C +=ABC ∆的面积.【答案】(1)⎛⎤⎥ ⎝⎦(2)【解析】(1)()()()2sin cos sin f x x A x B C =-++ ()2sin cos sin x A x A =-+=2sin()cos sin(())x A x x x A -+--=2sin()cos sin cos()sin()cos x A x x x A x A x -+--- =sin()cos sin cos()x A x x x A -+-()sin 2x A =-∵函数()f x 的图像关于点π,06⎛⎫⎪⎝⎭对称, ∴π06f ⎛⎫=⎪⎝⎭∴π3A =∴()πsin 23f x x ⎛⎫=-⎪⎝⎭∵()f x 在区间5π0,12⎛⎤ ⎥⎝⎦上是增函数,5ππ,122⎛⎫⎪⎝⎭上是减函数,且()0f =,5π112f ⎛⎫= ⎪⎝⎭,π2f ⎛⎫=⎪⎝⎭∴()f x 的值域为⎛⎤⎥ ⎝⎦(2)∵sin sin B C +=1313sin sin sin 1377B C A b c a ∴+=∴+=⨯= ∴13b c +=由余弦定理,2222cos a b c bc A =+- ∴40bc =∴1sinA 2ABC S bc ==V 19.在ABC ∆中,已知2AB =,cos 10B =,4C π=.(1)求BC 的长; (2)求sin(2)3A π+的值.【答案】(1)5BC =(2【解析】解:(1)因为cos B =,0B π<<,所以sin B ===在ABC ∆中,A B C π++=,所以()A B C π=-+, 于是sin sin(())sin()A B C B C π=-+=+4sin cos cos sin 1021025B C B C =+=⨯+⨯=. 在ABC ∆中,由正弦定理知sin sin BC AB A C=,所以4sin sin 552AB BC A C =⨯==. (2)在ABC ∆中,A B C π++=,所以()A B C π=-+, 于是cos cos(())cos()A B C B C π=-+=-+3(cos cos sin sin )5B C B C =--=-=⎝⎭,于是4324sin 22sin cos 25525A A A ==⨯⨯=, 2222347cos 2cos sin 5525A A A ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭.因此,sin 2sin 2cos cos 2sin 333A A A πππ⎛⎫+=+ ⎪⎝⎭ 24173247325225250-⎛⎫=⨯+-⨯= ⎪⎝⎭. 20.如图,在四边形ABCD 中,60A ∠=︒,90ABC ∠=︒.已知3AD =,6BD =.(Ⅰ)求sin ABD ∠的值;(Ⅱ)若2CD =,且CD BC >,求BC 的长.【答案】(Ⅰ)64(Ⅱ)1BC = 【解析】(Ⅰ)在ABD V 中,由正弦定理,得sin sin AD BD ABD A =∠∠. 因为60,3,6A AD BD ︒∠=== 所以36sin sin sin 6046AD ABD A BD ︒∠=⨯∠== (Ⅱ)由(Ⅰ)可知,6sin ABD ∠=, 因为90ABC ︒∠=,所以()6cos cos 90sin CBD ABD ABD ︒∠=-∠=∠=. 在BCD ∆中,由余弦定理,得2222cos CD BC BD BC BD CBD =+-⋅∠. 因为2,6CD BD ==所以264626BC BC =+-,即2320BC BC -+=,解得1BC =或2BC =.又CD BC >,则1BC =.21.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且234cos2sin 22A b b a B =+. (1)求cos A ;(2)若a =5c =,求b .【答案】(1) 3cos 5A =(2) 1b =或5. 【解析】解:(1)由题意知234cos 2sin 22A b b aB =+, 化简得4cos 3sin b A a B =,由正弦定理得4sin cos 3sin sin B A A B =, 因为sin 0B ≠, 所以4tan 3A =,且A 为ABC ∆的内角, 即3cos 5A =. (2)由余弦定理得2222cos a b c bc A =+-, 所以220256b b =+-,所以2650b b -+=,所以1b =或5.22.已知在△ABC 中,222a c ac b +-=. (Ⅰ)求角B 的大小;(Ⅱ)求cos cos A C +的最大值.【答案】(Ⅰ)3π;(Ⅱ)1. 【解析】 (Ⅰ)由余弦定理得2221cos ==222a cb ac B a c a c +-⋅=⋅⋅ 因为角B 为三角形内角3B π∴∠=(Ⅱ)由(Ⅰ)可得23A C B ππ∠+∠=-∠= 23A C π∴∠=-∠ cos cos A C ∴+=2cos cos 3C C π⎛⎫-+⎪⎝⎭ =22cos cos sin sin cos 33C C C ππ⋅+⋅+=1cos sin cos 2C C C -⋅++1sin cos 2C C +⋅ =cos sin sin cos 66C C ππ⋅+⋅ =sin 6C π⎛⎫+ ⎪⎝⎭ 203C π<<Q 5666C πππ∴<+< 1sin 126C π⎛⎫∴<+≤ ⎪⎝⎭ cos cos A C ∴+的最大值是1。
【高中数学】数学《三角函数与解三角形》高考知识点(1)一、选择题1.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且222b c a bc +=+若2sin sin sin B C A ⋅=,则ABC ∆的形状是()A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形【答案】C 【解析】 【分析】直接利用余弦定理的应用求出A 的值,进一步利用正弦定理得到:b =c ,最后判断出三角形的形状. 【详解】在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c , 且b 2+c 2=a 2+bc .则:2221222b c a bc cosA bc bc +-===,由于:0<A <π,故:A 3π=.由于:sin B sin C =sin 2A , 利用正弦定理得:bc =a 2, 所以:b 2+c 2﹣2bc =0, 故:b =c ,所以:△ABC 为等边三角形. 故选C . 【点睛】本题考查了正弦定理和余弦定理及三角形面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.2.已知函数()sin f x a x x =的一条对称轴为56x π=,函数()f x 在区间()12,x x 上具有单调性,且()()12f x f x =-,则下述四个结论:①实数a 的值为1;②()()1,x f x 和()()22,x f x 两点关于函数()f x 图象的一条对称轴对称; ③21x x -的最大值为π, ④12x x +的最小值为23π. 其中所有正确结论的编号是( )A .①②③B .①③④C .①④D .③④【答案】B 【解析】 【分析】 根据56x π=是函数()f x 的一条对称轴,确定函数()f x ,再根据函数()f x 在区间()12,x x 上具有单调性,得到21x x -的最大值为2Tπ=,然后由()()12f x f x =-,得到()()11,x f x 和()()22,x f x 两点关于函数()f x 的一个对称中心对称求解验证.【详解】 ∵56x π=是函数()f x 的一条对称轴,∴()53f x f x π⎛⎫=-⎪⎝⎭, 令0x =,得()503f f π⎛⎫=⎪⎝⎭,即-1a =,①正确; ∴()sin 2sin 3π⎛⎫=-=- ⎪⎝⎭f x x x x .又因为函数()f x 在区间()12,x x 上具有单调性, ∴21x x -的最大值为2Tπ=,且()()12f x f x =-, ∴()()11,x f x 和()()22,x f x 两点关于函数()f x 的一个对称中心对称,∴121233223x x x x k ππ⎛⎫⎛⎫-+- ⎪ ⎪+π⎝⎭⎝⎭=-=π,k Z ∈, ∴12223x x k ππ+=+,k Z ∈,当0k =时,12x x +取最小值23π,所以①③④正确,②错误. 故选:B 【点睛】本题主要考查三角函数的图象和性质,还考查了推理论证,运算求解的能力,属于中档题.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a ﹣c cos B )sin A =c cos A sin B ,则△ABC 的形状一定是( ) A .钝角三角形 B .直角三角形C .等腰三角形D .锐角三角形【答案】C 【解析】 【分析】根据题意,由(cos )sin cos sin a c B A c A B -=变形可得sin sin a A c C =,进而由正弦定理可得22a c =,即a c =,即可得答案. 【详解】根据题意,在ABC ∆中,(cos )sin cos sin a c B A c A B -=, 变形可得:sin cos sin cos sin (cos sin cos sin )sin()sin a A c B A c A B c B A A B c A B c C =+=+=+=,即有sin sin a A c C =,又由正弦定理可得22a c =,即a c =. 故选:C . 【点睛】本题主要考查三角形的形状判断,考查正弦定理的应用,意在考查学生对这些知识点的理解掌握水平,属于基础题.4.在ABC ∆中,角,,A B C 所对的边分别为,,a b c 满足,222b c a bc +-=,0AB BC ⋅>u ur u u r u u,2a =,则bc +的取值范围是( ) A .31,2⎛⎫ ⎪⎝⎭B.32⎫⎪⎪⎝⎭C .13,22⎛⎫⎪⎝⎭D .31,2⎛⎤ ⎥⎝⎦【答案】B 【解析】 【分析】利用余弦定理222cos 2b c a A bc+-=,可得3A π=,由|||cos()|0AB BC AB BC B π⋅=⋅->u u u u u u u u r u ur u r u r,可得B为钝角,由正弦定理可得sin sin(120)30)o o b c B B B ∴+=+-=+,结合B 的范围,可得解【详解】由余弦定理有:222cos 2b c a A bc+-=,又222b c a bc +-=故2221cos 222b c a bc A bc bc +-===又A 为三角形的内角,故3A π=又2a=sin sin sin(120)ob c c B C B ==- 又|||cos()|0AB BC AB BC B π⋅=⋅->u u u u u u u u r u ur u r u r故cos 0B B <∴为钝角3sin sin(120)sin 30)22o o b c B B B B B ∴+=+-=+=+(90,120)o o B ∈Q ,可得130(120150)sin(30)(,22o o o o B B +∈∴+∈,330))22o b c B ∴+=+∈ 故选:B 【点睛】本题考查了正弦定理、余弦定理和向量的综合应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题5.函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象的交点横坐标的和为( ) A .53π B .2πC .76π D .π【答案】B 【解析】 【分析】根据两个函数相等,求出所有交点的横坐标,然后求和即可. 【详解】令sin cos2x x =,有2sin 12sin x x =-,所以sin 1x =-或1sin 2x =.又[],2x ππ∈-,所以2x π=-或32x π=或6x π=或56x π=,所以函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象交点的横坐标的和3522266s πππππ=-+++=,故选B. 【点睛】本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养.6.在ABC ∆中,若sin :sin :sin 2:3:4A B C =,则ABC ∆是( ) A .直角三角形 B .钝角三角形C .锐角三角形D .等腰直角三角形【答案】B 【解析】 【分析】由题意利用正弦定理,推出a ,b ,c 的关系,然后利用余弦定理求出cosC 的值,即可得解. 【详解】∵sinA :sinB :sinC=2:3:4∴由正弦定理可得:a :b :c=2:3:4, ∴不妨令a=2x ,b=3x ,c=4x ,∴由余弦定理:c 2=a 2+b 2﹣2abcosC ,所以cosC=2222a b cab+-=2224916223x x x x x +-⨯⨯=﹣14, ∵0<C <π, ∴C 为钝角. 故选B . 【点睛】本题是基础题,考查正弦定理,余弦定理的应用,考查计算能力,常考题型.7.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=()A .5-B .CD 【答案】B 【解析】 【分析】由辅助角公式可确定()max f x =sin 2cos θθ-=平方关系可构造出方程组求得结果. 【详解】()()sin 2cos f x x x x ϕ=-=+Q ,其中tan 2ϕ=- ()max f x ∴sin 2cos θθ-=又22sin cos 1θθ+= cos θ∴=【点睛】本题考查根据三角函数的最值求解三角函数值的问题,关键是能够确定三角函数的最值,从而得到关于所求三角函数值的方程,结合同角三角函数关系构造方程求得结果.8.△ABC 中,已知tanA =13,tanB =12,则∠C 等于( )A .30°B .45°C .60°D .135°【答案】D 【解析】 【分析】利用三角形内角和为180o ,可得:tan tan()tan(+)C A B A B π=--=-,利用两角和公式和已知条件,即可得解. 【详解】在△ABC 中,11tan tan 32tan tan()tan(+)=-1111tan tan 132A BC A B A B A B π++=--=-=-=---⋅,所以135C ?o .故选:D. 【点睛】本题考查了正切的两角和公式,考查了三角形内角和,考查了转化思想和计算能力,属于中档题.9.在△ABC 中,7b =,5c =,3B π∠=,则a 的值为 A .3 B .4C .7D .8【答案】D 【解析】 【分析】根据题中所给的条件两边一角,由余弦定理可得2222cos b a c ac B =+-,代入计算即可得到所求的值. 【详解】因为7,5,3b c B π==∠=,由余弦定理可得2222cos b a c ac B =+-,即214925252a a =+-⨯⨯,整理得25240a a --=, 解得8a =或5a =-(舍去),故选D. 【点睛】该题考查的是有关解三角形的问题,在解题的过程中,涉及到的知识点有余弦定理,解三角形所用的就是正弦定理和余弦定理,结合题中的条件,选择适当的方法求得结果.10.在∆ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .则“sin >sin A B ”是“a b >”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】由正弦定理得sin sin 22a b A B a b R R>⇔>⇔> ,所以“sin sin A B >”是“a b >”的充要条件,选C.11.函数y=ππππcos sin cos -sin 4444x x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图象是( ) A .B .C .D .【答案】B 【解析】 【分析】首先根据二倍角余弦公式化简得到函数的解析式,再由函数表达式得到函数的单调性和周期,进而得到选项. 【详解】根据两角和差公式展开得到: y=ππππcos sin cos -sin 4444x x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦22πππcos sin cos 2424x x x ⎛⎫⎛⎫⎛⎫+-+=+ ⎪ ⎪ ⎪⎝⎭⎝=⎝⎭⎭=-sin2x ,函数在0的右侧是单调递减的,且周期为π,故选B. 故答案选B . 【点睛】这个题目考查了三角函数的恒等变换,题型为已知函数表达式选择函数的图像,这种题目,一般是先根据函数的表达式得到函数的定义域,或者值域,进行排除;也可以根据函数的表达式判断函数的单调性,周期性等,之后结合选项选择.12.已知函数f (x )=sin 2x +sin 2(x 3π+),则f (x )的最小值为( ) A .12B .14C 3D .22【答案】A 【解析】 【分析】先通过降幂公式和辅助角法将函数转化为()11cos 223f x x π⎛⎫=-+ ⎪⎝⎭,再求最值. 【详解】已知函数f (x )=sin 2x +sin 2(x 3π+), =21cos 21cos 2322x x π⎛⎫-+⎪-⎝⎭+,=1cos 22111cos 222223x x x π⎛⎫⎛⎫--=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 因为[]cos 21,13x π⎛⎫+∈- ⎪⎝⎭, 所以f (x )的最小值为12. 故选:A 【点睛】本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题.13.在OAB ∆中,已知OB =u u u v 1AB u u u v=,45AOB ∠=︒,点P 满足(),OP OA OB λμλμ=+∈R u u u v u u u v u u u v ,其中λ,μ满足23λμ+=,则OP u u u v的最小值为( )ABCD【答案】A 【解析】 【分析】根据OB =u u u r,1AB =uu u r ,45AOB ∠=︒,由正弦定理可得OAB ∆为等腰直角三角形,进而求得点A 坐标.结合平面向量的数乘运算与坐标加法运算,用λ,μ表示出OP u u u r.再由23λμ+=,将OP u u u r 化为关于λ的二次表达式,由二次函数性质即可求得OP u u u r的最小值.【详解】在OAB ∆中,已知OB =u u u r,1AB =uu u r ,45AOB ∠=︒由正弦定理可得sin sin AB OBAOB OAB=∠∠u u u r u u u rsin 2OAB =∠,解得sin 1OAB ∠=即2OAB π∠=所以OAB ∆为等腰直角三角形以O 为原点,OB 所在直线为x 轴,以OB 的垂线为y 轴建立平面直角坐标系如下图所示:则点A 坐标为22⎝⎭所以2222OA ⎛= ⎝⎭u u u r ,)2,0OB =u u u r因为(),OP OA OB λμλμ=+∈R u u u r u u u r u u u r则)222,022OP λμ⎛ =+ ⎝⎭u u u r 222,22λμλ⎛⎫⎪ ⎪⎝⎭=则2222222OP λμλ⎛⎫=++⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u r2222λλμμ=++因为23λμ+=,则32μλ=- 代入上式可得()()22322232λλλλ+-+-218518λλ-=+299555λ⎛⎫=-+ ⎪⎝⎭所以当95λ=时, min 93555OP ==u u u r 故选:A 【点睛】本题考查了平面向量基本定理的应用,正弦定理判断三角形形状,平面向量的坐标运算,属于中档题.14.若函数tan 23y x k π⎛⎫=-+ ⎪⎝⎭,0,6x π⎛⎫∈ ⎪⎝⎭的图象都在x 轴上方,则实数k 的取值范围为( )A .)+∞ B .)+∞C .()+∞D .()【答案】A 【解析】 【分析】计算tan 203x π⎛⎫<-< ⎪⎝⎭,tan 23x k π⎛⎫->- ⎪⎝⎭恒成立,得到答案. 【详解】∵0,6x π⎛⎫∈ ⎪⎝⎭,∴2033x ππ-<-<,∴tan 203x π⎛⎫-< ⎪⎝⎭,函数tan 23y x k π⎛⎫=-+ ⎪⎝⎭,0,6x π⎛⎫∈ ⎪⎝⎭的图象都在x 轴上方, 即对任意的0,6x π⎛⎫∈ ⎪⎝⎭,都有tan 203x k π⎛⎫-+> ⎪⎝⎭,即tan 23x k π⎛⎫->- ⎪⎝⎭,∵tan 23x π⎛⎫-> ⎪⎝⎭k -≤,k ≥ 故选:A . 【点睛】本题考查了三角函数恒成立问题,转化为三角函数值域是解题的关键.15.函数()22sin 3cos 2f x x x =+-,2,36x ππ⎡⎤∈-⎢⎥⎣⎦的值域为( ) A .40,3⎡⎤⎢⎥⎣⎦B .41,3⎡⎤⎢⎥⎣⎦C .51,4⎡⎤⎢⎥⎣⎦D .50,4⎡⎤⎢⎥⎣⎦【答案】A 【解析】 【分析】化简得到()23sin 2sin 1f x x x =-++,设sin t x =,利用二次函数性质得到答案. 【详解】根据22sin cos 1x x +=,得()23sin 2sin 1f x x x =-++,2,36x ππ⎡⎤∈-⎢⎥⎣⎦, 令sin t x =,由2,36x ππ⎡⎤∈-⎢⎥⎣⎦,得1sin 1,2x ⎡⎤∈-⎢⎥⎣⎦, 故[]0,1t ∈,有2321y t t =-++,[]0,1t ∈,二次函数对称轴为13t =, 当13t =时,最大值43y =;当1t =时,最小值0y =,综上,函数()f x 的值域为40,3⎡⎤⎢⎥⎣⎦.故选:A . 【点睛】本题考查了三角函数值域,换元可以简化运算,是解题的关键.16.某船开始看见灯塔A 时,灯塔A 在船南偏东30o 方向,后来船沿南偏东60︒的方向航行45km 后,看见灯塔A 在船正西方向,则这时船与灯塔A 的距离是( ) A .152km B .30kmC .15kmD .153km【答案】D 【解析】 【分析】如图所示,设灯塔位于A 处,船开始的位置为B ,船行45km 后处于C ,根据题意求出BAC ∠与BAC ∠的大小,在三角形ABC 中,利用正弦定理算出AC 的长,可得该时刻船与灯塔的距离. 【详解】设灯塔位于A 处,船开始的位置为B ,船行45km 后处于C ,如图所示,可得60DBC ∠=︒,30ABD ∠=︒,45BC =30ABC ∴∠=︒,120BAC ∠=︒在三角形ABC 中,利用正弦定理可得:sin sin AC BCABC BAC=∠∠,可得sin 1153sin 23BC ABC AC km BAC ∠===∠ 故选D 【点睛】本题主要考查的是正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解决本题的关键,属于基础题.17.已知函数()3)(0f x x ωϕω=+>,)22ππ-<ϕ<,1(3A ,0)为()f x 图象的对称中心,B ,C 是该图象上相邻的最高点和最低点,若4BC =,则()f x 的单调递增区间是()A .2(23k -,42)3k +,k Z ∈ B .2(23k ππ-,42)3k ππ+,k Z ∈C .2(43k -,44)3k +,k Z ∈ D .2(43k ππ-,44)3k ππ+,k Z ∈【答案】C 【解析】 【分析】由三角函数图像的性质可求得:2πω=,6πϕ=-,即()sin()26f x x ππ=-,再令222262k x k ππππππ--+剟,求出函数的单调增区间即可.