《测井曲线用途》
- 格式:doc
- 大小:83.00 KB
- 文档页数:15
测井曲线
测井曲线是石油地质学中常用的一种工具,用于评估油层中的岩石性质和流体(如原油、天然气)的分布情况。
常见的测井曲线有以下几种:
1. 自然伽马测井曲线(GR):用于评估岩石中放射性矿物质的含量,可以帮助确定岩石的类型和成分。
2. 电阻率测井曲线(SP):用于测量岩石中电流的传导能力,可用于判断岩石的孔隙度和渗透性。
3. 声波测井曲线(Sonic):用于测量地层中声波在岩石中传播的速度,可以帮助确定岩石的密度和弹性模量。
4. 密度测井曲线(Density):通过测量岩石中射线的吸收能力,可以估计岩石的密度,从而评估孔隙度和饱和度。
5. 中子测井曲线(Neutron):通过测量岩石中中子的散射情况,可以推测岩石中氢原子的含量,从而估计孔隙度和饱和度。
这些测井曲线通常以深度为横坐标,物理量为纵坐标,可以绘制成曲线图或剖面图,以便地质学家和工程师分析和解释地下油气储层的性质和分布。
主要测井曲线及其含义一、自然电位测井:测量在地层电化学作用下产生的电位。
自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。
Rmf≈Rw时,SP几乎是平直的; Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。
自然电位测井SP曲线的应用:①划分渗透性地层。
②判断岩性,进行地层对比。
③估计泥质含量。
④确定地层水电阻率。
⑤判断水淹层。
⑥沉积相研究。
自然电位正异常Rmf<Rw时,SP出现正异常。
淡水层Rw很大(浅部地层)咸水泥浆(相对与地层水电阻率而言)自然电位测井自然电位曲线与自然伽马、微电极曲线具有较好的对应性。
自然电位曲线在水淹层出现基线偏移二、普通视电阻率测井(R4、R2.5)普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。
测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。
视电阻率曲线的应用:①划分岩性剖面。
②求岩层的真电阻率。
③求岩层孔隙度。
④深度校正。
⑤地层对比。
电极系测井2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。
底部梯度电极系分层:顶:低点;底:高值。
三、微电极测井(ML)微电极测井是一种微电阻率测井方法。
其纵向分辨能力强,可直观地判断渗透层。
主要应用:①划分岩性剖面。
②确定岩层界面。
③确定含油砂岩的有效厚度。
④确定大井径井段。
⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。
微电极确定油层有效厚度微电极测井微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。
四、双感应测井感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。
测井曲线特征及综合应用测井曲线特征及综合应用一、介绍测井曲线的用途 (2)二、测井资料的综合运用 (7)1、岩层界面 (7)2、确定地层的电阻率 (7)3、确定地层的孔隙度 (8)4、确定地层传声速度 (9)5、确定地层的含泥量 (9)6、确定地层的含H量 (9)7、确定地层的密度 (10)8、综合判断地层的岩性 (10)9、综合判断油气水层 (13)一、介绍测井曲线的用途二、测井资料的综合运用1、岩层界面2、确定地层的电阻率3、确定地层的孔隙度4、确定地层传声速度5、确定地层的含泥量6、确定地层的含H量7、确定地层的密度8、综合判断地层的岩性1、含钙层:声波时差曲线显示低值,电阻曲线显示高值,微电极显示刺刀状、尖峰状,自然电位相应幅度变小。
2、水淹层:油层水淹后,梯度曲线明显上抬,三侧向电阻降低,自然电位基线偏移,自然电流出现偏大,声波时差增大。
