元素周期表发展史
- 格式:doc
- 大小:19.00 KB
- 文档页数:4
元素周期表的历史和发展元素周期表是现代化学的基石,它为我们展示了丰富多彩的元素世界。
那么,元素周期表的历史和发展是怎样的呢?1. 前身:原始元素概念追溯到古希腊时期,人们对于自然界中的物质缺乏系统性的认识。
直到17世纪,阿图斯·帕拉西奥提出了“元素”的概念,即认为物质可以分解成一些不可再分的基本粒子,比如金、铁、铜、水、土等。
这些基本粒子被称为原始元素。
但是由于当时的认识水平有限,所谓的元素其实并不够严谨。
2. 发展:元素概念的逐渐完善直到18世纪,化学家开始使用氧气和燃烧等方法进行实验,发现将不同的物质加热后,会产生不同的物质和氮气。
这表明物质可以被分解成更小的物质,从而更加精细化的元素概念渐渐形成。
进入19世纪,化学家尤其是道尔顿提出了原子概念,认为所有物质都由基本粒子——原子组成。
同时,拉瓦锡还提出了单质概念,即单一种原子构成的物质。
3. 雄才大略:门捷列夫的发现1869年,俄罗斯化学家门捷列夫发现了周期定律。
他将元素按照原子量从小到大排列,然后每隔一定的位置,即一个周期,性质会有相似的变化。
比如说,元素之间的化合价往往会有规律性的变化。
门捷列夫的这一发现被后来者称之为“元素周期律”。
4. 发展:多位科学家的贡献门捷列夫的发现奠定了元素周期表的基础,但近百年来的科学家们也为周期表的完善作出了巨大贡献。
在20世纪初,美国化学家门罗发明了一种新的周期表,称之为长式周期表。
他在该周期表中,将元素按照原子序数而非原子量排序,并将元素分为7个横向周期。
此外,还有英国化学家莫斯利在1913年提出了原子结构的概念,从而推动了元素周期表的发展。
后来,随着 X 射线晶体学、光谱学等领域的进步,元素周期表的内容和形式也逐渐得到完善。
5. 当下:元素周期表的现代化现代元素周期表不仅包含了元素的化学性质和物理性质,还涵盖了元素的电子排布、原子质量、相对原子质量等信息。
此外还有元素周期表应用领域的不断扩大,比如说生物化学、地球化学等。
化学元素周期表的历史及最新发展化学元素周期表是化学研究中一个非常重要的工具。
它是由元素根据其化学性质排列成一张图表。
现代周期表中有118个已知元素,但这份列表的历史可以追溯到数百年前。
在这篇文章中,我们将详细介绍元素周期表的历史及其最新发展。
1. 早期元素分类在元素周期表出现之前,早期化学家试图根据相似的性质来分类元素。
这些早期分类方法包括石墨和石墨烯,黄金和其他贵金属,碱金属和碱土金属等。
然而,这些分类方法并没有提供足够的信息来揭示元素之间的关系。
因此,化学家继续探索更有意义的方法来分类元素。
2. 德米特里·门捷列夫的贡献在1869年,俄罗斯化学家德米特里·门捷列夫创造了第一个类似于现代化学元素周期表的图表。
他将元素按照质量和性质的相似性排列,证明了这些性质与元素质量有关。
门捷列夫的周期表由8个组成,其中相似的元素成对出现,这表明了它们之间存在的关系。
3. 亨利·莫西里的贡献法国化学家亨利·莫西里提出了一种完全不同的元素分类方法,他根据每个元素的化学反应和原子量来排列它们。
他注意到在相似化学反应的元素的原子量之间有规律的间隔,并将这些元素作为一个周期。
莫西里的周期表比门捷列夫的周期表更适合进行进一步的研究。
4. 门捷列夫的周期表再次出现同时期的斯堪的纳维亚诸国化学家发明了一种类似于门捷列夫的周期表,但不是按相似性对元素进行了对齐,而是根据每元素原子的总能量排列它们。