【详解】解:函数())(0f x x ωϕω=+>,)22ππ-<ϕ<, 因为1(3A ,0)为()f x 图象的对称中心,B ,C 是该图象上相邻的最高点和最低点,又4BC =,∴222()42T +=,即221216πω+=,求得2πω=.再根据123k πϕπ+=g ,k Z ∈,可得6πϕ=-,()3sin()26f x x ππ∴=-,令222262k x k ππππππ--+剟,求得244433k x k -+剟, 故()f x 的单调递增区间为2(43k -,44)3k +,k Z ∈, 故选:C . 【点睛】本题考查了三角函数图像的性质及单调性,属中档题.18.4cos2d cos sin xx x xπ=+⎰( )A .1)B 1C 1D .2【答案】C 【解析】 【分析】利用三角恒等变换中的倍角公式,对被积函数进行化简,再求积分. 【详解】因为22cos2cos sin cos sin cos sin cos sin x x xx x x x x x-==-++,∴4400cos 2d (cos sin )d (sin cos )14cos sin 0xx x x x x x x x πππ=-=+=+⎰⎰,故选C . 【点睛】本题考查三角恒等变换知与微积分基本定理的交汇.19.设函数()()sin f x x x x R =∈,则下列结论中错误的是( ) A .()f x 的一个周期为2π B .()f x 的最大值为2 C .()f x 在区间2,63ππ⎛⎫⎪⎝⎭上单调递减 D .3f x π⎛⎫+⎪⎝⎭的一个零点为6x π=【答案】D 【解析】 【分析】先利用两角和的正弦公式化简函数()f x ,再由奇偶性的定义判断A ;由三角函数的有界性判断B ;利用正弦函数的单调性判断C ;将6x π=代入 3f x π⎛⎫+ ⎪⎝⎭判断D .【详解】()sin f x x x = 23sin x π⎛⎫=+ ⎪⎝⎭,()f x 周期22,1T A ππ==正确; ()f x 的最大值为2,B 正确,25,,,63326x x πππππ⎛⎫⎛⎫∈∴+∈ ⎪⎪⎝⎭⎝⎭Q , ()f x ∴在2,63ππ⎛⎫⎪⎝⎭上递减,C 正确; 6x π=时,1032f x f ππ⎛⎫⎛⎫+==≠ ⎪ ⎪⎝⎭⎝⎭,6x π=不是3f x π⎛⎫+⎪⎝⎭的零点,D 不正确. 故选D. 【点睛】本题通过对多个命题真假的判断,综合考查两角和的正弦公式以及三角函数的单调性、三角函数的周期性、三角函数的最值与零点,意在考查对基础知识掌握的熟练程度,属于中档题.20.关于函数()()()sin tan cos tan f x x x =-有下述四个结论: ①()f x 是奇函数; ②()f x 在区间0,4π⎛⎫⎪⎝⎭单调递增; ③π是()f x 的周期; ④()f x 的最大值为2.其中所有正确结论的个数是( ) A .4 B .3C .2D .1【答案】C 【解析】 【分析】计算()()()sin tan cos tan f x x x -=--得到①错误,根据复合函数单调性判断法则判断②正确,()()f x f x π+=③正确,假设()f x 的最大值为2,取()2f a =,得到矛盾,④错误,得到答案. 【详解】()()()sin tan cos tan f x x x =-,()()()sin tan cos tan f x x x -=---⎡⎤⎡⎤⎣⎦⎣⎦()()sin tan cos tan x x =--,所以()f x 为非奇非偶函数,①错误;当0,4x π⎛⎫∈ ⎪⎝⎭时,令tan t x =,()0,1t ∈, 又()0,1t ∈时sin y t =单调递增,cos y t =单调递减,根据复合函数单调性判断法则, 当0,4x π⎛⎫∈ ⎪⎝⎭时,()sin tan y x =,()cos tan y x =-均为增函数, 所以()f x 在区间0,4π⎛⎫⎪⎝⎭单调递增,所以②正确; ()()()sin tan cos tan f x x x πππ+=+-+⎡⎤⎡⎤⎣⎦⎣⎦()()()sin tan cos tan x x f x =-=,所以π是()f x 的周期,所以③正确;假设()f x 的最大值为2,取()2f a =,必然()sin tan 1a =,()cos tan 1a =-, 则tan 22a k ππ=+,k Z ∈与tan 2a k ππ=+,k Z ∈矛盾,所以()f x 的最大值小于2,所以④错误. 故选:C . 【点睛】本题考查了三角函数奇偶性,单调性,周期,最值,意在考查学生对于三角函数知识的综合应用.。
专题4-4 三角函数与解三角形大题综合归类目录一、热点题型归纳【题型一】三角函数求解析式:“识图”................................................................................................. 1 【题型二】图像与性质1:单调性与值域................................................................................................ 3 【题型三】图像与性质2:恒等变形:结构不良型 ................................................................................ 4 【题型四】图像与性质3:恒成立(有解)求参数 ................................................................................ 5 【题型五】图像与性质4:零点与对称轴................................................................................................ 6 【题型六】解三角形1:面积与周长常规................................................................................................ 8 【题型七】解三角形2:计算角度与函数值 ............................................................................................ 9 【题型八】解三角形3:求面积范围(最值) ...................................................................................... 10 【题型九】解三角形4:周长最值 ......................................................................................................... 11 【题型十】解三角形5:巧用正弦定理求“非对称”型 ...................................................................... 11 【题型十一】解三角形6:最值范围综合.............................................................................................. 12 二、真题再现 ............................................................................................................................................ 12 三、模拟测试 .. (14)【题型一】三角函数求解析式:“识图”【典例分析】(2023·全国·高三专题练习)函数()sin(π),R f x A x x ϕ=+∈(其中π0,02A ϕ>≤≤)部分图象如图所示,1(,)3P A 是该图象的最高点,M ,N 是图象与x 轴的交点.(1)求()f x 的最小正周期及ϕ的值;(2)若π4PMN PNM ∠+∠=,求A 的值.1.(2023·全国·高三专题练习)已知函数()()sin 0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将()f x 图象上所有点的横坐标缩短到原来的12(纵坐标不变),得到函数()y g x =的图象,求函数()g x ≥.2.(2022·四川·宜宾市教科所三模(理))已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示:(1)求()f x ;(2)若2f α⎛⎫= ⎪⎝⎭()0,πα∈,求cos2α的值.3.(2022·全国·高三专题练习)已知函数()()sin ,0,0,2f x A x x R A ωϕωϕπ⎛⎫=+∈>>< ⎪⎝⎭部分图象如图所示.(1)求()f x 的最小正周期及解析式; (2)将函数()y f x =的图象向右平移3π个单位长度得到函数()y g x =的图象,求函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【题型二】图像与性质1:单调性与值域【典例分析】(2022·浙江·高三开学考试)已知函数()21cos cos 2f x x x x =⋅-. (1)求函数()f x 的单调递增区间; (2)求()f x 在区间[0,2π]上的最值.【变式演练】1.(2022·湖北·高三开学考试)已知函数2()sin cos sin sin 44f x x x x x x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭.(1)求()f x 的最小正周期;(2)若[0,]x π∈,求出()f x 的单调递减区间.2.(2022·黑龙江·双鸭山一中高三开学考试)已知函数()sin 2cos 22sin cos .36f x x x x x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭(1)求函数()f x 的最小正周期及对称轴方程;(2)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的纵坐标不变、横坐标伸长为原来的2倍,得到函数()y g x =的图象,求()y g x =在[0,2π]上的单调递减区间.3.(2022·全国·高三专题练习)已知函数()()()2sin cos cos 04f x x x x ππωωωω⎛⎫=--+> ⎪⎝⎭的最小正周期为π.(1)求()f x 图象的对称轴方程;(2)将()f x 的图象向左平移6π个单位长度后,得到函数()g x 的图象,求函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的值域.【题型三】图像与性质2:恒等变形:结构不良型【典例分析】(2023·全国·高三专题练习)在①sin α=①2tan 40αα-=这两个条件中任选一个,补充到下面的问题中,并解答.已知角a 是第一象限角,且___________. (1)求tan α的值;(2)3)cos()cos(3)2πααπαπ+++-的值.注:如果选择多个条件分别解答,按第一个解答计分.【变式演练】1.(2022·北京·二模)已知函数2()cos cos (0,)ωωωω=++>∈R f x x x x m m .再从条件①、条件①、条件①这三个条件中选择能确定函数()f x 的解析式的两个作为已知. (1)求()f x 的解析式及最小值;(2)若函数()f x 在区间[]0,(0)t t >上有且仅有1个零点,求t 的取值范围. 条件①:函数()f x 的最小正周期为π;条件①:函数()f x 的图象经过点10,2⎛⎫⎪⎝⎭;条件①:函数()f x 的最大值为32.注:如果选择的条件不符合要求,得0分;如果选择多组符合要求的条件分别解答,按第一组解答计分.2.(2023·全国·高三专题练习)已知函数()()sin cos 0,0f x a x x a ωωω=>>.从下列四个条件中选择两个作为已知,使函数()f x 存在且唯一确定.条件①:π14f ⎛⎫= ⎪⎝⎭;条件①:()f x 为偶函数;条件①:()f x 的最大值为1;条件①:()f x 图象的相邻两条对称轴之间的距离为π2. 注:如果选择的条件不符合要求,第(1)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.(1)求()f x 的解析式;(2)设()()22cos 1g x f x x ω=-+,求函数()g x 在()0,π上的单调递增区间.3.(2023·全国·高三专题练习)已知函数()()2sin cos f x a x x x x =∈R ,若__________.条件①:0a >,且()f x 在x ∈R 时的最大值为1条件①:6f π⎛⎫= ⎪⎝⎭请写出你选择的条件,并求函数()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.注:如果选择条件①和条件①分别解答,按第一个解答计分.【题型四】图像与性质3:恒成立(有解)求参数【典例分析】(2023·全国·高三专题练习)已知函数()π2sin()3f x x =+.(1)若不等式()3f x m -≤对任意ππ[,]63x ∈-恒成立,求整数m 的最大值;(2)若函数()π()2g x f x =-,将函数()g x 的图象上各点的横坐标缩短到原来的12倍(纵坐标不变),再向右平移12π个单位,得到函数()y h x =的图象,若关于x 的方程()102h x k -=在π5π[,]1212x ∈-上有2个不同实数解,求实数k 的取值范围.【变式演练】1.(2023·全国·高三专题练习)已知平面向量2sin 2,26m x π⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,()21,sin n x =,()f x m n =⋅,其中0,2x π⎡⎤∈⎢⎥⎣⎦. (1)求函数()f x 的单调增区间; (2)将函数()f x 的图象所有的点向右平移12π个单位,再将所得图象上各点横坐标缩短为原来的12(纵坐标不变),再向下平移1个单位得到()g x 的图象,若()g x m =在5,824x ππ⎡⎤∈-⎢⎥⎣⎦上恰有2个解,求m 的取值范围.2.(2023·全国·高三专题练习)已知函数()sin()0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)先将函数()f x 的图象向右平移3π个单位长度,再将所得图象上各点的纵坐标不变,横坐标变为原来的2倍,得到()g x 的图象.(i )若0m >,当[0,]x m ∈时,()g x 的值域为[2],求实数m 的取值范围;(ii )若不等式2()(21)()10g x t g x t -+--≤对任意的,32x ππ⎡⎤∈⎢⎥⎣⎦恒成立,求实数t 的取值范围.3.(2022·全国·高三专题练习)已知:函数()2sin cos f x x x x =. (1)求()f x 的最小正周期; (2)求()f x 的单调递减区间;(3)若函数()()g x f x k =-在π0,4⎡⎤⎢⎥⎣⎦上有两个不同的零点,写出实数k 的取值范围.(只写结论)【题型五】图像与性质4:零点与对称轴【典例分析】(2022·全国·高三专题练习)已知函数()4cos cos 1(0)3f x x x πωωω⎛⎫=⋅-- ⎪>⎝⎭的部分图像如图所示,若288AB BC π⋅=-,B ,C 分别为最高点与最低点.(1)求函数()f x 的解析式;(2)若函数()y f x m =-在130,12π⎡⎤⎢⎥⎣⎦,上有且仅有三个不同的零点1x ,2x ,3x ,(123x x x <<),求实数m 的取值范围,并求出123 cos (2)x x x ++的值.【变式演练】1.(2023·全国·高三专题练习)已知函数()sin()0,0,||2f x A x B A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象上所有的点向右平移12π个单位,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象.当130,6x π⎡⎤∈⎢⎥⎣⎦时,方程()0g x a -=恰有三个不相等的实数根()123123,,x x x x x x <<,求实数a 的取值范围和1232x x x ++的值.2.(2023·全国·高三专题练习)已知函数()sin()0,0,||2f x A x B A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象上所有的点向右平移12π个单位,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象,若方程()0g x m -=在70,3π⎡⎤⎢⎥⎣⎦上有三个不相等的实数根()123123,,x x x x x x <<,求m 的取值范围及()123tan 2x x x ++的值.3.(2023·全国·高三专题练习)已知数2()2sin 1(0)6212x f x x πωπωω⎛⎫⎛⎫=+++-> ⎪ ⎪⎝⎭⎝⎭的相邻两对称轴间的距离为2π. (1)求()f x 的解析式;(2)将函数()f x 的图象向右平移6π个单位长度,再把各点的横坐标缩小为原来的12(纵坐标不变),得到函数()y g x =的图象,当,126x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()g x 的值域;(3)对于第(2)问中的函数()g x ,记方程4()3g x =在4,63x ππ⎡⎤∈⎢⎥⎣⎦上的根从小到大依次为12,,n x x x ,若m =1231222n n x x x x x -+++++,试求n 与m 的值.【题型六】解三角形1:面积与周长常规【典例分析】(2022·安徽·高三开学考试)在ABC 中,点,M N 分别在线段,BC BA 上,且,BM CM ACN BCN =∠=∠,3,22AB AM AC ===.(1)求BM 的长;(2)求BCN △的面积.【变式演练】1.(2022·北京·高三开学考试)在ABC 中,角A ,B ,C 的对边分别为,,,sin2sin =a b c C C . (1)求C ∠;(2)若1b =,且ABCABC 的周长.2.(2022·江苏·南京市金陵中学河西分校高三阶段练习)已知ABC 的三个内角,,A B C 所对的边分别为a ,b ,c ,)tan tan tan tan 1+=B C B C . (1)求角A 的大小;(2)若1a =,21)0c b -=,求ABC 的面积.3.(2022·云南昆明·高三开学考试)已知ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,sin cos 0B b A -=. (1)求A ;(2)若c =a =ABC 的面积.【题型七】解三角形2:计算角度与函数值【典例分析】(2022·全国·高三专题练习)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ==-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值.【变式演练】1.(2021·天津静海·高三阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足()()2sin 2sin 2sin a b A b a B c C -+-=. (1)求角C 的大小;(2)若c =4a b +=,求ABC 的面积.(3)若cos =A ,求()sin 2A C -的值.2.(2022·北京市第二十二中学高三开学考试)已知ABC 的内角,,A B C 所对的对边分别为,,a b c ,周长为1,且sin sin A B C +. (1)求c 的值;(2)若ABC 的面积为1sin 6C ,求角C 的大小.3.(2022·青海玉树·高三阶段练习(文))在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且ABC 的面积)222S a c b =+-. (1)求角B 的大小;(2)若2a c =,求sin C .【题型八】解三角形3:求面积范围(最值)【典例分析】(2022·云南·昆明一中高三开学考试)已知ABC 的内角,,A B C 所对边分别为,,a b c ,且222sin sin sin sin A B C B C -=. (1)求A ;(2)若a =ABC 面积的最大值.【变式演练】1.(2022·河南·高三开学考试(文))已知,,a b c 分别为ABC 的内角,,A B C 所对的边,且()()sin sin sin sin a c b A C B c B +--+=(1)求角A 的大小;(2)若a =ABC 面积的最大值.2.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .已知ABC 的外接圆半径R =tan tan B C +=.(1)求B 和b 的值;(2)求ABC 面积的最大值.3.(2021·江苏·矿大附中高三阶段练习)ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,设sin cos sin (2cos )A B B A =-.(1)若b c +,求A ;(2)若2a =,求ABC 的面积的最大值.【题型九】解三角形4:周长最值【典例分析】(2022·黑龙江·双鸭山一中高三开学考试)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且222sin sin sin sin sin A B C A B +-=. (1)求角C 的大小;(2)若ABCABC 周长的取值范围.【变式演练】1.(2022·广东·深圳外国语学校高三阶段练习)已知ABC 中,内角,,A B C 所对边分别为,,a b c ,若()2cos cos 0a c B b C --=.(1)求角B 的大小;(2)若2b =,求a c +的最大值.2.(2022·湖北·襄阳五中高三开学考试)在锐角ABC 中,角A ,B ,C ,的对边分别为a ,b ,c ,从条件①:3sin cos tan 4A A A =,条件①12=,条件①:2cos cos cos a A b C c B -=这三个条件中选择一个作为已知条件. (1)求角A 的大小;(2)若2a =,求ABC 周长的取值范围.3.(2022·广东·高三开学考试)已知锐角ABC 中,角A 、B 、C 所对边为a 、b 、c ,= (1)求角A ;(2)若4a =,求b c +的取值范围.【题型十】解三角形5:巧用正弦定理求“非对称”型【典例分析】(2022·四川成都·模拟预测(理))①ABC 中,角,,A B C 所对边分别是,,a b c ,tan tan 2tan tan A AB C bc,cos cos 1b C c B +=.(1)求角A 及边a ; (2)求2b c +的最大值.【变式演练】1.(2022·全国·南京外国语学校模拟预测)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且5sin sin 35cos cos cos2B C B C A -=+. (1)求角A 的大小;(2)若a =2b c +的最大值.2..(2022·辽宁·抚顺市第二中学三模)在①()()222sin 2sin B c a C b c a b -=+-,①23cos cos cos 24A C A C --=,tan tan A B =+这三个条件中,任选一个,补充在下面问题中,问题:在ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,b =_______. (1)求角B ﹔(2)求2a c -的范围.【题型十一】解三角形6:最值范围综合【典例分析】(2022·浙江·高三开学考试)记ABC 内角,,A B C 的对边分别是,,a b c ,已知tan tan 2tan tan tan B CB A A=-.(1)求证:2222b c a +=;(2)求2abc 的取值范围.【变式演练】1.(2022·辽宁·渤海大学附属高级中学模拟预测)ABC 的内角A 、B 、C 所对边的长分别为a 、b 、c ,已cos sin B b C =+. (1)求C 的大小;(2)若ABC 为锐角三角形且c =22a b +的取值范围.2.(2022·湖南湘潭·高三开学考试)设ABC 的内角,,A B C 的对边分别为,,a b c ,A 为钝角,且tan bB a =.(1)探究A 与B 的关系并证明你的结论; (2)求cos cos cos A B C ++的取值范围.1.(2022·天津·高考真题)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ===-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值. 2.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B -+==.(1)求ABC 的面积;(2)若sin sin A C =,求b . 3.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-. (1)若2A B =,求C ; (2)证明:2222a b c =+4.(·浙江·高考真题(理))已知ABC 的内角,,A B C 所对的对边分别为,,a b c 1,且sin sin A B C +. (1)求c 的值;(2)若ABC 的面积为1sin 6C ,求角C 的大小.5.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ;(2)求222a b c +的最小值.6.(2020·山东·高考真题)小明同学用“五点法”作某个正弦型函数sin()0,0,2y A x A ωϕωϕπ⎛⎫=+>>< ⎪⎝⎭在根据表中数据,求:(1)实数A ,ω,ϕ的值;(2)该函数在区间35,44ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值.7.(山东·高考真题)已知函数()2sin 2y x ϕ=+,x ∈R ,π02ϕ<<,函数的部分图象如下图,求(1)函数的最小正周期T 及ϕ的值: (2)函数的单调递增区间.8.(2021·天津·高考真题)在ABC ,角 ,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 2A B C =b =(I )求a 的值; (II )求cos C 的值;(III )求sin 26C π⎛⎫- ⎪⎝⎭的值.9.(2021·全国·高考真题)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+.. (1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.10.(2021·北京·高考真题)在ABC 中,2cos c b B =,23C π=.(1)求B ;(2)再从条件①、条件①、条件①这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长.条件①:c =;条件①:ABC 的周长为4+条件①:ABC11.(2023·全国·高三专题练习)在ABC 中.3sin cos 64A A π⎛⎫-= ⎪⎝⎭.(1)求角A ;(2)若8AC =,点D 是线段BC 的中点,DE AC ⊥于点E ,且DE =CE 的长.1.(2022·浙江省杭州学军中学模拟预测)已知函数()()sin y f x A x B ωϕ==++(其中A ,ω,ϕ,B 均为常数,且0A >,0>ω,ϕπ<)的部分图像如图所示.(1)求()f x 的解析式;(2)若5()126g x f x f x ππ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,,02x π⎛⎫∈- ⎪⎝⎭,求()g x 的值域.2.(2022·全国·高三专题练习)已知向量(sin a x =,(1,cos )b x =.(1)若a b ⊥,求sin 2x 的值;(2)令()f x a b =⋅,把函数()f x 的图像上每一点的横坐标都缩短为原来的一半(纵坐标不变),再把所得的图像沿x 轴向左平移6π个单位长度,得到函数()g x 的图像,求函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.3.(2023·全国·高三专题练习)已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,再从条件①、条件①、条件①这三个条件中选择两个作为一组已知条件,使()f x 的解析式唯一确定. (1)求()f x 的解析式;(2)设函数()()6g x f x f x π⎛⎫=++ ⎪⎝⎭,求()g x 在区间0,4⎡⎤⎢⎥⎣⎦π上的最大值.条件①:()f x 的最小正周期为π;条件①:()00f =;条件①:()f x 图象的一条对称轴为4x π=. 注:如果选择多组条件分别解答,按第一个解答计分.4.(2023·全国·高三专题练习)已知函数()()()3,sin 26f x x x a a a g x x π⎛⎫=--+∈=+ ⎪⎝⎭R .(1)若()f x 为奇函数,求实数a 的值;(2)若对任意[]10,1x ∈,总存在20,2x π⎡⎤∈⎢⎥⎣⎦,使()()12f x g x =成立,求实数a 的取值范围.5.(2023·全国·高三专题练习)已知函数()2sin 216f x x πω⎛⎫=++ ⎪⎝⎭.(1)若()()()12f x f x f x ≤≤,12min 2x x π-=,求()f x 的对称中心;(2)已知05ω<<,函数()f x 图象向右平移6π个单位得到函数()g x 的图象,3x π=是()g x 的一个零点,若函数()g x 在[],m n (m ,n R ∈且m n <)上恰好有10个零点,求n m -的最小值; 6、(2022·安徽·高三开学考试)记ABC 的内角,,A B C 的对边分别为,,a b c ,且23,2b c B C ==.(1)求cos C ;(2)若5a =,求c .7.(2022·广西·模拟预测(文))设ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且2cos 2sin c b A b A -=. (1)证明:()sin 2sin sin A B B A -=; (2)若3A B =,求B 的值.8.(2022·全国·高三专题练习)在①2cos cos c b B a A -=;①sin cos 2AA =;()sin a C C =,这三个条件中任选一个,补充在下面的横线上,并加以解答.在ABC 中,角,,A B C 的对边分别是,,a b c ,若__________.(填条件序号) (1)求角A 的大小;(2)若3a =,求ABC 面积的最大值.注:如果选择多个条件分别解答,按第一个解答计分.9.(2021·福建省华安县第一中学高三期中)在①π1cos cos 32B B ⎛⎫-=+ ⎪⎝⎭,①sin (sin sin )sin a A c C A b B +-=,tan tan A B =+这三个条件中,任选一个,补充在下面问题中.问题:在ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,b =______________. (1)求角B ;(2)求a c +的最大值.注:如果选择多个条件分别解答,按第一个解答计分. 10.(2022·山东烟台·三模)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且22cos cos 2cos b a A C c A =+. (1)求角A ;(2)若4a =,求2c b -的取值范围.11.(2023·全国·高三专题练习)在ABC 中,点D 在边BC 上,3AB =,2AC =. (1)若AD 是BAC ∠的角平分线,求:BD DC ;(2)若AD 是边BC 上的中线,且AD =,求BC .12.(2022·全国·模拟预测(文))在①3cos210cos 10A A +-=,①sin cos A A -=①tan 2A =三个条件中任选一个,补充在下面的问题中,并作答.如果多选,则按第一个解答给分. 已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且______ (1)求cos A ;(2)sin sin B C 的最大值.。
专项一解三角形考点1 三角函数的图象与性质及三角恒等变换大题拆解技巧【母题】(2020年天津卷)在△ABC中,角A,B,C所对的边分别为a,b,c.已知a=2√2,b=5,c=√13.(1)求角C的大小;(2)求sin A的值;(3)求sin (2A+π4)的值.【拆解1】在△ABC中,角A,B,C所对的边分别为a,b,c.已知a=2√2,b=5,c=√13,求角C的大小.【解析】在△ABC中,由a=2√2,b=5,c=√13及余弦定理,得cosC=a 2+b2-c22ab=2×2√2×5=√22,又因为C∈(0,π),所以C=π4.【拆解2】在△ABC中,已知C=π4,a=2√2,c=√13,求sin A的值.【解析】在△ABC 中,由C=π4,a=2√2,c=√13及正弦定理,可得sinA=asinC c=2√2×√22√13=2√1313.【拆解3】在△ABC 中,已知a<c,sin A=2√1313,求sin 2A,cos 2A 的值.【解析】由a<c 知角A 为锐角,由sin A=2√1313,可得cosA=√1-sin 2A =3√1313, 所以sin 2A=2sin Acos A=1213,cos 2A=2cos2A-1=513.【拆解4】已知sin 2A=1213,cos 2A=513,求sin (2A+π4)的值.【解析】因为sin 2A=1213,cos 2A=513,所以sin (2A+π4)=sin 2Acos π4+cos 2Asin π4=1213×√22+513×√22=17√226.小做 变式训练设函数f(x)=2sin 2x-sin(2x-π6).(1)当x∈[0,π2]时,求f(x)的值域;(2)若函数f(x)的图象向右平移π6个单位长度后得到g(x)的图象,且存在x 0∈[-π2,0],使g(x 0)=23,求cos 2x 0的值.【拆解1】已知函数f(x)=2sin 2x-sin(2x-π6).化简该函数解析式.【解析】f(x)=1-cos 2x-(√32sin 2x-12cos 2x)=1-sin (2x+π6).【拆解2】已知函数f(x)=1-sin(2x+π6),当x∈[0,π2]时,求f(x)的值域. 【解析】已知函数f(x)=1-sin(2x+π6),∵x∈[0,π2],∴2x+π6∈[π6,7π6],∴sin(2x+π6)∈[-12,1],∴f(x)的值域为[0,32].【拆解3】已知函数f(x)=1-sin(2x+π6),若函数f(x)的图象向右平移π6个单位长度后得到g(x)的图象,求g(x)的解析式. 【解析】g(x)=f(x-π6)=1-sin[2(x-π6)+π6]=1-sin(2x-π6).【拆解4】已知函数g(x)=1-sin(2x-π6),且存在x 0∈[-π2,0],使g(x 0)=23,求cos 2x 0的值.【解析】∵g(x0)=1-sin(2x0-π6)=23,∴sin(2x0-π6)=13.又x0∈[-π2,0],sin(2x0-π6)>0,∴2x0-π6∈[-7π6,-π),∴cos(2x0-π6)=-2√23,∴cos 2x0=cos[(2x0-π6)+π6]=cos(2x0-π6)cosπ6-sin(2x0-π6)sinπ6=-2√23×√32-13×12=-2√6+16.通法 技巧归纳1.求解三角函数的值域(最值)常见的三种类型:(1)形如y=asin x+bcos x+c 的三角函数化为y=Asin(ωx+φ)+c 的形式,再求值域(最值);(2)形如y=asin 2x+bsin x+c 的三角函数,可先设sin x=t,化为关于t 的二次函数求值域(最值);(3)形如y=asin xcos x+b(sin x±cos x)+c 的三角函数,可先设t=sin x±cos x,化为关于t 的二次函数求值域(最值).2.在解决求值、化简、证明问题时,一般是观察角、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的变换.突破 实战训练 <基础过关>1.已知函数f(x)=1-2cos 2x+2√3sin xcos x(x∈R). (1)求f(2π3)的值;(2)求f(x)的最小正周期及单调递增区间.【解析】(1)f(x)=-cos 2x+√3sin 2x=2(-12cos 2x+√32sin 2x)=2sin(2x-π6),则f(2π3)=2sin(2×2π3-π6)=-1.(2)最小正周期T=2π2=π,令-π2+2kπ≤2x -π6≤π2+2kπ,k∈Z,解得-π6+kπ≤x≤π3+kπ,k∈Z,即单调递增区间为[-π6+kπ,π3+kπ],k∈Z.2.已知函数f(x)=(sin x-1)·(cos x+1). (1)若sin α-cos α=12,求f(α);(2)求f(x)的值域.【解析】(1)因为sin α-cos α=12,所以1-2sin αcos α=14,即sin αcos α=38.从而f(α)=(sin α-1)(cos α+1)=sin αcos α+sin α-cos α-1=-18.(2)令t=sin x-cos x,则sin xcos x=1-t 22,其中t∈[-√2,√2],则原问题转化为求y=-t 22+t-12在[-√2,√2]上的值域. 因为y=-t 22+t-12=-12(t-1)2,所以y∈[-32-√2,0].故f(x)的值域为[-32-√2,0].3.已知函数f(x)=sin 2x+√3sin xcos x. (1)求函数y=f(x)图象的对称中心; (2)若f(α2-π24)=1310,求sin 2α.【解析】(1)由二倍角公式得f(x)=√32sin 2x-12cos 2x+12,故f(x)=sin(2x-π6)+12,令2x-π6=kπ,k∈Z,解得x=12kπ+π12,k∈Z,所以函数y=f(x)图象的对称中心是(π12+12kπ,12),k∈Z.(2)由f(α2-π24)=1310,得sin(α-π4)+12=1310,所以sin(α-π4)=45,故sin 2α=cos(2α-π2)=1-2sin2(α-π4)=-725.4.设向量a=(√3sin x,sin x),b=(cos x,sin x),x∈[0,π2].(1)若|a|=|b|,求实数x 的值; (2)设函数f(x)=a·b,求f(x)的最大值. 【解析】(1)|a|2=(√3sin x)2+sin2x=4sin2x,|b|2=cos2x+sin2x=1,根据|a|=|b|,得4sin2x=1,又x∈[0,π2],从而sinx=12,∴x=π6.(2)f(x)=a·b=√3sin x·cos x+sin2x=√32sin 2x-12cos 2x+12=sin(2x-π6)+12,∵x∈[0,π2],∴2x -π6∈[-π6,5π6],∴当2x-π6=π2,即x=π3时,f(x)max=f(π3)=32,∴f(x)的最大值为32.<能力拔高>5.已知函数f(x)=sin 2(x -π3)-12(cos 2x-1).(1)求f(x)的单调递增区间;(2)若y=g(x)的图象是由y=f(x)的图象向右平移π6个单位长度得到的,则当x∈[-π2,π2]时,求满足g(x)≤54的实数x 的集合.【解析】(1)f(x)=sin2(x -π3)-12(cos 2x-1)=1-cos(2x -2π3)2-12cos 2x+12=12-12(-12cos2x +√32sin2x)-12cos 2x+12 =14cos 2x-√34sin 2x-12cos 2x+1=-√34sin 2x-14cos 2x+1=-12sin (2x +π6)+1. 令2x+π6∈[π2+2kπ,3π2+2kπ],k∈Z,则x∈[π6+kπ,2π3+kπ],k∈Z,所以f(x)的单调递增区间为x∈[π6+kπ,2π3+kπ],k∈Z.(2)由题可知g(x)=-12sin [2(x -π6)+π6]+1=-12sin (2x -π6)+1,由g(x)≤54,得sin (2x -π6)≥-12,由x∈[-π2,π2],得2x-π6∈[-7π6,5π6],由正弦函数的图象与性质可知2x-π6∈[-7π6,-5π6]∪[-π6,5π6],则x∈[-π2,-π3]∪[0,π2],即所求实数x 的取值集合为{x|-π2≤x ≤-π3或0≤x ≤π2}.6.已知θ∈(0,π3)且满足sin θ+sin (θ+π3)=4√35. (1)求cos(2θ+π3)的值;(2)已知函数f(x)=sin xcos(θ+π6)+cos xsin(θ+π6),若方程f(x)=a 在区间[0,π2]内有两个不同的解,求实数a 的取值范围. 【解析】(1)由sin θ+sin (θ+π3)=4√35,得32sin θ+√32cos θ=4√35,即sin(θ+π6)=45,则cos(2θ+π3)=cos (2θ+π6)=1-2sin 2(θ+π6)=1-2×(45)2=-725.(2)由θ∈(0,π3),令φ=θ+π6,则φ∈(π6,π2),得cos(θ+π6)=35,f(x)=sin xcos φ+cos xsin φ=sin(x+φ),当0≤x≤π2时,φ≤x+φ≤π2+φ,当x+φ=π2,即x=π2-φ时,f(x)max =1,当0≤x≤π2-φ时,f(x)是单调递增的,函数值从sin φ=45增到1,当π2-φ≤x≤π2时,f(x)是单调递减的,函数值从1减到sin(π2+φ)=cos φ=35,方程f(x)=a 在区间[0,π2]内有两个不同的解,即f(x)图象与直线y=a 有两个不同的公共点,则45≤a<1,所以实数a 的取值范围是[45,1).<拓展延伸>7.设函数f(x)=asin x+bcos x,其中a,b 为常数.(1)当x=2π3时,函数f(x)取最大值2,求函数f(x)在[π2,π]上的最小值;(2)设g(x)=-asinx,当b=-1时,不等式f(x)>g(x)对x∈(0,π)恒成立,求实数a 的取值范围.【解析】(1)由题意得{√a 2+b 2=2,√32a -12b =2,解得{a =√3,b =-1,∴f(x)=√3sin x-cos x=2sin (x -π6).当x∈[π2,π]时,x-π6∈[π3,5π6],∴f(x)min=2sin 5π6=1.(2)∵f(x)>g(x),∴asin x -cos x>-asinx.当x∈(0,π)时,sin x∈(0,1],∴asin2x -sin xcos x>-a,即a(1-cos 2x)-sin 2x>-2a,整理得3a>sin 2x+acos 2x.又sin 2x+acos 2x=√a 2+1sin(2x+φ),其中tan φ=a,∴(sin 2x+acos 2x)max=√a 2+1,∴3a>√a 2+1,解得a>√24,∴不等式f(x)>g(x)对x∈(0,π)恒成立时,a∈(√24,+∞).8.已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,-π2<φ<π2)的图象与y 轴的交点为(0,1),它在y 轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0+2π,-2). (1)求函数f(x)的解析式;(2)将函数f(x)的图象向左平移a(a∈(0,2π))个单位长度后,得到函数g(x)的图象,若g(x)是奇函数,求实数a 的值.新高考数学 大题专项训练 学科精品资源11 / 11【解析】(1)由题意得A=2,T 2=x0+2π-x0=2π, 即T=2πω=4π,解得ω=12, ∴f(0)=2cos (12×0+φ)=1,即cos φ=12. ∵-π2<φ<π2,∴φ=-π3或φ=π3, 若φ=π3,当x>0时,函数先取得最小值,后取得最大值,不符合图象, ∴φ=-π3, ∴函数f(x)的解析式为f(x)=2cos (12x -π3). (2)由题意得g(x)=2cos [12(x +a )-π3]. ∵y=g(x)是奇函数,∴g(0)=2cos (a 2-π3)=0, ∴a 2-π3=kπ-π2(k∈Z),即a=2kπ-π3(k∈Z). 又a∈(0,2π),∴a=5π3. 当a=5π3时,g(x)=2cos [12(x +5π3)-π3]=2cos (12x +π2)=-2sin 12x, 此时有g(-x)=-g(x),即函数g(x)为奇函数,故a=5π3.。