5. 亨利·加福德·莫塞利的贡献加福德·莫塞利在1862年pub杂志发表了一篇题为“化学原子的在数量上的凜明规律”论文,为原子质量排序提供一种新的方法,这篇文章被认为是现代元素周期表的基础。
他观察到,原子量相似的元素的性质也相似。
6. 现代元素周期表的发展尽管早期的元素周期表为进一步的研究奠定了基础,但是许多元素没有被正确地安置。
现代元素周期表,则将大多数已知元素正确地放置到他们真正的位置上以揭示它们之间的关系。
化学元素周期表的历史及发展化学元素周期表是指以元素原子核的核电荷数(即原子序数)为基础,将化学元素按其化学和物理性质排列的表格。
它是化学这门科学最为基础的工具之一,它的发展历程也是充满着探索和发现的历史。
元素周期表的雏形早在古代,人们就已经开始探索元素的本质了。
古希腊人提出了四大元素:水、土、火、风。
到了十七世纪,欧洲的化学家开始通过试验探索元素,研究它们的性质。
随着化学研究的不断深入,学者们逐渐发现了化学反应中的各种规律和法则。
1791年,法国化学家拉瓦锡提出了化学元素的概念。
1803年,英国化学家道尔顿提出了有利于表述化学元素的一种等价原子质量理论:同一元素的不同质氢电荷或等价原子对其它元素的贡献也是不同的。
1850年,德国化学家欧内斯特·荷尔德发现了气体的原子是受到压力影响的,这是描述元素的特性和附加特性(包括物理特性和化学反应性质)之间关系的首次实验。
同时,他发现一种“同族元素”(即有相似化学步骤致敬的元素),如氯和溴,钾和铷。
荷尔德是化学元素周期表的始创者。
化学元素周期表的发展形成化学元素周期表需要汇总所有已知元素的数据,包括元素的名称、符号、原子量、电子结构、元素的类别、物理性质和化学性质等。
人们将这些数据编制成表一,表一组织了许多元素,但它们没有被按照任何有意义的方法排列。
1869年,俄国化学家门捷列夫将元素按照所含电子数排列,并将它们分成六个组,称为“周期性体系”。
这个周期表在将来的研究过程中还经过了很多改进,到20世纪初,英国化学家门德列夫就提出了现代元素周期表的基本结构。
现代元素周期表将所有元素分为七个水平行和十八个垂直列,每列称为一族。
排在同一族的元素具有相似的化学性质。
在元素周期表的基础上,我们可以发现许多元素之间的趋势和规律,以及它们的物理和化学性质。
元素周期表的学术价值元素周期表的制定和发展对于推动了化学领域的发展和进步具有不可替代的作用。
它简化了化学的教学和学习,辅助学者更好地掌握化学知识,更快地了解化学元素的性质和分类。
化学元素周期表的发展历程化学元素周期表是化学领域中的重要工具,它将元素按照一定的规律排列并分类,使得我们能够更好地理解元素之间的相互关系。
下面将介绍化学元素周期表的发展历程。
一、早期的元素分类早在古代,人们就已经开始研究元素。
公元前4世纪的古希腊化学家柏拉图,他假设存在着四种基本的物质:地、火、水和空气。
这种分类方法是主观的,缺乏科学依据。
17世纪和18世纪,研究者开始通过化学实验发现了一些元素,尝试对其进行分类。
如托贝哈特对矿石中的金属元素进行了分组。
此时的元素分类是基于性质的相似性,但还没有建立起系统性的规律。
二、道尔顿和元素原子论19世纪初,英国化学家约翰·道尔顿提出了元素原子论。
他相信所有物质都是由不可再分的小颗粒构成,这就是原子。
道尔顿的理论为元素的分类和元素周期表的发展奠定了基础。
根据道尔顿的理论,他提出了一些元素的原子量,并通过比较元素的化学反应发现了元素的不同比例组成。
这些发现为后来研究者提供了重要线索。
三、门捷列夫的周期定律1869年,俄国化学家门捷列夫根据元素的原子量和性质提出了元素周期定律。
他将当时已知的元素按照一定的原子量顺序排列,并发现了一些周期性的规律。
门捷列夫将元素周期表分为8个组,他将元素按照氧化性从强到弱排列,发现了周期性的重复现象。
这一发现引起了众多科学家的关注,推动了元素周期表的进一步研究。
四、门捷列夫周期表的改进门捷列夫的原始周期表只有8个组,后来的研究者对其进行了改进和扩展。
德国化学家门德列夫在1880年提出了基于周期性的核电荷的分类方法。
此后,化学家们开始将元素周期表进行了不断的调整和改进。
五、现代的周期表20世纪,随着科学技术的快速发展,人们对元素和原子结构有了更深入的了解。
英国物理学家亨利·莫塞里和威廉·劳伦斯·布拉格在1913年提出了电子结构理论,即著名的玻尔理论,该理论解释了电子在原子中的分布。
根据玻尔理论,美国化学家格伦·塞博根在1919年提出了基于电子结构的现代周期表。
化学元素周期表的发展历史化学元素周期表是化学领域中非常重要的一种工具,它的发展历史见证了人类对化学元素的认识和理解的不断深入。
以下是化学元素周期表的发展历史的知识点介绍:1.早期元素发现:早在古代,人们就已经开始发现并使用一些元素,如金、银、铜、锡、铅等。
到了17世纪和18世纪,随着化学的兴起,科学家们开始系统地研究元素,陆续发现了更多的元素。
2.门捷列夫的周期表:1869年,俄国化学家门捷列夫发表了第一个元素周期表。
他根据元素的原子量和化学性质,将已知元素排列成一个表格。
这个周期表初步展现了元素之间的关系,并预测了一些尚未发现的元素。
3.周期表的改进:在门捷列夫的周期表基础上,科学家们不断进行改进。
1913年,丹麦物理学家玻尔提出了玻尔模型,对原子的内部结构有了更深入的理解,为周期表的改进奠定了基础。
4.长式和短式周期表:随着元素种类的增加,周期表也不断演变。
目前常用的周期表有两种形式:长式和短式。
长式周期表将元素按照原子序数递增的顺序排列,短式周期表则将元素按照电子排布的规律排列。
5.周期表的现代结构:现代周期表共有7个周期和18个族。
周期表示元素原子的电子层数,族表示元素原子的最外层电子数。
周期表的这种结构反映了元素的原子结构和化学性质的周期性变化。
6.周期表的新元素:随着科学技术的不断发展,人类对元素的认识也在不断拓展。
截至2021年,周期表已知的元素达到118种,其中大部分是在20世纪发现的。
新元素的发现往往是通过粒子加速器等高精尖设备实现的。
7.周期表的应用:周期表在化学、物理学、材料科学等领域具有广泛的应用。
它不仅有助于科学家们预测元素的性质和反应,还有助于我们了解宇宙中元素的分布和地球资源的开发利用。
综上所述,化学元素周期表的发展历史见证了人类对化学元素的认识的不断深化,为我们了解元素的世界提供了重要的工具。
习题及方法:1.习题:门捷列夫是哪个国家的化学家?解题方法:通过查阅相关资料,可以得知门捷列夫是俄国的化学家。
化学元素周期表的历史与发展化学元素周期表是化学学科中最重要的基础知识之一,它对于我们理解元素的性质和化学变化有着至关重要的作用。
在过去的几个世纪中,元素周期表经历了一系列的发展和演变,至今为止已经成为我们理解化学世界的重要工具。