2023届高考数学复习:精选好题专项(三角函数与解三角形)练习 题组一 三角函数及其性质1‐1、(江苏省盐城市四校2023届高三年级第一学期联考)17.已知函数cos sin ()()()s x x x x f x =∈R .(1)求()f x 的最小正周期和单调增区间;(2)在ABC 中,角,,A B C 的对边分别为,,a b c .若22B f ⎛⎫=- ⎪⎝⎭,6b =,求ABC 的面积的最大值. 题组二 正余弦定理的运用2‐1、(江苏新高考2023年第三次大联考)记ABC 的内角,,A B C 所对边分别为,,a b c ,已知1cos sin 3cos sin A A B B+=-. (1)证明:3b c a +=;(2)若,53C a π==,求ABC 的面积.2‐2、(江阴市普通高中2022‐2023年学期高三阶段测试卷)(本题满分10分)已知在△ABC 中,AD 是∠BAC 的平分线,且交BC 于D .(1)用正弦定理证明:AB BD AC DC=;(2)若120BAC ∠=︒,2AB =,1AC =,求BD .2‐3、(襄州一中2023届高三下学期开学考试数学试题)在ABC 中,a ,b ,c 分别为角A 、B 、C 的对边,()22cos cos c a B b A a b bc+=-+.(1)求A ;(2)若角A 的平分线AD 交BC 于D ,且BD =2DC ,AD =a .2‐4、(山东省潍坊市2022‐2023高三上学期期末试卷)在锐角三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知()()cos sin cos sin C A B B C A -=-.(1)求tan A 的最小值;(2)若tan 2A =,a =,求c .(12分)2-5、(2022~2023学年泰州高三年级模拟试卷). (本小题满分10分)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin A sin C +sin C sin A =2cos B +1.(1) 求证:b 2=ac ;(2) 若b 2a 2+c 2 =25 ,求cos B 的值.2-6、(江苏南通2022~2023学年高三年级模拟试卷)18. (本小题满分12分)在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,且3cos C =2sin A sin B.(1) 求sin C sin A sin B 的最小值;(2) 若A =π6 ,a =7 ,求c 及△ABC 的面积.2‐7、(盐城市、南京市2022‐2023学年度第一学期期末调研测试) 在ABC 中,2AC =,π3BAC ∠=,P 为ABC 内的一点,满足AP CP ⊥,2π3APB ∠=.(1)若AP PC =,求ABC 的面积;(2)若BC =AP .2‐8、(河北省石家庄市2022‐2023学年度第一学期期末联考调研测试) 在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos cos 02A A +=,且2,4AD DB AE EC == . (1)求A 的大小;(2)若7,a DE ==,求ABC 的面积.2‐9、(江山东济南市2023年高三下学期开学考试)已知ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,且()(sin sin )sin a b A B b C +-=.(1)证明:A =2B ;(2)若a =3,b =2,求ABC 的面积..3‐3、(江苏省扬州市2022‐2023学年度上学期期末考试题)记锐角ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,sin sin tan cos cos A C B A C +=+.(1)求B ;(2)求()2a c ab -的取值范围.3‐4、(2022‐2023学年 江苏常州市高级中学 高三年级1月月考 数学试卷).在①4sin cos =a B A ,②222sin sin ()sin +=+b B c C b c A ,cos +=+b a A A a b .这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求出cos B 的值;若问题中的三角形不存在,说明理由.(7分)问题:在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知1cos 3C =,________. 注:如果选择多个条件分别解答,按第一个解答计分.3‐5、(广东省高考研究会2023届高三阶段性检测)在①),2(b c a m -=,)cos ,(cos B C n =,n m //;②6cos(sin π-=B a A b ;③c c a b a b a )())((-=-+ 三个条件中任选一个,补充在下面的问题中,并解决该问题.在ABC ∆中,内角C B A ,,的对边分别是c b a ,,,且满足 .(1)求B ∠;(2)若2=b ,求ABC ∆周长的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.3‐6、(2023届湖北省十七所重点中学高三第一次联考数学)在ABC中,角A,B,C所对的边分别为a,b,c.已知2c=. (1)求cos C的最小值;(2)证明:π6C A-≤.参考答案题组一 三角函数及其性质1‐1、(江苏省盐城市四校2023届高三年级第一学期联考)17.已知函数cos sin ()()()s x x x x f x =∈R .(1)求()f x 的最小正周期和单调增区间;(2)在ABC 中,角,,A B C 的对边分别为,,a b c.若22B f ⎛⎫=- ⎪⎝⎭,6b =,求ABC 的面积的最大值. 【答案解析】:(1)211cos 2()cos sin sin 222x f x x x x x +==1πsin 22sin 223x x x ⎛⎫==- ⎪⎝⎭.∴()f x 的周期πT =, 由πππ2π22π232k x k -+≤-≤+,Z k ∈,得π5πππ1212k x k -+≤≤+,Z k ∈ 所以()f x 的单调递增区间是π5ππ,π1212k k ⎡⎤-+⎢⎣⎦,Z k ∈. (2)∵πsin 23B f B ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,即πsin 03B ⎛⎫-= ⎪⎝⎭,又(0,π)B ∈,∴π3B =,由正弦定理有6sin sin sin sin 3a cb A C B π====,∴1122sin sin sin ABC B A C A C S ac B ==⋅⋅=△221sin πsin 18sin cos 322A A A A A A A A ⎛⎫⎛⎫=-=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭1cos 2π9sin 2226A A A -⎛⎫=+=-+ ⎪⎝⎭ ∵2π03A <<,∴ππ72π666A -<-<,∴()max ABC S = 当ππ2,62A -= 即π3A =时取得最大值.另解:∵πsin 2322B f B ⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭,即πsin 03B ⎛⎫-= ⎪⎝⎭,又()0,πB ∈,∴π3B =, 由余弦定理知:22222222cos 362cos 23b a c ac B a c ac a c ac ac ac ac π=+-⇒=+-=+-≥-=,即36ac ≤,当且仅当6a c ==时,等号成立.∴1sinB 2ABC S ac ==≤△6a c ==时,()max ABC S = 题组二 正余弦定理的运用 2‐1、(江苏新高考2023年第三次大联考)记ABC 的内角,,A B C 所对边分别为,,a b c ,已知1cos sin 3cos sin A A B B+=-. (1)证明:3b c a +=;(2)若,53C a π==,求ABC 的面积.【答案解析】(1)因为1cos sin 3cos sin A A B B+=-,所以sin cos sin 3sin sin cos B A B A A B +=-, 因为()A B C π=-+,所以()sin sin sin cos cos sin C A B A B A B =+=+,所以sin sin 3sin B C A +=,由正弦定理sin sin sin a b c A B C==,得3b c a +=. (2)由①得15b c +=,①由余弦定理,得22222cos 255c a b ab C b b =+-=+-,②由①②解得8,7b c ==. 所以ABC的面积为11sin 58222ab C =⨯⨯⨯=2‐2、(江阴市普通高中2022‐2023年学期高三阶段测试卷)(本题满分10分)已知在△ABC 中,AD 是∠BAC 的平分线,且交BC 于D .(1)用正弦定理证明:AB BD AC DC=; (2)若120BAC ∠=︒,2AB =,1AC =,求BD .【答案解析】(1)在ABD △和ACD △中,分别由正弦定理,sin sin ,sin sin AB BD ADB BAD AC CD ADC CAD⎧=⎪⎪∠∠⇒⎨⎪=⎪∠∠⎩①② ∵sin sin ADB ADC ∠=∠,由AD 平分BAC BAD CAD ∠⇒∠=∠, ∴ AB BD AC DC⇒=①②. (2)∵2AB =,1AC =,120BAC ∠=︒,∴BC ==, ∵AD 平分BAC ∠,由(1)知2BD AB DC AC ==,∴233BD BC ==. 2‐3、(襄州一中2023届高三下学期开学考试数学试题)在ABC 中,a ,b ,c 分别为角A 、B 、C 的对边,()22cos cos c a B b A a b bc+=-+.(1)求A ; (2)若角A 的平分线AD 交BC 于D ,且BD =2DC,AD =a .【答案解析】(1)解:因为()22cos cos c a B b A a b bc +=-+, 所以()22sin sin cos sin cos sin sin sin sin C A B B A A B B C +=-+,, 即222sin sin sin sin sin C A B B C =-+,即222c b a bc +-=, 所以2221cos 22c b a A bc +-==, 因为()0,A π∈, 所以3A π=;(2)因为角A 平分线AD 交BC 于D ,且BD =2DC ,由角平分线定理得:c =2b ,又ABC ABD ACD S S S =+ , 即111sin 60sin 30sin 30222bc c AD b AD =⋅⋅+⋅⋅ , 所以AD b c ==+ ()2bc b c =+, 所以 3,6b c ==,由余弦定理得:2222cos 27a c b bc A =+-=,所以a =.2‐4、(山东省潍坊市2022‐2023高三上学期期末试卷)在锐角三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知()()cos sin cos sin C A B B C A -=-.(1)求tan A 的最小值;(2)若tan 2A =,a =,求c .(12分) 的解:(1)由已知得()()cos sin cos cos sin cos sin cos cos sin C A B A B B C A C A -=-,整理得2cos sin cos cos sin C A B A A =,因为sin 0A >,所以2cos cos cos C B A =,……2分 又因为()cos cos cos cos sin sin A B C B C B C =-+=-+,所以sin sin 3cos cos B C C B =, 即tan tan 3B C =,……4分()tan tan tan tantan tan tan tan 12B C B C A B C B C ++=-+==≥=-,当且仅当tan tan B C ==tan A .……6分(2)因为tan 2A =,从而tan tan 4B C +=,又因为tan tan 3B C =,所以tan 1C =或tan 3C =,8分当tan 1C =时,sin 2C =,由正弦定理得sin sin a c C A==10分当tan 3C =时,sin 10C =,由正弦定理得sin sin a c C A ==.综上,c =或.……12分2-5、(2022~2023学年泰州高三年级模拟试卷). (本小题满分10分)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin A sin C +sin C sin A =2cos B +1.(1) 求证:b 2=ac ;(2) 若b 2a 2+c 2 =25 ,求cos B 的值.【答案解析】 (1) 证明:由正弦定理知sin A sin C +sin C sin A =a c +c a ,由余弦定理知cos B =a 2+c 2-b 22ac ,(3分)所以a c +c a =2ꞏa 2+c 2-b 22ac +1,化简得b 2=ac .(5分)(2) 解:因为b 2a 2+c 2 =25 ,b 2=ac ,所以a 2+c 2ac =52 .(7分) 由(1)知a 2+c 2ac =2cos B +1,所以2cos B +1=52 ,即cos B =34 .(10分)2-6、(江苏南通2022~2023学年高三年级模拟试卷)18. (本小题满分12分)在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,且3cos C =2sin A sin B.(1) 求sin C sin A sin B 的最小值;(2) 若A =π6 ,a =7 ,求c 及△ABC 的面积.【答案解析】:(1) 因为3cos C =2sin A sin B ,所以-3(cos A cos B -sin A sin B )=2sin A sin B ,即sin A sin B =3cos A cos B .因为cos A cos B >0,所以tan A tan B =3.(2分)所以sin C sin A sin B =sin A cos B +cos A sin B sin A sin B =tan A +tan B tan A tan B =1tan A +1tan B ≥21tan A ꞏ1tan B =233 ,(4分)当且仅当tan A =tan B =3 时,等号成立,所以sin C sin A sin B 的最小值为233 .(6分)(2) 因为A =π6 ,由(1)得,tan B =3tan A =33 .因为B ∈(0,π),所以sin B =32114 ,cos B =714 ,(8分) 所以sin C =sin (B +π6 )=3 sin B +12 cos B =5714 .由正弦定理a sin A =c sin C ,得c =a sin Csin A =5,(10分)所以△ABC 的面积为12 ac sin B =12 ×7 ×5×32114 =1534 .(12分)2‐7、(盐城市、南京市2022‐2023学年度第一学期期末调研测试) 在ABC 中,2AC =,π3BAC ∠=,P 为ABC 内的一点,满足AP CP ⊥,2π3APB ∠=.(1)若AP PC =,求ABC 的面积;(2)若BC =AP .【答案解析】【小问1详解】解:在APC △中,因为AP CP ⊥,且AP CP =,所以π4CAP ∠=.由2AC =,可得πsin 4AP AC == 又π3BAC ∠=,则πππ3412BAP ∠=-=.在APB △中,因为2π3APB ∠=,π12BAP ∠=,所以2ππππ3124ABP ∠=--=,则2ππsin sin 34AB=,解得AB =,从而113sin 22222ABC S AB AC BAC ∠=⋅⋅⋅=⨯= . 【小问2详解】解:ABC 中,由2742AB AB =+-,解得3AB =或1AB =-(舍去).令CAP α∠=,则在APC △中2cos AP α=.在ABP 中,π3BAP α∠=-,所以2πππ33ABP αα⎛⎫∠=---= ⎪⎝⎭, 则sin sin AB AP APB ABP =∠∠,即32cos 2πsin sin 3αα=,得tan 3α=. 因为π0,3α⎛⎫∈ ⎪⎝⎭,所以π6α=,从而22AP =⨯=. 2‐8、(河北省石家庄市2022‐2023学年度第一学期期末联考调研测试)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos cos 02A A +=,且2,4AD DB AE EC == . (1)求A 的大小;(2)若7,a DE ==,求ABC 的面积.【答案解析】【要点分析】(1)根据二倍角公式将cos cos 02A A +=化简可得1cos 22A =即可求得A 的大小;(2)分别在ABC 和ADE V 中利用余弦定理联立方程组可解得3,5c b ==即可求得ABC 的面积.【小问1详解】 由cos cos 02A A +=得22cos cos 1022A A +-=, 即2cos 1cos 1022A A ⎛⎫⎛⎫-+= ⎪⎪⎝⎭⎝⎭,解得1cos 22A =或cos 12A =-(舍去) 因为π0,22A ⎛⎫∈ ⎪⎝⎭,所以π23A =,则2π3A =. 所以A 的大小2π3A =. 【小问2详解】 在设,DB x EC y ==,则3,5AB c x AC b y ====,在ABC 中,由余弦定理可知222222cos 2591549a b c bc A y x xy =+-=++=,在ADE V 中,由余弦定理可知22222(2)(4)224cos 164828DE x y x y A y x xy =+-⨯⨯=++=;即22427y x xy ++=联立22222591549427y x xy y x xy ⎧++=⎨++=⎩解得1,1x y ==; 所以3,5c b ==故ABC的面积为1sin 24S bc A ==2‐9、(江山东济南市2023年高三下学期开学考试)已知ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,且()(sin sin )sin a b A B b C +-=.(1)证明:A =2B ;(2)若a =3,b =2,求ABC 的面积..【答案解析】【要点分析】(1)利用正弦定理化边为角,结合余弦定理可得2cos a B b c =+,再化边为角结合三角恒等变换即可证明;(2)结合(1)求得c ,由余弦定理求cos C ,再求sin C ,利用面积公式即可求解.【小问1详解】因为()(sin sin )sin a b A B b C +-=,所以()()a b a b bc +-=,即22a b bc -=,222cos 22a c b b c B ac a+-+==, 2sin cos sin sin A B B C =+,()2sin cos sin sin A B B A B =++,()sin sin A B B -=,所以2ππA B B k -+=+或2πA B B k --=,Z k ∈,又(),0,πA B ∈,所以2A B =;【小问2详解】由(1) 22a b bc -=,又a =3,b =2, 所以52c =, 由余弦定理可得22222253292cos 223216a b c C ab ⎛⎫+- ⎪+-⎝⎭===⨯⨯, 因为()0,πC ∈,所以sin 16C ==, 所以ABC的面积11sin 32221616S ab C ==⨯⨯⨯=2-10、(江苏海安2022-2023年期末考试)已知四边形ABCD 内接于圆O ,AB =3,AD =5,∠BAD =120°,AC 平分∠BAD .(1) 求圆O 的半径;(2) 求AC 的长.【答案解析】(1) 设圆O 的半径为R .在△ABD 中,由余弦定理BD 2=AB 2+AD 2-2AB ꞏAD ꞏcos ∠BAD ,得BD 2=32+52-2×3×5×(-12 )=49,所以BD =7.(3分)在圆O 的内接△ABD 中,由正弦定理,得2R =BD sin ∠BAD=7sin 120° =1433 , 故R =733 ,所以圆O 的半径为733 .(6分)(2) 因为四边形ABCD 内接于圆O ,所以∠BAD +∠BCD =180°.又∠BAD =120°,故∠BCD =60°.因为AC 平分∠BAD ,所以∠BAC =60°.(8分)(解法1)因为AC 平分∠BAD ,所以BC =CD ,所以BC =CD .又因为∠BCD =60°,所以△BCD 为正三角形,所以BC =BD =7.(10分)(解法2)在圆O 的内接△ABC 中,由正弦定理,得BC sin ∠BAC=2R . 所以BC =2R ꞏsin 60°=1433 ×32 =7.(10分)在△ABC 中,由余弦定理BC 2=AB 2+AC 2-2AB ꞏAC ꞏcos ∠BAC ,得72=32+AC 2-2×3×AC ×cos 60°,即AC 2-3AC -40=0,解得AC =8或AC =-5,因为AC >0,所以AC =8,所以AC 的长为8.(12分)题组三 正余弦定理的综合运用(1)由正弦定理,得sin cos sin cos 2sin cos A B B A C C +=,即()sin 2sin cos A B C C +=,即sin 2sin cos C C C =,又()0,C π∈,所以sin 0C ≠, 所以1cos 2C =,故3C π=. (2)由正弦定理,得sin ,sin c A a A b B C ===, 所以ABC的周长)sin sin 2L a b c A B =++=++21sin sin 24sin cos 2322A A A A π⎛⎫⎤⎛⎫=+-+=++ ⎪ ⎪⎥ ⎪⎝⎭⎦⎝⎭ 4sin 26A π⎛⎫=++ ⎪⎝⎭ 由ABC 为锐角三角形可知,0,220,32A B A πππ⎧<<⎪⎪⎨⎪<=-<⎪⎩得62A ππ<<, 所以2363A πππ<+<,所以sin ,162A π⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦. 所以ABC的周长的取值范围为(2⎤+⎦.3‐3、(江苏省扬州市2022‐2023学年度上学期期末考试题)记锐角ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,sin sin tan cos cos A C B A C +=+.(1)求B ;(2)求()2a c a b -的取值范围. 【答案解析】(1)因为sin sin tan cos cos A C B A C +=+,即sin sin sin cos cos cos B A C B A C+=+, 所以sin cos sin cos cos sin cos sin B A B C B A B C +=+, 即sin cos cos sin cos sin sin cos B A B A B C B C -=-,所以sin()sin()B A C B -=-,因为0πA <<,0πB <<,所以ππB A -<-<,同理得ππC B -<-<,所以B A C B -=-或()()πB A C B -+-=±(不成立),所以2B A C =+,结合πA B C ++=得π3B =.(2)由余弦定理2221cos 22a c b B ac+-==得,222ac a c b =+-, 所以222ac a c b -=-,则2222222()1a c a ac a c b c b b b b ---⎛⎫===- ⎪⎝⎭,由正弦定理得,sin sin c C C b B ==, 因为π3B =,2π3A C +=,π02A <<,π02C <<,所以ππ62C <<,1sin 12C <<,所以c b ∈⎝⎭,2()2133a c a b -⎛⎫∈- ⎪⎝⎭,.3‐4、(2022‐2023学年 江苏常州市高级中学 高三年级1月月考 数学试卷).在①4sin cos =a B A ,②222sin sin ()sin +=+b B c C b c A ,cos +=+b a A A a b .这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求出cos B 的值;若问题中的三角形不存在,说明理由.(7分)问题:在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知1cos 3C =,________. 注:如果选择多个条件分别解答,按第一个解答计分.【答案解析】选①:因为4sin cos =a B A ,由正弦定理得4sin sin cos =A B A B ,所以(0,)B π∈,所以sin 0B ≠,所以4sin cos =A A ,sin 22A =, 又(0,)A π∈,2(0,2)A π∈,所以23=A π或23π,即6A π=或3π.因为1cos 3C =,(0,)C π∈,所以sin 3C ==. 当6A π=时,cos cos()B A C =-+11cos 623236C π⎛⎫⎛⎫=-+=--⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭, 当3A π=时,cos cos()B A C =-+11cos 3233C π⎛⎫⎛⎫=-+=-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭,因此cos B . 选②:因为222sin sin ()sin +=+b B c C b c A ,由正弦定理得332()+=+b c b c a ,因为0b c +>,所以222b c bc a +-=,所以2221cos 22b c a A bc +-==, 因为(0,)A π∈,所以3A π=.因为1cos 3C =,(0,)C π∈,所以sin 3C ==, 所以cos cos()B A C =-+11cos 323C π⎛⎛⎫=-+=-⨯= ⎪ ⎝⎭⎝⎭,因此cos B 的值16.选③cos +=+b a A A a b ,所以2sin 6b a A a b π⎛⎫+=+ ⎪⎝⎭,因为22sin 26b a A a b π⎛⎫≥+=+≥= ⎪⎝⎭, 于是2b a a b +=,即a b =;且2sin 26A π⎛⎫+= ⎪⎝⎭,即sin 16A π⎛⎫+= ⎪⎝⎭, 注意到(0,)A π∈,7,666A πππ⎛⎫+∈ ⎪⎝⎭, 因此62A ππ+=,即3A π=,于是ABC 为等边三角形, 因此1cos 2C =与1cos 3C =相矛盾,故ABC 不存在.3‐5、(广东省高考研究会2023届高三阶段性检测)在①),2(b c a m -=,)cos ,(cos B C n =,n m //;②6cos(sin π-=B a A b ;③c c a b a b a )())((-=-+ 三个条件中任选一个,补充在下面的问题中,并解决该问题.在ABC ∆中,内角C B A ,,的对边分别是c b a ,,,且满足 .(1)求B ∠;(2)若2=b ,求ABC ∆周长的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.【答案解析】(1)若选①因为),2(b c a m -=,n m B C n //),cos ,(cos =,所以0cos cos )2(=--C b B c a ……………………………………………1分 由正弦定理得0cos sin cos )sin sin 2(=--C B B C A …………………………………2分 即0)cos sin cos (sin cos sin 2=+-C B B C B A ,所以A C B B A sin )sin(cos sin 2=+=,………………………………4分因为0sin ),,0(=/∈A A π 所以3,21cos π==B B ……………………………………5分 若选② 由正弦定理得)6cos(sin sin sin π-=B A A B ,…………………………………………1分B A B A B B A A B sin sin 21cos sin 23)sin 21cos 23(sin sin sin +=+=,……………2分 因为0sin ),,0(=/∈A A π 所以0)3sin(cos 23sin 21=-=-πB B B , ……………………………………4分 所以3π=B ,……………………………………………………………………………………5分若选③由c c a b a b a )())((-=-+得ac b c a =-+222,…………………………………………1分 由余弦定理得:2122cos 222==-+=ac ac ac c b a B , ………………………………………4分 因为),0(π∈B ,所以3π=B ………………………………………………………………5分 (2)由(1)可知,3π=B ,ac b c a =-+222 又2=b ,所以ac ac c a 2422≥+=+,所以4≤ac ,当且仅当2==c a 时,等号成立. …………………………………………7分 又164342)(22≤+=+++=+ac ac c a c a ,即40≤+<c a ,又2>+c a ,所以42≤+<c a …………………………………9分所以64≤++<c b a即ABC ∆周长的取值范围是]6,4( …………………………………………10分 3‐6、(2023届湖北省十七所重点中学高三第一次联考数学)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知2c =. (1)求cos C 的最小值;(2)证明:π6C A -≤. 【答案解析】【要点分析】(1)结合余弦定理、基本不等式求得cos C 的最小值. (2)结合正弦定理、基本不等式求得1sin()2C A -≤,进而证得π6C A -≤. 【小问1详解】由余弦定理,222222cos 12222a b c ab c ab C ab ab ab +---=≥==-, 当且仅当a b =,即::a b c =时等号成立.【小问2详解】方法一:当C A ≤时,π06C A -≤<. 当C A >时,设线段AC 的中垂线交AB 于点D .()222222222,2cos c a c b b c AD DB c AD A b c ab c a -===-=+-+-. 在CDB △中,由正弦定理,sin sin()B CD AD C A DB DB==-.22222AD b DB b =≥=⎛⎫ ⎪⎝⎭,当且仅当,2a a a b =-=时等号成立. 故sin 1sin()22B C A -≤≤, 由(1)cos 102C ≥->.故π02C A C <-<<.。
高二数学三角函数三角恒等变换解三角形试题1.已知,三个数,,中()A.都小于B.至少一个大于或等于C.都大于或等于D.至多一个大于【答案】B【解析】因为,令,,,又因为,由函数的性质可知,,所以,所三个数,,中至少有一个大于,故选B.【考点】1.的性质与基本不等式;2.逻辑联结词与命题.2.锐角中,已知,则的取值范围是()A.B.C.D.【答案】C【解析】由正弦定理可得,所以.因为为锐角三角形,所以.即.故C正确.【考点】1正弦定理;2三角函数化简求值.3.角的终边上有一点,则()A.B.C.D.【答案】B【解析】【考点】三角函数定义4.在△ABC中,若,则与的大小关系为()A.B.C.≥D.、的大小关系不能确定【答案】A【解析】在三角形中由正弦定理可知时有【考点】正弦定理解三角形5.下列函数中,周期为且为奇函数的是()A.B.C.D.【答案】B【解析】函数为偶函数,故A错误;函数,周期为1且为奇函数,故选B;函数是周期为2的奇函数,故C错误;函数是周期为的偶函数,故D错误.【考点】函数的奇偶性、周期性.6.在中,角所对的边长为,则“”是“”的()条件A.充分不必要B.必要不充分C.充要D.既不充分又不必要【答案】A【解析】因为时,所以,而时,由正弦定理知,即,得或,即不一定成立,故选A.【考点】1、充要条件;2、正弦定理.7.(2015秋•宁城县期末)在△ABC中,两直角边和斜边分别为a,b,c,若a+b=cx,试确定实数x的取值范围()A.B.C.D.【答案】A【解析】由a+b=cx得,x=,由正弦定理得=sin(A+45°),由此能确定实数x的取值范围.解:由a+b=cx得,x=,由题意得在△ABC中,∠C=90°,则∠A+∠B=90°,由正弦定理得:===sinA+cosA=sin(A+45°),由A∈(0,90°)得,A+45°∈(45°,135°),所以sin(A+45°)∈(,1],即sin(A+45°)∈(1,],∴∈(1,],∴x=∈(1,].故选:A.【考点】三角形中的几何计算.8.(2015秋•宁德校级期中)在△ABC中,角A,B,C所对的边分别为a,b,c.(Ⅰ)若b2+c2=a2+bc,求角A的大小;(Ⅱ)若acosA=bcosB,试判断△ABC的形状.【答案】(Ⅰ)A=;(Ⅱ)△ABC是等腰三角形或直角三角形.【解析】(Ⅰ)由已知利用余弦定理可得cosA=,又结合∠A是△ABC的内角,即可求A的值.(Ⅱ)由正弦定理得sinAcosA=sinBcosB,可得sin2A=sin2B.利用正弦函数的图象和性质可得2A=2B或2A+2B=π,即可得解.解:(Ⅰ)∵由已知得cosA===,又∵∠A是△ABC的内角,∴A=.(Ⅱ)在△ABC中,由acosA=bcosB,得sinAcosA=sinBcosB,∴sin2A=sin2B.∴2A=2B或2A+2B=π.∴A=B或∴△ABC是等腰三角形或直角三角形.【考点】正弦定理.9.已知、、分别为的三边、、所对的角,的面积为,且.(1)求角的大小;(2)若,求周长的最大值.【答案】(1);(2)【解析】(1)利用面积公式及,建立等式关系求出角C;(2)方法1:由(1)确定角C,用角表示角,由正弦定理,求出关于角的关系,这样周长就是表示成了关于角的函数,求出该函数的最大值;方法2:利用余弦定理,配方,利用基本不等式,,解出的范围,即可求出周长最大值.试题解析:(1)∵△ABC的面积为S,∴,又∵C为三角形内角,∴.(2)解法1:由正弦定理得:,∵,,,从而.综上:.解法2:由余弦定理即,(当且仅当时取到等号)综上:.【考点】 1.面积公式;2.正弦定理;3.余弦定理.10.已知的三边长分别为,则的面积为__________.【答案】【解析】的边长由余弦定理得,,所以三角形的面积为.【考点】1、余弦定理的运用;2、三角形的面积公式.11.海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成600的视角,从B岛望C岛和A岛成300的视角,则B、C间的距离是___________________海里.【答案】【解析】依题意,作图如下:∵∠CAB=60°,∠ABC=30°,∴△ABC为直角三角形,∠C为直角,又|AB|=10海里,∴|BC|=|AB|sin60°=10×=海里,【考点】正弦定理的应用12.在中,分别是角A、B、C的对边,且(1)求角B的大小;(2)若,求的面积.【答案】(1)(2)【解析】(1)变形已知式子代入结合角的范围可得;(2)由余弦定理可得,代入数据配方整体可得ac,代入面积公式可得试题解析:(1)由已知得(2)将代入中,得,【考点】余弦定理;正弦定理13.已知函数.设时取得最大值.(1)求的最大值及的值;(2)在中,内角的对边分别为,且,求的值.【答案】(1);(2)【解析】(1)根据三角函数的恒等变换公式,可得,又,则,可知当时,即可求出结果;(2)由(1)知,由正弦定理,可得,再根据余弦定理,可得由此可求出.试题解析:解:(1)由题意,.又,则.故当,即时,.(2)由(1)知.由,即.又.则,即.故.【考点】1.三角恒等变换;2.正弦定理;3.余弦定理.14.在△中,,,,则A.B.C.D.【答案】C【解析】由得【考点】正弦定理解三角形15.已知函数(其中),其部分图像如图所示.(I)求的解析式;(II)求函数在区间上的最大值及相应的x值.【答案】(I);(II) 当时,取得最大值.【解析】(I)根据图象可求出的值,再根据图象可求出周期,进而可求得的值,再结合函数在处有最大值以及,就可以求出的值,由此可求出函数的表达式;(II)根据(I)的结论先求出函数的表达式,再结合,就可求出在区间上的的最大值及相应的值.试题解析:(I)由图可知,,所以.又,且,所以.所以(II)由(I),所以因为,所以,.故:,当时,取得最大值【考点】1、三角函数的“由图求式”;2、形如的函数的最值问题.16.在△ABC中,如果lga﹣lgc=lgsinB=﹣lg,并且B为锐角,则△ABC的形状是()A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形【答案】D【解析】在中,如果,并且为锐角,∴,∴,,∴,∴,故的形状为等腰直角三角形,故选D.【考点】三角形的形状判断;对数的运算性质.17.已知中,角的对边分别为,,向量,,且.(Ⅰ)求的大小;(Ⅱ)当取得最大值时,求角的大小和的面积.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)通过向量的垂直,两角和与差的三角函数化简表达之,利用三角形的内角和,转化为的三角函数值,然后求的大小;(Ⅱ)通过的大小,推出的关系,化简为的三角函数的形式,通过的范围求出不等式取得最大值时,求角的大小,利用正弦定理求出的值,即可利用三角形的面积公式求解三角形的面积.试题解析:(Ⅰ)因为,所以即,因为,所以所以(Ⅱ)由,故由,故最大值时,由正弦定理,,得故【考点】正弦定理;平面向量数量积的运算;三角函数中的恒等变换应用.18.在中,角、、所对的边分别是、、,若(Ⅰ)求角;(Ⅱ)若,,求的面积。
高考数学复习专题训练—三角函数与解三角形解答题1.(2021·山东滨州期中)已知向量a=(cos x,sin x),b=(4√3sin x,4sin x),若f(x)=a·(a+b).(1)求f(x)的单调递减区间;]上的最值.(2)求f(x)在区间[0,π22.(2021·北京丰台区模拟)如图,△ABC中,∠B=45°,N是AC边的中点,点M在AB边上,且MN⊥AC,BC=√6,MN=√3.(1)求∠A;(2)求BM.3.(2021·山东潍坊二模)如图,D为△ABC中BC边上一点,∠B=60°,AB=4,AC=4√3.给出如下三种数值方案:①AD=√5;②AD=√15;③AD=2√7.判断上述三种方案所对应的△ABD的个数,并求△ABD唯一时,BD的长.4.(2021·海南海口月考)在△ABC中,已知a,b,c分别是角A,B,C的对边,b cos C+c cos B=4,B=π.请再在下4列三个条件:①(a+b+c)(sin A+sin B-sin C)=3a sin B;②b=4√2;③√3c sin B=b cos C中,任意选择一个,添加到题目的条件中,求△ABC的面积.5.(2021·辽宁大连一模)如图,有一底部不可到达的建筑物,A为建筑物的最高点.某学习小组准备了三种工具:测角仪(可测量仰角与俯角)、米尺(可测量长度)、量角器(可测量平面角度).(1)请你利用准备好的工具(可不全使用),设计一种测量建筑物高度AB的方法,并给出测量报告;注:测量报告中包括你使用的工具,测量方法的文字说明与图形说明,所使用的字母和符号均需要解释说明,并给出你最后的计算公式.(2)该学习小组利用你的测量方案进行了实地测量,并将计算结果汇报给老师,发现计算结果与该建筑物实际的高度有误差,请你针对误差情况进行说明.6.(2021·湖北武汉3月质检)在△ABC中,它的内角A,B,C的对边分别为a,b,c,且B=2π3,b=√6.(1)若cos A cos C=23,求△ABC的面积;(2)试问1a +1c=1能否成立?若能成立,求此时△ABC的周长;若不能成立,请说明理由.7.(2021·湖南长沙模拟)在△ABC中,内角A,B,C所对的边分别为a,b,c,且(b-c)sinCb+a=sin B-sin A.(1)求角A;(2)若a=2,求1tanB +1tanC的最小值.8.(2021·江苏南京期中)如图,某景区内有一半圆形花圃,其直径AB为6,O是圆心,且OC⊥AB.在OC上有一座观赏亭Q,其中∠AQC=2π3.计划在BC⏜上再建一座观赏亭P,记∠POB=θ(0<θ<π2).(1)当θ=π3时,求∠OPQ的大小;(2)当∠OPQ越大时,游客在观赏亭P处的观赏效果越佳,当游客在观赏亭P处的观赏效果最佳时,求sin θ的值.答案与解析1.解由于f(x)=a·(a+b)=|a|2+a·b=1+4√3sin x cos x+4sin2x=1+2√3sin 2x+4·1-cos2x2=2√3sin 2x-2cos 2x+3=4sin(2x-π6)+3.(1)由π2+2kπ≤2x-π6≤3π2+2kπ(k∈Z),解得π3+kπ≤x≤5π6+kπ(k∈Z),所以f(x)的单调递减区间是[π3+kπ,5π6+kπ](k∈Z).(2)由于x∈[0,π2],所以2x-π6∈[-π6,5π6],故当2x-π6=π2即x=π3时,函数f(x)取最大值7;当2x-π6=-π6即x=0时,函数f(x)取最小值1.2.解(1)如图,连接MC,因为N是AC边的中点,且MN⊥AC, 所以MC=MA.在Rt△AMN中,MA=MNsinA=√3sinA,所以MC=√3sinA.在△MBC中,由正弦定理可得MCsinB=BCsin∠BMC,而∠BMC=2∠A,所以√3sinA·sin45°=√6sin2A,即√3sinA·√22=√62sinAcosA,所以cos A=12,故∠A=60°.(2)由(1)知MC=MA=√3sin60°=2,∠BMC=2∠A=120°.在△BCM中,由余弦定理得BC2=BM2+MC2-2BM·MC·cos∠BMC,所以(√6)2=BM2+22-2BM·2·cos 120°,解得BM=√3-1(负值舍去).3.解过点A作AE⊥BC,垂足为点E(图略),则AE=4·sin 60°=2√3,当AD=√5时,AD<AE,所以方案①对应△ABD无解,当AD=√15时,AE<AD<AB<AC ,所以方案②对应△ABD 有两解, 当AD=2√7时,AB<AD<AC ,所以方案③对应△ABD 只有一解. 由方案③知AD=2√7,设BD=x (x>0),所以在△ABD 中由余弦定理得(2√7)2=42+x 2-2×4×x×cos 60°,即x 2-4x-12=0,解得x=6或x=-2(舍去).又因为在△ABC 中易得BC=8,BD=6<BC ,符合题意, 所以BD 的长为6.4.解 若选择条件①,则(a+b+c )(sin A+sin B-sin C )=3a sin B ,由正弦定理可得(a+b+c )(a+b-c )=3ab ,所以(a+b )2-c 2=3ab ,整理得a 2+b 2-c 2=ab ,所以cos C=12,故C=π3.又B=π4,所以A=π-π3−π4=5π12. 又因为b cos C+c cos B=4,所以b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac=4,即a=4.由正弦定理可得asinA =bsinB , 所以b=asinB sinA=4sin π4sin 5π12=4(√3-1), 故△ABC 的面积S=12ab sin C=12×4×4(√3-1)×sin π3=4(3-√3). 若选择条件②,则b=4√2. 又因为b cos C+c cos B=4,所以b ·a 2+b 2-c 22ab +c ·a 2+c 2-b22ac =4,即a=4.又B=π4,所以由正弦定理可得asinA =bsinB , 所以sin A=asinBb=4sin π44√2=12,所以A=π6或A=5π6.由于b>a ,所以B>A ,因此A=5π6不合题意舍去,故A=π6,从而C=π-π6−π4=7π12. 故△ABC 的面积S=12ab sin C=12×4×4√2×sin 7π12=4(√3+1). 若选择条件③,因为b cos C+c cos B=4, 所以b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac=4,所以a=4.因为√3c sin B=b cos C ,所以√3sin C sin B=sin B cos C ,所以tan C=√33,于是C=π6,从而A=π-π6−π4=7π12,所以由正弦定理可得a sinA =bsinB , 所以b=asinB sinA=4sin π4sin 7π12=4(√3-1), 故△ABC 的面积S=12ab sin C=12×4×4(√3-1)×sin π6=4(√3-1). 5.解 (1)选用测角仪和米尺,如图所示.①选择一条水平基线HG ,使H ,G ,B 三点在同一条直线上;②在H ,G 两点用测角仪测得A 的仰角分别为α,β,HG=a ,即CD=a.测得测角仪器的高是h ;③(方法一)在△ACD 中,由正弦定理,得ACsinα=CDsin (β-α), 所以AC=CDsinαsin (β-α)=asinαsin (β-α),在Rt △ACE 中,有AE=AC sin β=asinαsinβsin (β-α), 所以建筑物的高度AB=AE+h=asinαsinβsin (β-α)+h. (方法二)在Rt △ADE 中,DE=AEtanα, 在Rt △ACE 中,CE=AEtanβ, 所以CD=DE-CE=AEtanα−AEtanβ=AE (tanβ-tanα)tanαtanβ,所以AE=atanαtanβtanβ-tanα,所以建筑物的高度AB=AE+h=atanαtanβtanβ-tanα+h. (2)①测量工具问题;②两次测量时位置的间距差; ③用身高代替测角仪的高度.6.解 (1)由B=2π3,得A+C=π3,cos(A+C )=cos A cos C-sin A sin C ,即12=cos A cos C-sin A sin C.因为cos A cos C=23,所以sin A sin C=16.因为a sinA =c sinC =√6√32=2√2,所以a=2√2sin A ,c=2√2sin C.所以S △ABC =12·2√2sin A·2√2sin C·sin B=4sin A·sin B sin C=4×16×√32=√33. (2)假设1a +1c =1能成立,所以a+c=ac.由余弦定理,得b 2=a 2+c 2-2ac cos B ,所以6=a 2+c 2+ac.所以(a+c )2-ac=6,所以(ac )2-ac-6=0,所以ac=3或ac=-2(舍去),此时a+c=ac=3. 不满足a+c ≥2√ac ,所以1a +1c =1不成立.7.解 (1)由(b -c )sinCb+a =sin B-sin A ,可得(b-c )sin C=(sin B-sin A )(b+a ),由正弦定理得(b-c )c=(b-a )(b+a ),即b 2+c 2-a 2=bc , 由余弦定理,得cos A=b 2+c 2-a 22bc=12,因为0<A<π,可得A=π3.(2)由(1)知A=π3,设△ABC 的外接圆的半径为R (R>0),可得2R=asinA =4√33, 由余弦定理得a 2=b 2+c 2-2bc cos A=b 2+c 2-bc ≥bc , 即bc ≤a 2=4,当且仅当b=c=2时取等号, 又1tanB +1tanC =cosBsinB +cosCsinC =cosBsinC+sinBcosCsinBsinC =sin (B+C )sinBsinC =sinAsinBsinC =2R ·2RsinA 2RsinB ·2RsinC=2R ·abc =8√33bc ≥8√33×4=2√33,所以1tanB +1tanC 的最小值为2√33.8.解 (1)在△POQ 中,因为∠AQC=2π3,所以∠AQO=π3.又OA=OB=3,所以OQ=√3. 设∠OPQ=α,则∠PQO=π2-α+θ. 由正弦定理,得3sin (π2-α+θ)=√3sinα,即√3sin α=cos(α-θ), 整理得tan α=√3-sinθ,其中θ∈(0,π2).当θ=π3时,tan α=√33.因为α∈(0,π2),所以α=π6. 故当θ=π3时,∠OPQ=π6.(2)设f(θ)=√3-sinθ,θ∈(0,π2),则f'(θ)=-sinθ(√3-sinθ)+cos 2θ(√3-sinθ)2=1-√3sinθ(√3-sinθ)2.令f'(θ)=0,得sin θ=√33,记锐角θ0满足sin θ0=√33,当0<θ<θ0时,f'(θ)>0;当θ0<θ<π2时,f'(θ)<0, 所以f(θ)在θ=θ0处取得极大值亦即最大值.由(1)可知tan α=f(θ)>0,则α∈(0,π2),又y=tan α单调递增,则当tan α取最大值时,α也取得最大值.故游客在观赏亭P处的观赏效果最佳时,sin θ=√33 .。