本文将追溯元素周期表的历史,并讨论其发展的重要里程碑。
1. 元素周期表的起源元素周期表最初的雏形可以追溯到19世纪初期,当时科学家们对于元素的分类还存在很大的混乱。
然而,随着化学实验和研究的深入,科学家们逐渐发现了元素之间的某些规律性。
这些规律性表明,元素的性质与其原子结构有着密切的关联,为建立元素周期表提供了基础。
2. 孟德莱夫的周期表1869年,俄罗斯化学家孟德莱夫首次提出了元素周期表的基本框架。
他将已知的元素按照原子质量的大小进行排列,并将具有相似性质的元素划分为同一列。
这种排列方式使得元素之间的关系更加清晰,为后来的元素周期表奠定了基础。
3. 门捷列夫的元素周期表在孟德莱夫的基础上,俄罗斯化学家门捷列夫进一步发展了元素周期表。
他在孟德莱夫的基础上调整了一些元素的位置,并将元素按照电价数进行了排列。
门捷列夫的元素周期表在后来的发展中发挥了重要的作用,并成为了现代元素周期表的基础。
4. 弗兰克-庞科斯特的元素周期表20世纪初,德国化学家弗兰克和英国化学家庞科斯特分别提出了一种新的元素周期表形式。
他们将元素按照周期表现象的规律进行排列,并将元素周期表拓展为现代元素周期表的形式。
这种周期表形式使得元素之间的关系更加清晰可见,并且为后来元素周期表的发展提供了新的思路。
5. 亨利·莫西里的元素周期表亨利·莫西里是美国化学家,他在1969年提出了一种新的元素周期表形式。
这种周期表形式将元素按照原子序数的大小进行排列,更加突出了元素之间的联系。
莫西里的元素周期表在后来得到了广泛的应用,并在化学教学中被广泛采用。
总结:元素周期表的历史与发展经历了多个阶段,从最初的混乱到现代的清晰规律。
发展历史元素周期律的发现是许多科学家共同努力的结果1789年,安托万-洛朗·拉瓦锡出版的《化学大纲》中发表了人类历史上第一张《元素表》,在该表中,他将当时已知的33种元素分四类。
1829年,德贝莱纳在对当时已知的54种元素进行了系统的分析研究之后,提出了元素的三元素组规则。
他发现了几组元素,每组都有三个化学性质相似的成员。
并且,在每组中,居中的元素的原子量,近似于两端元素原子量的平均值。
1850年,德国人培顿科弗宣布,性质相似的元素并不一定只有三个;性质相似的元素的原子量之差往往为8或8的倍数。
1862年,法国化学家尚古多创建了《螺旋图》,他创造性地将当时的62种元素,按各元素原子量的大小为序,标志着绕着圆柱一升的螺旋线上。
他意外地发现,化学性质相似的元素,都出现在同一条母线上。
1863年,英国化学家欧德林发表了《原子量和元素符号表》,共列出49个元素,并留有9个空位。
上述各位科学家以及他们所做的研究,在一定程度上只能说是一个前期的准备,但是这些准备工作是不可缺少的。
而俄国化学家门捷列夫、德国化学家迈尔和英国化学家纽兰兹在元素周期律的发现过程中起了决定性的作用。
1865年,纽兰兹正在独立地进行化学元素的分类研究,在研究中他发现了一个很有趣的现象。
当元素按原子量递增的顺序排列起来时,每隔8个元素,元素的物理性质和化学性质就会重复出现。
由此他将各种元素按着原子量递增的顺序排列起来,形成了若干族系的周期。
纽兰兹称这一规律为“八音律”。
这一正确的规律的发现非但没有被当时的科学界接受,反而使它的发现者纽兰兹受尽了非难和侮辱。
直到后来,当人人已信服了门氏元素周期之后才警醒了,英国皇家学会对以往对纽兰兹不公正的态度进行了纠正。
门捷列夫在元素周期的发现中可谓是中流砥柱,不可避免地,他在研究工作中亦接受了包括自己的老师在内的各个方面的不理解和压力。
门捷列夫出生于1834年,俄国西伯利亚的托博尔斯克市,他出生不久,父亲就因双目失明出外就医,失去了得以维持家人生活的教员职位。
发展历史
元素周期律的发现是许多科学家共同努力的结果
1789年,安托万-洛朗·拉瓦锡出版的《化学大纲》中发表了人类历史上第一张《元素表》,在该表中,他将当时已知的33种元素分四类。
1829年,德贝莱纳在对当时已知的54种元素进行了系统的分析研究之后,提出了元素的三元素组规则。
他发现了几组元素,每组都有三个化学性质相似的成员。
并且,在每组中,居中的元素的原子量,近似于两端元素原子量的平均值。
1850年,德国人培顿科弗宣布,性质相似的元素并不一定只有三个;性质相似的元素的原子量之差往往为8或8的倍数。
1862年,法国化学家尚古多创建了《螺旋图》,他创造性地将当时的62种元素,按各元素原子量的大小为序,标志着绕着圆柱一升的螺旋线上。
他意外地发现,化学性质相似的元素,都出现在同一条母线上。
1863年,英国化学家欧德林发表了《原子量和元素符号表》,共列出49个元素,并留有9个空位。
上述各位科学家以及他们所做的研究,在一定程度上只能说是一个前期的准备,但是这些准备工作是不可缺少的。
而俄国化学家门捷列夫、德国化学家迈尔和英国化学家纽兰兹在元素周期律的发现过程中起了决定性的作用。
1865年,纽兰兹正在独立地进行化学元素的分类研究,在研究中他发现了一个很有趣的现象。
当元素按原子量递增的顺序排列起来时,每隔8个元素,元素的物理性质和化学性质就会重复出现。
由此他将各种元素按着原子量递增的顺序排列起来,形成了若干族系的周期。
纽兰兹称这一规律为“八音律”。
这一正确的规律的发现非但没有被当时的科学界接受,反而使它的发现者纽兰兹受尽了非难和侮辱。
直到后来,当人人已信服了门氏元素周期之后才警醒了,英国皇家学会对以往对纽兰兹不公正的态度进行了纠正。
门捷列夫在元素周期的发现中可谓是中流砥柱,不可避免地,他在研究工作中亦接受了包括自己的老师在内的各个方面的不理解和压力。
门捷列夫出生于1834年,俄国西伯利亚的托博尔斯克市,他出生不久,父亲就因双目失明出外就医,失去了得以维持家人生活的教员职位。
门捷列夫14岁那年,父亲逝世,接着火灾又吞没了他家中的所有财产,真是祸不单行。
1850年,家境困顿的门捷列夫藉着微薄的助学金开始了他的大学生活,后来成了彼得堡大学的教授。
幸运的是,门捷列夫生活在化学界探索元素规律的卓绝时期。
当时,各国化学家都在探索已知的几十种元素的内在联系规律。
1865年,英国化学家纽兰兹把当时已知的元素按原子量大小的顺序进行排列,发现无论从哪一个元素算起,每到第八个元素就和第一个元素的性质相近。
这很像音乐上的八度音循环,因此,他干脆把元素的这种周期性叫做“八音律”,并据此画出了标示元素关系的“八音律”表。
显然,纽兰兹已经下意识地摸到了“真理女神”的裙角,差点就揭示元素周期律了。
不过,条件限制了他作进一步的探索,因为当时原子量的测定值有错误,而且他也没有考虑到还有尚未发现的元素,只是机械地按当时的原子量大小将元素排列起来,所以他没能揭示出元素之间的内在规律。
可见,任何科学真理的发现,都不会是一帆风顺的,都会受到阻力,有些阻力甚至是人为的。
当年,纽兰兹的“八音律”在英国化学学会上受到了嘲弄,主持人以不无讥讽的口吻问道:“你为什么不按元素的字母顺序排列?”