高考数学复习专题过关测评—三角函数与解三角形一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021·江西临川期中)已知角θ的终边经过点P(√2,a),若θ=-π3,则a=()A.√6B.√63C.-√6 D.-√632.(2021·北京房山区一模)将函数f(x)=sin 2x的图象向左平移π6个单位长度得到函数y=g(x)的图象,则函数g(x)的图象的一条对称轴方程为()A.x=-π6B.x=-π12C.x=π12D.x=π63.(2021·北京西城区一模)在△ABC中,内角A,B,C所对的边分别为a,b,c,且C=60°,a+2b=8,sin A=6sin B,则c=()A.√35B.√31C.6D.54.(2021·山西吕梁一模)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π2)部分图象如图所示,则f(π3)=()A.√32B.12C.-√3D.√35.(2021·北京海淀区模拟)已知sin(π6-α)=13+cos α,则sin(2α+5π6)=()A.-79B.-4√39C.4√39D.796.(2021·福建福州期末)疫情期间,为保障市民安全,要对所有街道进行消毒处理,某消毒装备的设计如图所示,PQ为路面,AB为消毒设备的高,BC为喷杆,AB⊥PQ,∠ABC=2π3,C处是喷洒消毒水的喷头,且喷射角∠DCE=π3,已知AB=2,BC=1,则消毒水喷洒在路面上的宽度DE的最小值为()A.5√2-5B.5√2C.5√33D.5√37.(2021·浙江宁波模拟)在△ABC中,“tan A tan B>1”是“△ABC为钝角三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.(2021·安徽淮北一模)函数f(x)=2sin x+π4+cos 2x的最大值为()A.1+√2B.3√32C.2√2D.3二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.在△ABC中,角A,B,C所对的边分别为a,b,c,且(a+b)∶(a+c)∶(b+c)=9∶10∶11,则下列结论正确的是()A.sin A∶sin B∶sin C=4∶5∶6B.△ABC是钝角三角形C.△ABC的最大内角是最小内角的2倍D.若c=6,则△ABC的外接圆半径R为8√7710.(2021·江苏苏州月考)已知函数f(x)=(sin x+√3cos x)2,则()A.f(x)在区间[0,π6]上单调递增B.f(x)的图象关于点(-π3,0)对称C.f(x)的最小正周期为πD.f(x)的值域为[0,4]11.(2021·辽宁沈阳二模)关于f(x)=sin x·cos 2x的说法正确的为()A.∀x∈R,f(-x)-f(x)=0B.∃T≠0,使得f(x+T)=f(x)C.f(x)在定义域内有偶数个零点D.∀x∈R,f(π-x)-f(x)=012.(2021·山东潍坊统考)在△ABC中,内角A,B,C所对的边分别为a,b,c,若1tanA ,1tanB,1tanC依次成等差数列,则下列结论不一定成立的是()A.a,b,c依次成等差数列B.√a,√b,√c依次成等差数列C.a2,b2,c2依次成等差数列D.a3,b3,c3依次成等差数列三、填空题:本题共4小题,每小题5分,共20分.13.(2021·安徽合肥期中)已知cos(α+5π4)=-√63,则sin 2α=.14.(2021·北京东城区一模)已知函数f(x)=A sin(2x+φ)(A>0,|φ|<π2),其中x和f(x)部分对应值如下表所示:则A=.15.(2021·广东茂名二模)在矩形ABCD内(包括边界)有E,F两点,其中AB=120 cm,AE=100√3cm,EF=80√3 cm,FC=60√3 cm,∠AEF=∠CFE=60°,则该矩形ABCD的面积为cm2.(答案如有根号可保留)16.(2021·湖南长郡中学二模)如图,某湖有一半径为100 m的半圆形岸边,现决定在圆心O处设立一个水文监测中心(大小忽略不计),在其正东方向相距200 m的点A处安装一套监测设备.为了监测数据更加准确,在半圆弧上的点B以及湖中的点C处,再分别安装一套监测设备,且满足AB=AC,∠BAC=90°.四边形OACB及其内部区域为“直接监测覆盖区域”.设∠AOB=θ,则“直接监测覆盖区域”面积的最大值为m2.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(2021·江西上饶一模)已知f(x)=2cos x·sin x+π3-√3sin2x+sin x cos x.(1)求函数f(x)的单调递增区间;(2)若x∈(-π4,π6),求y=f(x)的值域.18.(12分)(2021·河北石家庄一模)在△ABC中,内角A,B,C的对边分别为a,b,c,已知2a-b=2c cos B.(1)求角C;(2)若a=2,D是AC的中点,BD=√3,求边c.19.(12分)(2021·广东韶关一模)在①cos C+(cos A-√3sin A)cos B=0;②cos 2B-3cos(A+C)=1;③b cosC+√33c sin B=a这三个条件中任选一个,补充在下面的问题中并解答.问题:在△ABC中,角A,B,C所对的边分别为a,b,c,若a+c=1,,求角B和b的最小值. 20.(12分)(2021·山东枣庄二模)已知函数f (x )=sin(ωx+φ)ω>0,0<φ<π2的部分图象如图所示,f (0)=12,f (5π12)=0. (1)求f (x )的解析式;(2)在锐角△ABC 中,若A>B ,f (A -B 2-π12)=35,求cosA -B2,并证明sin A>2√55.21.(12分)(2021·福建宁德期末)在股票市场上,投资者常参考股价(每一股的价格)的某条平滑均线的变化情况来决定买入或卖出股票.股民老张在研究股票的走势图时,发现一只股票的均线近期走得很有特点:若建立平面直角坐标系Oxy 如图所示,则股价y (单位:元)和时间x (单位:天)的关系在ABC 段可近似地用函数y=a sin(ωx+φ)+b (0<φ<π)来描述,从C 点走到今天的D 点,是震荡筑底阶段,而今天出现了明显的筑底结束的标志,且D 点和C 点正好关于直线l :x=34对称.老张预计这只股票未来的走势可用曲线DE 描述,这里DE 段与ABC 段关于直线l 对称,EF 段是股价延续DE 段的趋势(规律)走到这波上升行情的最高点F.现在老张决定取点A (0,22),点B (12,19),点D (44,16)来确定函数解析式中的常数a ,b ,ω,φ,并且求得ω=π72.(1)请你帮老张算出a ,b ,φ,并回答股价什么时候见顶(即求点F 的横坐标);(2)老张如能在今天以点D 处的价格买入该股票3 000股,到见顶处点F 的价格全部卖出,不计其他费用,这次操作他能赚多少元?22.(12分)(2021·深圳实验学校月考)已知函数f (x )=√3sin(ωx+φ)+2sin 2(ωx+φ2)-1(ω>0,0<φ<π)为奇函数,且f (x )图象的相邻两对称轴间的距离为π2. (1)当x ∈[-π2,π4]时,求f (x )的单调递减区间;(2)将函数f (x )的图象向右平移π6个单位长度,再把横坐标缩小为原来的12(纵坐标不变),得到函数y=g (x )的图象,当x ∈[-π12,π6]时,求函数g (x )的值域;(3)对于第(2)问中的函数g (x ),记方程g (x )=43在区间[π6,4π3]上的根从小到大依次为x 1,x 2,…,x n ,试确定n 的值,并求x 1+2x 2+2x 3+…+2x n-1+x n 的值.答案及解析1.C解析由题意,角θ的终边经过点P(√2,a),可得|OP|=√2+a2(O为坐标原点),又由θ=-π3,根据三角函数的定义,可得cos(-π3)=√2√2+a2=12,且a<0,解得a=-√6.2.C解析将函数f(x)=sin 2x的图象向左平移π6个单位长度,得到y=g(x)=sin[2(x+π6)]=sin(2x+π3),令2x+π3=kπ+π2,k∈Z,解得x=kπ2+π12,k∈Z,结合四个选项可知,函数g(x)的图象的一条对称轴方程为x=π12 .3.B解析因为sin A=6sin B,所以a=6b,又a+2b=8,所以a=6,b=1,因为C=60°,所以c2=a2+b2-2ab cos C,即c2=62+12-2×6×1×12,解得c=√31.4.D解析由题中函数f(x)=A sin(ωx+φ)A>0,ω>0,|φ|<π2的部分图象知,A=2,34T=11π3−2π3=3π,所以T=4π=2πω,所以ω=12.又f(2π3)=2sin(12×2π3+φ)=2,可得12×2π3+φ=2kπ+π2,k∈Z,解得φ=2kπ+π6,k∈Z.∵|φ|<π2,∴φ=π6,∴f(x)=2sin(12x+π6).故f(π3)=2sin(12×π3+π6)=2sinπ3=√3.5.D解析由sin(π6-α)=13+cos α可得sinπ6·cos α-cosπ6·sin α=13+cos α,∴12cos α-√32sinα=13+cos α,∴√32sin α+12cos α=-13,∴sin(α+π6)=-13,∴sin(2α+5π6)=sin[π2+(2α+π3)]=cos(2α+π3)=1-2sin2(α+π6)=79.6.C解析在△CDE中,设定点C到底边DE的距离为h,则h=2+1·sin(2π3-π2)=52,又S△CDE=12DE·h=12CD·CE sinπ3,即5DE=√3CD·CE,利用余弦定理得DE2=CD2+CE2-2CD·CE cosπ3=CD2+CE2-CD·CE≥2CD·CE-CD·CE=CD·CE,当且仅当CD=CE时,等号成立,故DE 2≥CD·CE ,而5DE=√3CD·CE ,所以DE 2≥5√33DE ,则DE ≥5√33,故DE 的最小值为5√33. 7.D 解析 因为tan A tan B>1,所以sinAsinBcosAcosB >1,因为0<A<π,0<B<π,所以sin A sin B>0,cos A cos B>0,故A ,B 同为锐角,因为sin A sin B>cos A cos B ,所以cos A cos B-sin A sin B<0,即cos(A+B )<0,所以π2<A+B<π,因此0<C<π2,所以△ABC 是锐角三角形,不是钝角三角形,所以充分性不满足.反之,若△ABC 是钝角三角形,也推不出“tan A tan B>1”,故必要性不成立,所以为既不充分也不必要条件.8.B 解析 因为f (x )=2sin (x +π4)+cos 2x ,所以f (x )=2sin (x +π4)+sin [2(x +π4)]=2sin x+π4+2sin (x +π4)cos (x +π4). 令θ=x+π4,g (θ)=2sin θ+2sin θcos θ=2sin θ+sin 2θ,则g'(θ)=2cos θ+2cos 2θ=2(2cos 2θ-1)+2cos θ=4cos 2θ+2cos θ-2,令g'(θ)=0,得cos θ=-1或cos θ=12,当-1≤cos θ≤12时,g'(θ)≤0;当12≤cos θ≤1时,g'(θ)≥0,所以当θ∈[-5π3+2kπ,-π3+2kπ](k ∈Z )时,g (θ)单调递减;当θ∈[-π3+2kπ,π3+2kπ](k ∈Z )时,g (θ)单调递增,所以当θ=π3+2k π(k ∈Z )时,g (θ)取得最大值,此时sin θ=√32,所以f (x )max =2×√32+2×√32×12=3√32.9.ACD 解析 因为(a+b )∶(a+c )∶(b+c )=9∶10∶11,所以可设a+b=9x ,a+c=10x ,b+c=11x (其中x>0),解得a=4x ,b=5x ,c=6x ,所以sin A ∶sin B ∶sin C=a ∶b ∶c=4∶5∶6,所以A 中结论正确;由以上解答可知c 边最大,所以三角形中角C 最大,又cos C=a 2+b 2-c 22ab=(4x )2+(5x )2-(6x )22×4x×5x=18>0,所以C 为锐角,所以B 中结论错误;由以上解答可知a 边最小,所以三角形中角A 最小, 又cos A=c 2+b 2-a 22cb=(6x )2+(5x )2-(4x )22×6x×5x=34,所以cos 2A=2cos2A-1=18,所以cos 2A=cos C.由三角形中角C最大且角C为锐角可得2A∈(0,π),C∈(0,π2),所以2A=C,所以C中结论正确;由正弦定理,得2R=csinC(R为△ABC外接圆半径),又sin C=√1-cos2C=3√78,所以2R=3√78,解得R=8√77,所以D中结论正确.10.ACD解析f(x)=(sinx+√3cosx)2=sin2x+3cos2x+2√3sin x cos x=2+cos 2x+√3sin2x=2sin2x+π6+2;对于A选项:∵x∈[0,π6],∴2x+π6∈[π6,π2],∴f(x)=2sin(2x+π6)+2在区间[0,π6]上单调递增,故A正确;对于B选项:f(-π3)=2sin[2×(-π3)+π6]+2=0,由函数f(x)的图象(图略)可知-π3是f(x)的一个极小值点,故B错误;对于C选项:由f(x)=2sin(2x+π6)+2可知,函数的最小正周期T=2π2=π,故C正确;对于D选项,∵sin(2x+π6)∈[-1,1],∴f(x)=2sin(2x+π6)+2∈[0,4],故D正确.11.BD解析对于A,当x=π3时,f(-π3)-f(π3)=sin(-π3)cos2π3-sinπ3cos2π3=-√32×(-12)−√32×(-1 2)=√32≠0,故A错误.对于B,因为f(x+2π)=sin(2π+x)cos[2(x+2π)]=sin x cos 2x,所以∃T=2π≠0,使得f(x+T)=f(x),故B正确.对于C,因为f(-x)=sin(-x)cos(-2x)=-sin x cos 2x=-f(x),所以f(x)为奇函数,因为x=0在定义域内,所以f(0)=0,故f(x)有奇数个零点,故C错误.对于D,f(π-x)-f(x)=sin(π-x)cos[2(π-x)]-sin x cos 2x=sin x cos 2x-sin x cos 2x=0,故D正确.12.ABD 解析 因为1tanA ,1tanB ,1tanC 依次成等差数列,所以2tanB =1tanA +1tanC ,整理得2cosB sinB=cosC sinC +cosAsinA ,所以2·a 2+c 2-b 22abc=a 2+b 2-c 22abc+b 2+c 2-a 22abc ,整理得2b 2=a 2+c 2,即a 2,b 2,c 2依次成等差数列.但数列a ,b ,c 或√a,√b,√c 或a 3,b 3,c 3不一定是等差数列,除非a=b=c ,但题目没有说△ABC 是等边三角形.13.-13 解析 由cos (α+5π4)=-√63可得cos (α+π4)=√63,所以√22(cos α-sin α)=√63,即cos α-sin α=2√33,两边平方可得1-sin 2α=43,故sin 2α=-13.14.4 解析 由题意可得{f (0)=-2√3,f (π4)=2,即{Asinφ=-2√3,Asin (π2+φ)=2,所以{Asinφ=-2√3,Acosφ=2,所以tan φ=-√3,又因为|φ|<π2, 所以φ=-π3,所以A=√3-√32=4. 15.14 400√3 解析 连接AC 交EF 于点O (图略),由∠AEF=∠CFE=60°,得AE ∥FC ,所以△AEO 与△CFO 相似,所以OEOF =AECF =53,所以EO=50√3 cm,FO=30√3 cm,在△AEO 中,由余弦定理得,AO 2=AE 2+EO 2-2AE·EO·cos ∠AEO=(100√3)2+(50√3)2-2×100√3×50√3cos 60°=22 500,所以AO=150 cm,同理CO=90 cm,所以AC=240 cm,从而BC=√AC 2-AB 2=120√3 cm,所以矩形ABCD 的面积为14 400√3 cm 2.16.(10 000√5+25 000) 解析 在△OAB 中,∵∠AOB=θ,OB=100 m,OA=200 m,∴AB 2=OB 2+OA 2-2OB·OA·cos ∠AOB ,即AB=100√5-4cosθ,∴S 四边形OACB =S △OAB +S △ABC =12·OA·OB·sin θ+12AB 2,于是S 四边形OACB =1002(sinθ-2cosθ+52)=1002√5sin(θ-φ)+52(其中tan φ=2),所以当sin(θ-φ)=1时,S 四边形OACB 取最大值10 000(√5+52)=10 000√5+25 000,即“直接监测覆盖区域”面积的最大值为(10 000√5+25 000)m 2.17.解 (1)f (x )=2cos x sin (x +π3)−√32(1-cos 2x )+12sin 2x=2cos x (12sinx +√32cosx)−√32+√32cos 2x+12sin 2x=12sin 2x+√32(2cos 2x-1)+√32cos 2x+12sin 2x=sin 2x+√3cos 2x=2sin (2x +π3), 令2k π-π2≤2x+π3≤π2+2k π,k ∈Z , 解得k π-5π12≤x ≤k π+π12,k ∈Z ,因此,函数f (x )的单调递增区间为[kπ-5π12,kπ+π12],k ∈Z .(2)∵x ∈(-π4,π6),∴-π6<2x+π3<2π3,∴-12<sin (2x +π3)≤1,∴-1<f (x )≤2, 因此当x ∈(-π4,π6)时,y=f (x )的值域为(-1,2].18.解 (1)因为2a-b=2c cos B ,由正弦定理得2sin A-sin B=2sin C cos B ,因为sin A=sin(B+C )=sin B cos C+cos B sin C ,代入上式得,2sin B cos C+2cos B sin C-sin B=2sin C cos B ,即2sin B cos C-sin B=0,即sin B (2cos C-1)=0.因为B ∈(0,π),所以sin B ≠0,所以2cos C=1,即cos C=12,又0<C<π,所以C=π3. (2)依题意,在△CBD 中,CB=2,CD=12b ,BD=√3,C=π3, 利用余弦定理的推论可得,cos C=cos π3=12=4+(12b )2-32×2×12b,即b 2-4b+4=0,解得b=2.在△ABC 中,b=a=2,C=π3,故△ABC 是等边三角形,故c=2.19.解 若选择①:在△ABC 中,有A+B+C=π,则由题意可得cos[π-(A+B )]+(cos A-√3sinA )cos B=0,即-cos(A+B )+cos A cos B-√3sin A cos B=0, sin A sin B-cos A cos B+cos A cos B-√3sin A cos B=0, sin A sin B=√3sin A cos B ,又sin A ≠0,所以sin B=√3cos B ,则tan B=√3. 又B ∈(0,π),所以B=π3.因为a+c=1,所以c=1-a ,a ∈(0,1).所以b 2=a 2+c 2-2ac cos B=a 2+c 2-ac=a 2+(1-a )2-a (1-a )=3a2-3a+1=3(a -12)2+14,因为a ∈(0,1),所以当a=12时,b 2取得最小值,且(b 2)min =14,即b 的最小值为12. 若选择②:在△ABC 中,有A+B+C=π,则由题意可得2cos 2B-1-3cos(π-B )=2cos 2B+3cos B-1=1,解得cos B=12或cos B=-2(舍去),又B ∈(0,π),所以B=π3.因为a+c=1,所以c=1-a ,a ∈(0,1).所以b 2=a 2+c 2-2ac cos B=a 2+c 2-ac=a 2+(1-a )2-a (1-a )=3a2-3a+1=3(a -12)2+14,因为a ∈(0,1),所以当a=12时,b 2取得最小值,且(b 2)min =14,即b 的最小值为12. 若选择③:由正弦定理可将已知条件转化为sin B cos C+√33sin C sin B=sin A , 又sin A=sin[π-(B+C )]=sin(B+C )=sin B cos C+sin C cos B ,所以√33sin C sin B=sin C cos B ,又sin C ≠0,所以sin B=√3cos B ,所以tan B=√3. 又B ∈(0,π),所以B=π3.因为a+c=1,所以c=1-a ,a ∈(0,1).所以b 2=a 2+c 2-2ac cos B=a 2+c 2-ac=a 2+(1-a )2-a (1-a )=3a2-3a+1=3(a -12)2+14,因为a ∈(0,1),所以当a=12时,b 2取得最小值,且(b 2)min =14,即b 的最小值为12. 20.解 (1)由f (0)=12,得sin φ=12,又0<φ<π2,所以φ=π6.由f (5π12)=0,得sin (ω·5π12+π6)=0,所以ω·5π12+π6=k π,k ∈Z ,即ω=25(6k-1),k ∈Z . 