门捷列夫顾不了这么多,他以惊人的洞察力投入了艰苦的探索。
直到1869年,他将当时已知的仍种元素的主要性质和原子量,写在一张张小卡片上,进行反复排列比较,才最后发现了元素周期规律,并依此制定了元素周期表。
元素周期表的发现,是近代化学史上的一个创举,对于促进化学的发展,起了巨大的作用。
看到这张表,人们便会想到它的最早发明者——门捷列夫。
现代的化学元素周期律是19世纪俄国人门捷列夫发现的。
他将当时已知的63种元素以表的形式排列,把有相似化学性质的元素放在同一直行,这就是元素周期表的雏形。
门捷列夫通过顽强努力的探索,于1869年2月先后发表了关于元素周期律的图表和论文。
在论文中,他指出:
(1)按照原子量大小排列起来的元素,在性质上呈现明显的周期性。
(2)原子量的大小决定元素的特征。
(3)应该预料到许多未知元素的发现,例如类似铝和硅的,原子量位于65一75之间的元素。
(4)当我们知道了某些元素的同类元素后,有时可以修正该元素的原子量。
这就是门捷列夫提出的周期律的最初内容。
门捷列夫深信自己的工作很重要,经过继续努力,1871年他发表了关于周期律的新的论文。
文中他果断地修正了1869年发表的元素周期表。
例如在前一表中,性质类似的各族是横排,周期是竖排;而在新表中,族是竖排,周期是横排,这样各族元素化学性质的周期性变化就更为清晰。
同时他将那些当时性质尚不够明确的元素集中在表格的右边,形成了各族元素的副族。
在前表中,为尚未发现的元素留下4个空格,而新表中则留下了6个空格。
由此可见,门捷列夫的研究有了重要的进展。
经受实践的验证
实践是检验真理的唯一标准。
门捷列夫发现的元素周期律是否能站住脚,必须看它能否解决化学中的一些实际问题。
门捷列夫以他的周期律为依据,大胆指出某些元素公认的原子量是不准确的,应重新测定,例如当时公认金的原子量为169.2,因此,在周期表中,金应排在饿。
铱、铂(当时认为它们的原子量分别是198.6,196.7,196.7)的前面。
而门捷列夫认为金在周期表中应排在这些元素的后面,所以它们的原子量应重新测定。
重新测定的结果是:饿为190.9,铱为193.1,铂为195,2,金为197.2。
实验证明了门捷列夫的意见是对的。
又例如,当时铀公认的原子量是116,是三价元素。
门捷列夫则根据铀的氧化物与铬、铂、钨的氧化物性质相似,认为它们应属于一族,因此铀应为六价,原子量约为240。
经测定,铀的原子量为238.07。
再次证明门捷列夫的判断正确。
基于同样的道理,门捷列夫还修正了铟、镧、钇、铒、铈、的原子量。
事实验证了周期律的正确性。
根据元素周期律,门捷列夫还预言了一些当时尚未发现的元素的存在和它们的性质。
他的预言与尔后实践的结果取得了惊人的一致。
1875年法国化学家布瓦博德朗在分析比里牛斯山的闪锌矿时发现一种新元素,他命名为镓,并把测得的关于它的主要性质公布了。
不久他收到了门捷列夫的来信,门捷列夫在信中指出关
于镓的比重不应该是4.7,而是5.9一6.0。
当时布瓦傅德朗很疑惑,他是唯一手里掌握金属镓的人,门捷列夫是怎样知道它的比重的呢?经过重新测定,镓的比重确实为5,9“这给果使他大为惊奇。
他认真地阅读了门捷列夫的周期律论文后,感慨他说:“我没有可说的
了,事实证明门捷列夫这一理论的巨大意义。
”
下表是个最有力的说明。
类铝镓
原子量69 69.72
比重5.9-6.0 5.94
熔点低30.1
和氧气反应不受空气的侵蚀灼热时略起氧化
灼热时能分解水汽灼热时确能分解水汽
能生成类似明矾的矾类能生成结晶较好的镓矾
可用分光镜发现其存在用分光镜发现的
嫁的发现是化学史上第一个事先预言的新元素的发现,它雄辩地证明了门捷列夫元素周期律的科学性。
1880年瑞典的尼尔森发现了钪,1885年德国的文克勒发现了锗。
这两种新元素与门捷列夫预言的类硼。
类硅也完全吻合。
门捷列夫的元素周期律再次经受了实践的检验。
事实证明门捷列夫发现的化学元素周期律是自然界的一条客观规律。
它揭示了物质世界的一个秘密,即这些似乎互不相关的元素间存在相互依存的关系,它变成了一个完整的自然体系。
从此新元素的寻找,新物质、新材料的探索有了一条可遵循的规律。
元素周期律作为描述元素及其性质的基本理论有力地促进了现代化学和物理学的发展。
现代的是根据质子数排的,大体相同,但是由于中子的影响,原子量大的质子数不一定多,所以现在的更科学些!
还有个不同就是后来人们发现了更多的元素,也加了进去,而门捷列夫的元素周期表没有!
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。