由ω>0,结合题中函数f (x )的图象可知12·2πω>5π12, 所以0<ω<125,所以有0<25(6k-1)<125,即16<k<76, 又k ∈Z ,所以k=1,从而ω=25×(6×1-1)=2,因此,f (x )=sin (2x +π6). (2)由f (A -B2-π12)=35,得sin(A-B )=35,又由题意可知0<A-B<π2,故cos(A-B )=45,于是cos A -B2=√1+cos (A -B )2=√10,sin A -B2=√10, 又A+B>π2,所以A=A+B 2+A -B 2>π4+A -B2,又因为函数y=sin x 在区间(0,π2)上单调递增,A ∈(0,π2),π4+A -B 2∈(0,π2),所以sin A>sin π4+A -B2=√22×(3√10+1√10)=2√55.21.解 (1)∵点C ,D 关于直线l 对称,∴点C 坐标为(2×34-44,16),即(24,16). 把点A ,B ,C 的坐标分别代入函数解析式,得{22=asinφ+b , ①19=asin (π6+φ)+b ,②16=asin (π3+φ)+b ,③②-①,得a [sin (π6+φ)-sinφ]=-3, ③-①,得a [sin (π3+φ)-sinφ]=-6,∴2sin (π6+φ)-2sin φ=sin (π3+φ)-sin φ, ∴cos φ+√3sin φ=√32cos φ+32sin φ,∴(1-√32)cos φ=(32-√3)sin φ=√3(√32-1)sin φ,∴tan φ=-√33.∵0<φ<π,∴φ=5π6,代入②,得b=19. 将φ=5π6,b=19代入①得,a=6.于是ABC 段对应的函数解析式为y=6sin (π72x +5π6)+19,由对称性得DEF 段对应的函数解析式为y=6sin π72(68-x )+5π6+19.设点F 的坐标为(x F ,y F ),则由π72(68-x F )+5π6=π2,解得x F =92. 因此可知,当x=92时,股价见顶.(2)由(1)可知,y F =6sin [π72×(68-92)+5π6]+19=6sin π2+19=25,故这次操作老张能赚3 000×(25-16)=27 000(元).22.解 (1)由题意,函数f (x )=√3sin(ωx+φ)+2sin 2(ωx+φ2)-1=√3sin(ωx+φ)-cos(ωx+φ)=2sin (ωx +φ-π6),因为函数f (x )图象的相邻两对称轴间的距离为π2, 所以T=π,可得ω=2.又f (x )为奇函数,且f (x )在x=0处有定义,可得f (0)=2sin (φ-π6)=0, 所以φ-π6=k π,k ∈Z ,因为0<φ<π,所以φ=π6, 因此f (x )=2sin 2x.令π2+2k π≤2x ≤3π2+2k π,k ∈Z ,解得π4+k π≤x ≤3π4+k π,k ∈Z , 所以f (x )的单调递减区间为[π4+kπ,3π4+kπ],k ∈Z , 又因为x ∈[-π2,π4],故函数f (x )的单调递减区间为[-π2,-π4].(2)将函数f (x )的图象向右平移π6个单位长度,可得y=2sin (2x -π3)的图象,再把横坐标缩小为原来的12,得到函数y=g (x )=2sin 4x-π3的图象,当x ∈[-π12,π6]时,4x-π3∈[-2π3,π3],当4x-π3=-π2时,函数g (x )取得最小值,且最小值为-2,当4x-π3=π3时,函数g (x )取得最大值,且最大值为√3,故函数g (x )的值域为[-2,√3].(3)由方程g (x )=43,即2sin (4x -π3)=43,即sin 4x-π3=23.(*)因为x ∈[π6,4π3],可得4x-π3∈[π3,5π],设θ=4x-π3,其中θ∈[π3,5π],则方程(*)可转化为sin θ=23,结合正弦函数y=sin θ的图象,如图,可得方程sin θ=23在区间[π3,5π]上有5个解,设这5个解分别为θ1,θ2,θ3,θ4,θ5,所以n=5,其中θ1+θ2=3π,θ2+θ3=5π,θ3+θ4=7π,θ4+θ5=9π,即4x 1-π3+4x 2-π3=3π,4x 2-π3+4x 3-π3=5π,4x 3-π3+4x 4-π3=7π,4x 4-π3+4x 5-π3=9π, 解得x 1+x 2=11π12,x 2+x 3=17π12,x 3+x 4=23π12,x 4+x 5=29π12,所以x 1+2x 2+2x 3+2x 4+x 5=(x 1+x 2)+(x 2+x 3)+(x 3+x 4)+(x 4+x 5)=20π3.。
三角函数及解三角形练习题一.解答题(共16小题)1.在△ABC中,3sinA+4cosB=6,4sinB+3cosA=1,求C的大小.2.已知3sinθtanθ=8,且0<θ<π.(Ⅰ)求cosθ;(Ⅱ)求函数f(x)=6cosxcos(x﹣θ)在[0,]上的值域.3.已知是函数f(x)=2cos2x+asin2x+1的一个零点.(Ⅰ)求实数a的值;(Ⅱ)求f(x)的单调递增区间.4.已知函数f(x)=sin(2x+)+sin2x.(1)求函数f(x)的最小正周期;(2)若函数g(x)对任意x∈R,有g(x)=f(x+),求函数g(x)在[﹣,]上的值域.5.已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.6.已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.7.已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若∥,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.8.已知函数的部分图象如图所示.(1)求函数f(x)的解析式;(2)在△ABC中,角A,B,C的对边分别是a,b,c,若(2a﹣c)cosB=bcosC,求的取值范围.9.函数f(x)=2sin(ωx+φ)(ω>0,0<φ<)的部分图象如图所示,M为最高点,该图象与y轴交于点F(0,),与x轴交于点B,C,且△MBC的面积为π.(Ⅰ)求函数f(x)的解析式;(Ⅱ)若f(α﹣)=,求cos2α的值.10.已知函数.(Ⅰ)求f(x)的最大值及相应的x值;(Ⅱ)设函数,如图,点P,M,N分别是函数y=g(x)图象的零值点、最高点和最低点,求cos∠MPN的值.11.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.12.在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.(Ⅰ)证明:a+b=2c;(Ⅱ)求cosC的最小值.13.如图,A、B、C、D为平面四边形ABCD的四个内角.(Ⅰ)证明:tan=;(Ⅱ)若A+C=180°,AB=6,BC=3,CD=4,AD=5,求tan+tan+tan+tan的值.14.已知函数f(x)=sin2x﹣cos2x.(Ⅰ)求f(x)的最小周期和最小值;(Ⅱ)将函数f(x)的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g(x)的图象.当x∈时,求g(x)的值域.15.已知函数f(x)=sin(﹣x)sinx﹣cos2x.(I)求f(x)的最小正周期和最大值;(II)讨论f(x)在[,]上的单调性.16.已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.17.设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.18.已知函数f(x)=sin(x﹣)+cos(x﹣),g(x)=2sin2.(Ⅰ)若α是第一象限角,且f(α)=,求g(α)的值;(Ⅱ)求使f(x)≥g(x)成立的x的取值集合.19.已知向量=(m,cos2x),=(sin2x,n),函数f(x)=•,且y=f(x)的图象过点(,)和点(,﹣2).(Ⅰ)求m,n的值;(Ⅱ)将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象,若y=g(x)图象上的最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调递增区间.三角函数及解三角形练习题参考答案与试题解析一.解答题(共16小题)1.(2017•遂宁模拟)在△ABC中,3sinA+4cosB=6,4sinB+3cosA=1,求C的大小.【分析】对已知式平方,化简,求出sin(A+B)=,确定A+B的值,利用三角形的内角和求出C的大小.【解答】解:两边平方(3sinA+4cosB)2=36得9sin2A+16cos2B+24sinAcosB=36 ①(4sinB+3cosA)2=1得16sin2B+9cos2A+24sinBcosA=1 ②①+②得:(9sin2A+9cos2A)+(16cos2B+16sin2B)+24sinAcosB+24sinBcosA=37即9+16+24sin(A+B)=37所以sin(A+B)=,所以A+B=或者若A+B=,则cosA>3cosA>3>1,则4sinB+3cosA>1 这是不可能的所以A+B=因为A+B+C=180°所以C=【点评】本题考查同角三角函数基本关系的运用,考查计算能力,是基础题.2.(2017•浙江模拟)已知3sinθtanθ=8,且0<θ<π.(Ⅰ)求cosθ;(Ⅱ)求函数f(x)=6cosxcos(x﹣θ)在[0,]上的值域.【分析】(Ⅰ)利用同角三角函数的基本关系求得cosθ的值.(Ⅱ)利用三角恒等变换化简函数f(x)的解析式,再利用余弦函数的定义域和值域,求得函数在[0,]上的值域.【解答】解:(Ⅰ)∵3sinθtanθ=3=8,且0<θ<π,∴cosθ>0,θ为锐角.∴=8,求得cosθ=,或cosθ=﹣3(舍去),∴sinθ=,综上可得,cosθ=.(Ⅱ)函数f(x)=6cosxcos(x﹣θ)=6cosx•(cosx•+sinx•)=2cos2x+4sinxcosx=cos2x+1+2sin2x=3(cos2x+sin2x)=3cos(2x﹣θ),在[0,]上,2x﹣θ∈[﹣θ,﹣θ],f(x)在此区间上先增后减,当2x﹣θ=0时,函数f(x)取得最大值为3,当2x﹣θ=﹣θ时,函数f(x)取得最小值为3cos(﹣θ)=3cosθ=1,故函数在[0,]上的值域为[1,3].【点评】本题主要考查三角恒等变换,余弦函数的定义域和值域,属于基础题.3.(2017•海淀区一模)已知是函数f(x)=2cos2x+asin2x+1的一个零点.(Ⅰ)求实数a的值;(Ⅱ)求f(x)的单调递增区间.【分析】(Ⅰ)利用函数的零点的定义,求得实数a的值.(Ⅱ)利用三角恒等变化化简函数的解析式,再利用正弦函数的单调性求得f(x)的单调递增区间.【解答】解:(Ⅰ)由题意可知,即,即,解得.(Ⅱ)由(Ⅰ)可得==,函数y=sinx的递增区间为,k∈Z.由,k∈Z,得,k∈Z,所以,f(x)的单调递增区间为,k∈Z.【点评】本题主要考查函数的零点的定义,三角恒等变换、正弦函数的单调性,属于中档题.4.(2017•衡阳三模)已知函数f(x)=sin(2x+)+sin2x.(1)求函数f(x)的最小正周期;(2)若函数g(x)对任意x∈R,有g(x)=f(x+),求函数g(x)在[﹣,]上的值域.【分析】(1)利用两角和的正弦函数公式及二倍角公式化简函数f(x),再由周期公式计算得答案;(2)由已知条件求出g(x)=sin(2x+)+,当x∈[﹣,]时,则2x+∈,由正弦函数的值域进一步求出函数g(x)在[﹣,]上的值域.【解答】解:(1)f(x)=sin(2x+)+sin2x==sin2x+cos2x+sin2x=sin2x+=sin2x+1﹣=sin2x+,∴f(x)的最小正周期T=;(2)∵函数g(x)对任意x∈R,有g(x)=f(x+),∴g(x)=sin2(x+)+=sin(2x+)+,当x∈[﹣,]时,则2x+∈,则≤sin(2x+)≤1,即×≤g(x),解得≤g(x)≤1.综上所述,函数g(x)在[﹣,]上的值域为:[,1].【点评】本题考查了三角函数的周期性及其求法,考查了函数值域的求法,是中档题.5.(2016•北京)已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.【分析】(1)利用倍角公式结合两角和的正弦化积,再由周期公式列式求得ω的值;(2)直接由相位在正弦函数的增区间内求解x的取值范围得f(x)的单调递增区间.【解答】解:(1)f(x)=2sinωxcosωx+cos2ωx=sin2ωx+cos2ωx==.由T=,得ω=1;(2)由(1)得,f(x)=.再由,得.∴f(x)的单调递增区间为[](k∈Z).【点评】本题考查y=Asin(ωx+φ)型函数的图象和性质,考查了两角和的正弦,属中档题.6.(2014•重庆)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.【分析】(Ⅰ)由题意可得函数f(x)的最小正周期为π 求得ω=2.再根据图象关于直线x=对称,结合﹣≤φ<可得φ 的值.(Ⅱ)由条件求得sin(α﹣)=.再根据α﹣的范围求得cos(α﹣)的值,再根据cos(α+)=sinα=sin[(α﹣)+],利用两角和的正弦公式计算求得结果.【解答】解:(Ⅰ)由题意可得函数f(x)的最小正周期为π,∴=π,∴ω=2.再根据图象关于直线x=对称,可得2×+φ=kπ+,k∈z.结合﹣≤φ<可得φ=﹣.(Ⅱ)∵f()=(<α<),∴sin(α﹣)=,∴sin(α﹣)=.再根据0<α﹣<,∴cos(α﹣)==,∴cos(α+)=sinα=sin[(α﹣)+]=sin(α﹣)cos+cos(α﹣)sin=+=.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,两角和差的三角公式、的应用,属于中档题.7.(2017•江苏)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若∥,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.【分析】(1)根据向量的平行即可得到tanx=﹣,问题得以解决,(2)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出【解答】解:(1)∵=(cosx,sinx),=(3,﹣),∥,∴﹣cosx=3sinx,∴tanx=﹣,∵x∈[0,π],∴x=,(2)f(x)==3cosx﹣sinx=2(cosx﹣sinx)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴﹣1≤cos(x+)≤,当x=0时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最小值﹣2.【点评】本题考查了向量的平行和向量的数量积以及三角函数的化简和三角函数的性质,属于基础题8.(2017•锦州一模)已知函数的部分图象如图所示.(1)求函数f(x)的解析式;(2)在△ABC中,角A,B,C的对边分别是a,b,c,若(2a﹣c)cosB=bcosC,求的取值范围.【分析】(1)根据图象求出A,ω 和φ,即可求函数f(x)的解析式;(2)利用正弦定理化简,求出B,根据三角内角定理可得A的范围,利用函数解析式之间的关系即可得到结论【解答】解:(1)由图象知A=1,,∴ω=2,∴f(x)=sin(2x+φ)∵图象过(),将点代入解析式得,∵,∴故得函数.(2)由(2a﹣c)cosB=bcosC,根据正弦定理,得:(2sinA﹣sinC)cosB=sinBcosC∴2sinAcosB=sin(B+C),∴2sinAcosB=sinA.∵A∈(0,π),∴sinA≠0,∴cosB=,即B=∴A+C=,即那么:,故得.【点评】本题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决本题的关键.同时考查了正弦定理的运用化简.利用三角函数的有界限求范围,属于中档题.9.(2017•丽水模拟)函数f(x)=2sin(ωx+φ)(ω>0,0<φ<)的部分图象如图所示,M为最高点,该图象与y轴交于点F(0,),与x轴交于点B,C,且△MBC的面积为π.(Ⅰ)求函数f(x)的解析式;(Ⅱ)若f(α﹣)=,求c os2α的值.=×2×|BC|=|BC|=π可求得其周期T=2π=,【分析】(Ⅰ)依题意,由S△MBC解得ω=1,再由f(0)=2sinφ=,可求得φ,从而可求函数f(x)的解析式;(Ⅱ)由f(α﹣)=2sinα=,可求得sinα,再利用二倍角的余弦即可求得cos2α的值.=×2×|BC|=|BC|=π,【解答】解:(Ⅰ)因为S△MBC所以周期T=2π=,解得ω=1,由f(0)=2sinφ=,得sinφ=,因为0<φ<,所以φ=,所以f(x)=2sin(x+);(Ⅱ)由f(α﹣)=2sinα=,得sinα=,所以cos2α=1﹣2sin2α=.【点评】本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,求得ω与φ是关键,考查二倍角的余弦公式的应用,属于中档题.10.(2017•延庆县一模)已知函数.(Ⅰ)求f(x)的最大值及相应的x值;(Ⅱ)设函数,如图,点P,M,N分别是函数y=g(x)图象的零值点、最高点和最低点,求cos∠MPN的值.【分析】(Ⅰ)化简函数(x)为正弦型函数,利用正弦函数的图象与性质求出它的最大值以及此时对应的x值;(Ⅱ)化简函数g(x),过D作MD⊥x轴于D,根据三角函数的对称性求出∠PMN=90°,再求cos∠MPN的值.【解答】解:(Ⅰ)函数=sin2x+cos2x﹣sin2x…(1分)==;…(3分)∴f(x)的最大值为f(x)max=1,…(4分)此时,…(5分)解得;…(6分)(Ⅱ)函数=sin[2(x)+]=sin(x+),…(7分)过D作MD⊥x轴于D,如图所示;∵PD=DM=1,∴∠PMN=90°,…(9分)计算PM=,MN=2PM=2,PN==,…(11分)∴.…(13分)【点评】本题考查了三角函数的化简与运算问题,也考查了三角函数的计算问题,是综合题.11.(2017•山东)设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.【分析】(Ⅰ)利用三角恒等变换化函数f(x)为正弦型函数,根据f()=0求出ω的值;(Ⅱ)写出f(x)解析式,利用平移法则写出g(x)的解析式,求出x∈[﹣,]时g(x)的最小值.【解答】解:(Ⅰ)函数f(x)=sin(ωx﹣)+sin(ωx﹣)=sinωxcos﹣cosωxsin﹣sin(﹣ωx)=sinωx﹣cosωx=sin(ωx﹣),又f()=sin(ω﹣)=0,∴ω﹣=kπ,k∈Z,解得ω=6k+2,又0<ω<3,∴ω=2;(Ⅱ)由(Ⅰ)知,f(x)=sin(2x﹣),将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y=sin(x﹣)的图象;再将得到的图象向左平移个单位,得到y=sin(x+﹣)的图象,∴函数y=g(x)=sin(x﹣);当x∈[﹣,]时,x﹣∈[﹣,],∴sin(x﹣)∈[﹣,1],∴当x=﹣时,g(x)取得最小值是﹣×=﹣.【点评】本题考查了三角恒等变换与正弦型函数在闭区间上的最值问题,是中档题.12.(2016•山东)在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.(Ⅰ)证明:a+b=2c;(Ⅱ)求cosC的最小值.【分析】(Ⅰ)由切化弦公式,带入并整理可得2(sinAcosB+cosAsinB)=sinA+cosB,这样根据两角和的正弦公式即可得到sinA+sinB=2sinC,从而根据正弦定理便可得出a+b=2c;(Ⅱ)根据a+b=2c,两边平方便可得出a2+b2+2ab=4c2,从而得出a2+b2=4c2﹣2ab,并由不等式a2+b2≥2ab得出c2≥ab,也就得到了,这样由余弦定理便可得出,从而得出cosC的范围,进而便可得出cosC的最小值.【解答】解:(Ⅰ)证明:由得:;∴两边同乘以cosAcosB得,2(sinAcosB+cosAsinB)=sinA+sinB;∴2sin(A+B)=sinA+sinB;即sinA+sinB=2sinC(1);根据正弦定理,;∴,带入(1)得:;∴a+b=2c;(Ⅱ)a+b=2c;∴(a+b)2=a2+b2+2ab=4c2;∴a2+b2=4c2﹣2ab,且4c2≥4ab,当且仅当a=b时取等号;又a,b>0;∴;∴由余弦定理,=;∴cosC的最小值为.【点评】考查切化弦公式,两角和的正弦公式,三角形的内角和为π,以及三角函数的诱导公式,正余弦定理,不等式a2+b2≥2ab的应用,不等式的性质.13.(2015•四川)如图,A、B、C、D为平面四边形ABCD的四个内角.(Ⅰ)证明:tan=;(Ⅱ)若A+C=180°,AB=6,BC=3,CD=4,AD=5,求tan+tan+tan+tan的值.【分析】(Ⅰ)直接利用切化弦以及二倍角公式化简证明即可.(Ⅱ)通过A+C=180°,得C=180°﹣A,D=180°﹣B,利用(Ⅰ)化简tan+tan+tan+tan=,连结BD,在△ABD中,利用余弦定理求出sinA,连结AC,求出sinB,然后求解即可.【解答】证明:(Ⅰ)tan===.等式成立.(Ⅱ)由A+C=180°,得C=180°﹣A,D=180°﹣B,由(Ⅰ)可知:tan+tan+tan+tan==,连结BD,在△ABD中,有BD2=AB2+AD2﹣2AB•ADcosA,AB=6,BC=3,CD=4,AD=5,在△BCD中,有BD2=BC2+CD2﹣2BC•CDcosC,所以AB2+AD2﹣2AB•ADcosA=BC2+CD2﹣2BC•CDcosC,则:cosA===.于是sinA==,连结AC,同理可得:cosB===,于是sinB==.所以tan+tan+tan+tan===.【点评】本题考查二倍角公式、诱导公式、余弦定理.简单的三角恒等变换,考查函数与方程的思想,转化与化归思想的应用.14.(2015•重庆)已知函数f(x)=sin2x﹣cos2x.(Ⅰ)求f(x)的最小周期和最小值;(Ⅱ)将函数f(x)的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g(x)的图象.当x∈时,求g(x)的值域.【分析】(Ⅰ)由三角函数中的恒等变换应用化简函数解析式可得f(x)=sin(2x ﹣)﹣,从而可求最小周期和最小值;(Ⅱ)由函数y=Asin(ωx+φ)的图象变换可得g(x)=sin(x﹣)﹣,由x∈[,π]时,可得x﹣的范围,即可求得g(x)的值域.【解答】解:(Ⅰ)∵f(x)=sin2x﹣cos2x=sin2x﹣(1+cos2x)=sin(2x ﹣)﹣,∴f(x)的最小周期T==π,最小值为:﹣1﹣=﹣.(Ⅱ)由条件可知:g(x)=sin(x﹣)﹣当x∈[,π]时,有x﹣∈[,],从而sin(x﹣)的值域为[,1],那么sin(x﹣)﹣的值域为:[,],故g(x)在区间[,π]上的值域是[,].【点评】本题主要考查了三角函数中的恒等变换应用,函数y=Asin(ωx+φ)的图象变换,属于基本知识的考查.15.(2015•重庆)已知函数f(x)=sin(﹣x)sinx﹣cos2x.(I)求f(x)的最小正周期和最大值;(II)讨论f(x)在[,]上的单调性.【分析】(Ⅰ)由条件利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性和最值求得f(x)的最小正周期和最大值.(Ⅱ)根据2x﹣∈[0,π],利用正弦函数的单调性,分类讨论求得f(x)在上的单调性.【解答】解:(Ⅰ)函数f(x)=sin(﹣x)sinx﹣x=cosxsinx﹣(1+cos2x)=sin2x﹣cos2x﹣=sin(2x﹣)﹣,故函数的周期为=π,最大值为1﹣.(Ⅱ)当x∈时,2x﹣∈[0,π],故当0≤2x﹣≤时,即x ∈[,]时,f(x)为增函数;当≤2x﹣≤π时,即x∈[,]时,f(x)为减函数.【点评】本题主要考查三角恒等变换,正弦函数的周期性和最值,正弦函数的单调性,属于中档题.16.(2014•四川)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.【分析】(1)令2kπ﹣≤3x+≤2kπ+,k∈z,求得x的范围,可得函数的增区间.(2)由函数的解析式可得f()=sin(α+),又f()=cos(α+)cos2α,可得sin(α+)=cos(α+)cos2α,化简可得(cosα﹣sinα)2=.再由α是第二象限角,cosα﹣sinα<0,从而求得cosα﹣sinα 的值.【解答】解:(1)∵函数f(x)=sin(3x+),令2kπ﹣≤3x+≤2kπ+,k∈Z,求得﹣≤x≤+,故函数的增区间为[﹣,+],k ∈Z.(2)由函数的解析式可得f()=sin(α+),又f()=cos(α+)cos2α,∴sin(α+)=cos(α+)cos2α,即sin(α+)=cos(α+)(cos2α﹣sin2α),∴sinαcos+cosαsin=(cosαcos﹣sinαsin)(cosα﹣sinα)(cosα+sinα)即(sinα+cosα)=•(cosα﹣sinα)2(cosα+sinα),又∵α是第二象限角,∴cosα﹣sinα<0,当sinα+cosα=0时,tanα=﹣1,sinα=,cosα=﹣,此时cosα﹣sinα=﹣.当sinα+cosα≠0时,此时cosα﹣s inα=﹣.综上所述:cosα﹣sinα=﹣或﹣.【点评】本题主要考查正弦函数的单调性,三角函数的恒等变换,体现了分类讨论的数学思想,属于中档题.。
结构不良题(三角函数与解三角形)结构不良题型是新课改地区新增加的题型,所谓结构不良题型就是给出一些条件,另外的条件题目中给出三个,学生可以从中选择1个或者2个作为条件,进行解题。
一、题型选讲题型一、研究三角形是否存在的问题例1、【2020年新高考全国Ⅰ卷】在①ac =sin 3c A =,③c =这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC △,它的内角,,A B C 的对边分别为,,a b c ,且sin A B =,6C π=,________? 注:如果选择多个条件分别解答,按第一个解答计分.例2、在①cos cos 2c B b C +=,②πcos()cos 2b Cc B -=,③sin cos B B +=充在下面问题中,若问题中的三角形存在,求ABC △的面积;若问题中的三角形不存在,说明理由.问题:是否存在ABC △,它的内角A ,B ,C 的对边分别为a ,b ,c ,且π6A =,______________,4b =?注:如果选择多个条件分别解答,按第一个解答计分.题型二、运用正余弦定理研究边、角及面积例3、【2020年高考北京】在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为己知,求: (Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:17,cos 7c A ==-; 条件②:19cos ,cos 816A B ==.注:如果选择条件①和条件②分别解答,按第一个解答计分.例4、在①ABC ∆面积2ABC S ∆=,②6ADC π∠=这两个条件中任选一个,补充在下面问题中,求AC .如图,在平面四边形ABCD 中,34ABC π∠=,BAC DAC ∠=∠,______,24CD AB ==,求AC .例5、在①,②,③这三个条件中任选一个,补充在下面的横线上,并加以解答.已知的内角,,所对的边分别是,,,若______.(1)求角;(2)若,求周长的最小值,并求出此时的面积.b a =2sin tan b A a B =()()sin sin sin ac A c A B b B -++=ABC A B C a b c B 4a c +=ABC ABC例6、现给出两个条件:①2c -3b =2a cos B ,②(2b -3c )cos A =3a cos C ,从中选出一个条件补充在下面的问题中,并以此为依据求解问题.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,________. (1)求A ;(2)若a =3-1,求△ABC 周长的最大值.例7、在ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且满()(sin sin )sin )b a B A c B C -+=-. (1)求A 的大小;(2)再在①2a =,②4B π=,③=c 这三个条件中,选出两个使ABC 唯一确定的条件补充在下面的问题中,并解答问题.若________,________,求ABC 的面积.题型三、考查三角函数的图像与性质 例8、在①函数()()1sin 20,22f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象向右平移12π个单位长度得到()g x 的图象,()g x 图象关于原点对称;②向量()3sin ,cos 2m x x ωω=,()11cos ,,0,24n x f x m n ωω⎛⎫=>=⋅ ⎪⎝⎭;③函数()1cos sin 64f x x x πωω⎛⎫=+- ⎪⎝⎭()0ω>这三个条件中任选一个,补充在下面问题中,并解答.已知_________,函数()f x 的图象相邻两条对称轴之间的距离为2π.(1)若02πθ<<,且sin 2θ=,求()f θ的值; (2)求函数()f x 在[]0,2π上的单调递减区间.二、达标训练1、已知有条件①(2)cos cos b c A a C -=,条件②45cos 2cos 2=+⎪⎭⎫⎝⎛+A A π;请在上述两个条件中任选一个,补充在下面题目中,然后解答补充完整的题目.在锐角△ABC 中,内角A , B , C 所对的边分别为a , b,c , a =7, b +c =5, 且满足.(1) 求角A 的大小; (2) 求△ABC 的面积.(注:如果选择多个条件分别解答,按第一个解答计分.)2、在①a=√2,②S=C 2cosB , ③C=π3这三个条件中任选-一个,补充在下面问题中,并对其进行求解.问题:在∆A BC 中,内角A, B,C 的对边分别为a,b,c,面积为S , √3bcosA=acosC+ccosA ,b=1,____________,求 c 的值. 注:如果选择多个条件分别解答,按第一个解答计分。
高中数学专题练习-三角函数及解三角形1.【高考全国Ⅰ卷理数】函数f(x)=在的图像大致为A.B.C.D.【答案】D【解析】由,得是奇函数,其图象关于原点对称,排除A.又,排除B,C,故选D.【名师点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养,采取性质法或赋值法,利用数形结合思想解题.解答本题时,先判断函数的奇偶性,得是奇函数,排除A,再注意到选项的区别,利用特殊值得正确答案.2.【高考全国Ⅰ卷理数】关于函数有下述四个结论:①f(x)是偶函数②f(x)在区间(,)单调递增③f(x)在有4个零点④f(x)的最大值为2其中所有正确结论的编号是A.①②④B.②④C.①④D.①③【答案】C【解析】为偶函数,故①正确.当时,,它在区间单调递减,故②错误.当时,,它有两个零点:;当时,,它有一个零点:,故在有个零点:,故③错误.当时,;当时,,又为偶函数,的最大值为,故④正确.综上所述,①④正确,故选C.【名师点睛】本题也可画出函数的图象(如下图),由图象可得①④正确.3.【高考全国Ⅱ卷理数】下列函数中,以为周期且在区间(,)单调递增的是A.f(x)=|cos2x| B.f(x)=|sin2x|C.f(x)=cos|x| D.f(x)=sin|x|【答案】A【解析】作出因为的图象如下图1,知其不是周期函数,排除D;因为,周期为,排除C;作出图象如图2,由图象知,其周期为,在区间(,)单调递增,A正确;作出的图象如图3,由图象知,其周期为,在区间(,)单调递减,排除B,故选A.图1图2图3【名师点睛】本题主要考查三角函数的图象与性质,渗透直观想象、逻辑推理等数学素养,画出各函数图象,即可作出选择.本题也可利用二级结论:①函数的周期是函数周期的一半;②不是周期函数.4.【高考全国Ⅱ卷理数】已知α∈(0,),2sin2α=cos2α+1,则sinα=A. B.C.D.【答案】B【解析】,,,又,,又,,故选B.【名师点睛】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦的正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负很关键,切记不能凭感觉.解答本题时,先利用二倍角公式得到正余弦关系,再利用角范围及正余弦平方和为1关系得出答案.5.【高考全国Ⅲ卷理数】设函数=sin()(>0),已知在有且仅有5个零点,下述四个结论:①在()有且仅有3个极大值点②在()有且仅有2个极小值点③在()单调递增④的取值范围是[)其中所有正确结论的编号是A.①④ B.②③C.①②③D.①③④【答案】D【解析】①若在上有5个零点,可画出大致图象,由图1可知,在有且仅有3个极大值点.故①正确;②由图1、2可知,在有且仅有2个或3个极小值点.故②错误;④当=sin()=0时,=kπ(k∈Z),所以,因为在上有5个零点,所以当k=5时,,当k=6时,,解得,故④正确.③函数=sin()的增区间为:,.取k=0,当时,单调递增区间为,当时,单调递增区间为,综上可得,在单调递增.故③正确.所以结论正确的有①③④.故本题正确答案为D.【名师点睛】本题为三角函数与零点结合问题,难度大,可数形结合,分析得出答案,要求高,理解深度高,考查数形结合思想.注意本题中极小值点个数是动态的,易错,正确性考查需认真计算,易出错.6.【高考天津卷理数】已知函数是奇函数,将的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为.若的最小正周期为,且,则A.B.C.D.【答案】C【解析】∵为奇函数,∴;又∴,又,∴,∴,故选C.【名师点睛】本题主要考查函数的性质和函数的求值问题,解题关键是求出函数,再根据函数性质逐步得出的值即可.7.【高考北京卷理数】函数f(x)=sin22x的最小正周期是__________.【答案】【解析】函数,周期为.【名师点睛】本题主要考查二倍角的三角函数公式、三角函数的最小正周期公式,属于基础题.将所给的函数利用降幂公式进行恒等变形,然后求解其最小正周期即可.8.【高考全国Ⅱ卷理数】的内角的对边分别为.若,则的面积为_________.【答案】【解析】由余弦定理得,所以,即,解得(舍去),所以,【名师点睛】本题易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.本题首先应用余弦定理,建立关于的方程,应用的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.9.【高考江苏卷】已知,则的值是▲ .【答案】【解析】由,得,解得,或.,当时,上式当时,上式=综上,【名师点睛】本题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养.采取转化法,利用分类讨论和转化与化归思想解题.由题意首先求得的值,然后利用两角和的正弦公式和二倍角公式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可.10.【高考浙江卷】在中,,,,点在线段上,若,则___________,___________.【答案】,【解析】如图,在中,由正弦定理有:,而,,,所以..【名师点睛】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.在中应用正弦定理,建立方程,进而得解.解答解三角形问题,要注意充分利用图形特征. 11.【高考全国Ⅰ卷理数】的内角A,B,C的对边分别为a,b,c,设.(1)求A;(2)若,求sin C.【答案】(1);(2).【解析】(1)由已知得,故由正弦定理得.由余弦定理得.因为,所以.(2)由(1)知,由题设及正弦定理得,即,可得.由于,所以,故.【名师点睛】本题考查利用正弦定理、余弦定理解三角形的问题,涉及到两角和差正弦公式、同角三角函数关系的应用,解题关键是能够利用正弦定理对边角关系式进行化简,得到余弦定理的形式或角之间的关系.12.【高考全国Ⅲ卷理数】△ABC的内角A,B,C的对边分别为a,b,c,已知.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.【答案】(1)B=60°;(2).【解析】(1)由题设及正弦定理得.因为sin A0,所以.由,可得,故.因为,故,因此B=60°.(2)由题设及(1)知△ABC的面积.由正弦定理得.由于△ABC为锐角三角形,故0°<A<90°,0°<C<90°,由(1)知A+C=120°,所以30°<C<90°,故,从而.因此,△ABC面积的取值范围是.【名师点睛】这道题考查了三角函数的基础知识,以及正弦定理的使用(此题也可以用余弦定理求解),最后考查是锐角三角形这个条件的利用,考查的很全面,是一道很好的考题.13.【高考北京卷理数】在△ABC中,a=3,b−c=2,cos B=.(1)求b,c的值;(2)求sin(B–C)的值.【答案】(1),;(2).【解析】(1)由余弦定理,得.因为,所以.解得.所以.(2)由得.由正弦定理得.在中,∠B是钝角,所以∠C为锐角.所以.所以.【名师点睛】本题主要考查余弦定理、正弦定理的应用,两角差的正弦公式的应用等知识,意在考查学生的转化能力和计算求解能力.14.【高考天津卷理数】在中,内角所对的边分别为.已知,.(1)求的值;(2)求的值.【答案】(1);(2).【解析】(1)在中,由正弦定理,得,又由,得,即.又因为,得到,.由余弦定理可得.(2)由(1)可得,从而,,故.【名师点睛】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力.15.【高考江苏卷】在△ABC中,角A,B,C的对边分别为a,b,c.(1)若a=3c,b=,cos B=,求c的值;(2)若,求的值.【答案】(1);(2).【解析】(1)因为,由余弦定理,得,即.所以.(2)因为,由正弦定理,得,所以.从而,即,故.因为,所以,从而.因此.【名师点睛】本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.16.【高考江苏卷】如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB (AB是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA.规划要求:线段PB、QA上的所有点到点O的距离均不小于圆....O的半径.已知点A、B到直线l的距离分别为AC 和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离.【答案】(1)15(百米);(2)见解析;(3)17+(百米).【解析】解法一:(1)过A作,垂足为E.由已知条件得,四边形ACDE为矩形,.'因为PB⊥AB,所以.所以.因此道路PB的长为15(百米).(2)①若P在D处,由(1)可得E在圆上,则线段BE上的点(除B,E)到点O的距离均小于圆O的半径,所以P选在D处不满足规划要求.②若Q在D处,连结AD,由(1)知,从而,所以∠BAD为锐角.所以线段AD上存在点到点O的距离小于圆O的半径.因此,Q选在D处也不满足规划要求.综上,P和Q均不能选在D处.(3)先讨论点P的位置.当∠OBP<90°时,线段PB上存在点到点O的距离小于圆O的半径,点P不符合规划要求;当∠OBP≥90°时,对线段PB上任意一点F,OF≥OB,即线段PB上所有点到点O的距离均不小于圆O的半径,点P符合规划要求.设为l上一点,且,由(1)知,B=15,此时;当∠OBP>90°时,在中,.由上可知,d≥15.再讨论点Q的位置.由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,.此时,线段QA上所有点到点O的距离均不小于圆O的半径. 综上,当PB⊥AB,点Q位于点C右侧,且CQ=时,d最小,此时P,Q两点间的距离PQ=PD+CD+CQ=17+.因此,d最小时,P,Q两点间的距离为17+(百米).解法二:(1)如图,过O作OH⊥l,垂足为H.以O为坐标原点,直线OH为y轴,建立平面直角坐标系.因为BD=12,AC=6,所以OH=9,直线l的方程为y=9,点A,B的纵坐标分别为3,−3.因为AB为圆O的直径,AB=10,所以圆O的方程为x2+y2=25.从而A(4,3),B(−4,−3),直线AB的斜率为.因为PB⊥AB,所以直线PB的斜率为,直线PB的方程为.所以P(−13,9),.因此道路PB的长为15(百米).(2)①若P在D处,取线段BD上一点E(−4,0),则EO=4<5,所以P选在D处不满足规划要求.②若Q在D处,连结AD,由(1)知D(−4,9),又A(4,3),所以线段AD:.在线段AD上取点M(3,),因为,所以线段AD上存在点到点O的距离小于圆O的半径.因此Q选在D处也不满足规划要求.综上,P和Q均不能选在D处.(3)先讨论点P的位置.当∠OBP<90°时,线段PB上存在点到点O的距离小于圆O的半径,点P不符合规划要求;当∠OBP≥90°时,对线段PB上任意一点F,OF≥OB,即线段PB上所有点到点O的距离均不小于圆O的半径,点P符合规划要求.设为l上一点,且,由(1)知,B=15,此时(−13,9);当∠OBP>90°时,在中,.由上可知,d≥15.再讨论点Q的位置.由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,设Q(a,9),由,得a=,所以Q(,9),此时,线段QA 上所有点到点O的距离均不小于圆O的半径.综上,当P(−13,9),Q(,9)时,d最小,此时P,Q两点间的距离.因此,d最小时,P,Q两点间的距离为(百米).【名师点睛】本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.17.【高考浙江卷】设函数.(1)已知函数是偶函数,求的值;(2)求函数的值域.【答案】(1)或;(2).【解析】(1)因为是偶函数,所以,对任意实数x都有,即,故,所以.又,因此或.(2).因此,函数的值域是.【名师点睛】本题主要考查三角函数及其恒等变换等基础知识,同时考查运算求解能力.18.【重庆西南大学附属中学校高三第十次月考数学试题】已知角的顶点在坐标原点,始边与轴正半轴重合,终边经过点,则A.B.C.D.【答案】B【解析】因为角的顶点在坐标原点,始边与轴正半轴重合,终边经过点,所以,因此.故选B.【名师点睛】本题主要考查三角函数的定义,以及二倍角公式,熟记三角函数的定义与二倍角公式即可,属于常考题型.解答本题时,先由角的终边过点,求出,再由二倍角公式,即可得出结果.19.【四川省宜宾市高三第三次诊断性考试数学试题】已知,,则A.B.7C.D.【答案】C【解析】,∴,,则.故选C.【名师点睛】本题主要考查了同角三角函数关系式及两角差的正切公式的简单应用,属于基础题.解答本题时,根据已知的值,结合同角三角函数关系式可求tanα,然后根据两角差的正切公式即可求解.20.【广东省韶关市高考模拟测试(4月)数学文试题】已知函数的相邻对称轴之间的距离为,将函数图象向左平移个单位得到函数的图象,则A.B.C.D.【答案】C【解析】由函数的相邻对称轴之间的距离为,得,即,所以,解得,将函数的图象向左平移个单位,得到的图象,故选C.【名师点睛】本题考查的知识要点:三角函数关系式的平移变换和伸缩变换的应用,正弦型函数性质的应用,主要考查学生的运算能力和转换能力,属于基础题型.解答本题时,首先利用函数的图象求出函数的关系式,进一步利用图象的平移变换的应用求出结果.21.【河南省郑州市高三第三次质量检测数学试题】已知函数,的部分图象如图所示,则使成立的的最小正值为A.B.C.D.【答案】B【解析】由图象易知,,,即,且,即,由图可知,所以,即,又由图可知,周期,且,所以由五点作图法可知,所以函数,因为,所以函数关于对称,即有,所以可得,所以的最小正值为.故选B.【名师点睛】本题考查了三角函数的图象和性质,熟练运用三角函数的图象和周期对称性是解题的关键,属于中档题.解答本题时,先由图象,求出,可得函数的解析式,再由易知的图象关于对称,即可求得a的值.22.【山东省实验中学等四校高三联合考试数学试题】在中,,,分别为角,,的对边,若的面积为,且,则A.1 B.C.D.【答案】D【解析】由,得,∵,∴,即,即,则,∵,∴,∴,即,则,故选D.【名师点睛】本题主要考查解三角形的应用,结合三角形的面积公式以及余弦定理求出的值以及利用两角和差的正弦公式进行计算是解决本题的关键.解答本题时,根据三角形的面积公式以及余弦定理进行化简求出的值,然后利用两角和的正弦公式进行求解即可.23.【山东省烟台市高三3月诊断性测试(一模)数学试题】在中,角,,的对边分别为,,,若,,则角A.B.C.D.【答案】D【解析】∵,,∴,∴,∴,由正弦定理可得:,∵,∴,即,∵,∴.故选D.【名师点睛】本题主要考查解三角形,熟记正弦定理,两角和的正弦公式即可,属于基础题.解答本题时,由,可得,再由正弦定理得到,结合,即可求得的值.24.【广东省韶关市高考模拟测试(4月)数学试题】在中,、、分别是内角、、的对边,且.(1)求角的大小;(2)若,的面积为,求的周长.【答案】(1);(2).【解析】(1)∵,∴由正弦定理可得:,即,∵,∴,∵,∴.(2)∵,,的面积为,,∴,∴由余弦定理可得:,即,解得:,∴的周长为.【名师点睛】本题主要考查了正弦定理,两角和的正弦函数公式,三角形的面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.(1)由正弦定理,两角和的正弦函数公式化简已知等式可得,由,可求,结合,可求.(2)利用三角形的面积公式可求,进而根据余弦定理可得,即可计算的周长的值.25.【北京市昌平区高三5月综合练习(二模)数学试题】已知函数.(1)求的值;(2)当时,不等式恒成立,求实数的取值范围.【答案】(1)1;(2).【解析】(1),所以.(2)因为,所以,所以.由不等式恒成立,得,解得.所以实数的取值范围为.【名师点睛】本题主要考查三角函数的性质及其应用,恒成立问题的处理方法等知识,意在考查学生的转化能力和计算求解能力.(1)首先整理函数的解析式,然后结合函数的解析式求解函数值即可;(2)首先求得函数在区间上的值域,然后结合恒成立的结论得到关于c的不等式组,求解不等式组可得c的取值范围.21/ 21。