3、高压层的识别:声波读值大,微电极曲线基值大,自然电位电流读值小,井径读值大。
9、综合判断油气水层1、⑴渗透层。
⑵油气层都是高阻层,其电阻率相当于标准水层2-3倍,油层3.2-4.8Ωm。
⑶标准水层其电阻率接近于同井段的泥岩。
在所研究井段没有砂岩,可近似地以泥岩电阻率来替代标准水层的电阻率。
2、⑴油层:高阻渗透层,电阻曲线幅度高,特别是在4m曲线必须有鼓包,4m幅度越高,油层越好,自然电位异常通常小于水层,声波为中值。
⑵气层:高阻渗透层,电阻曲线幅度高,4m曲线有鼓包。
声波时差大,甚至比泥岩还要大,而且有周波跳跃的现象,中子伽马通常幅度高。
⑶水层:低阻渗透层(淡水层例外为高阻层),当地层矿化度比较高时,中子伽马幅度比较高,通常情况较低,自然电位通常比较大(与油层作比较)。
十、油气水界面的化分1、油水界面的划分:⑴电阻曲线上有明显幅度变化,含油部分幅度高,含水部分幅度低。
⑵感应曲线上在油水界面上幅度变化特别明显。
⑶自然电位曲线在油水界面上有一个不很明显的台阶,含油部分异常小,含水部分异常大。
一、介绍测井曲线(de)用途二、测井资料(de)综合运用一、划分岩层界面二、确定地层(de)电阻率三、确定地层(de)孔隙度四、确定地层传声速度五、确定地层(de)含泥量六、确定地层(de)含H量七、确定地层(de)密度八、综合判断地层(de)岩性九、综合判断油气水层1、⑴渗透层.⑵油气层都是高阻层,其电阻率相当于标准水层2-3倍,油层3.2-4.8Ωm.⑶标准水层其电阻率接近于同井段(de)泥岩.在所研究井段没有砂岩,可近似地以泥岩电阻率来替代标准水层(de)电阻率.2、⑴油层:高阻渗透层,电阻曲线幅度高,特别是在4m曲线必须有鼓包,4m幅度越高,油层越好,自然电位异常通常小于水层,声波为中值.⑵气层:高阻渗透层,电阻曲线幅度高,4m曲线有鼓包.声波时差大,甚至比泥岩还要大,而且有周波跳跃(de)现象,中子伽马通常幅度高.⑶水层:低阻渗透层(淡水层例外为高阻层),当地层矿化度比较高时,中子伽马幅度比较高,通常情况较低,自然电位通常比较大(与油层作比较).十、油气水界面(de)化分1、油水界面(de)划分:⑴电阻曲线上有明显幅度变化,含油部分幅度高,含水部分幅度低.⑵感应曲线上在油水界面上幅度变化特别明显.⑶自然电位曲线在油水界面上有一个不很明显(de)台阶,含油部分异常小,含水部分异常大.⑷密度曲线在油水界面上有微弱(de)台阶,含油部分密度小,含水部分密度较大.⑸声波在油水界面含油部分时差大,含水部分时差小,油层在4m曲线上一定有鼓包.2、油气界面(de)划分:⑴声波时差在油气界面有明显(de)幅度变化,气层时差大,油层时差小,气层周波跳跃,在油气界面有不太明显(de)幅度变化.⑵中子伽马在油气界面上有不太明显(de)变化,长源距气层(de)幅度高,油层(de)幅度小.3、气水界面(de)划分:⑴声波时差在气水界面上明显(de)幅变化,含水部分时差小,含气部分时差大,含气部分有周波跳跃.⑵密度曲线在气水界面上有明显(de)幅度变化,气层部分密度小,含水部分密度大.⑶中子伽马曲线在气水界面上有不明显(de)变化,短源距气层部分幅度高,水层部分幅度低,(但有例外,当水层矿化度比较高,曲线幅度变化不明显).。
一、测井曲线资料应用的意义测井资料在油、气田的勘探与开发中有广泛的的用途,大体可分为在裸眼井中的应用和套管井中的应用,及其它一些专门目的的应用。
在裸眼井中,测井资料主要用于寻找油、气层,并对储集层的孔隙性、渗透性和含油性作出评价,为油、气田的开发决策提供信息;在套管井中,测井资料主要用于开发过程中油、气层的动态分析,为油、气田开发的合理调整提供资料。
二、常用的测井曲线的类型常用的测井曲线有:自然电位曲线、自然伽玛测井曲线、微电位测井曲线、微梯度测井曲线、深感应测井曲线、中感应测井曲线、4米电阻测井曲线、声波时差测井曲线、井径测井曲线等。
三、常用测井曲线识别第一节自然电位测井在钻开岩层时,井壁附近产生的电化学活动能形成一电场,该场产生的电位就叫自然电位,其产生的原因是地层水矿化度和泥浆滤液矿化度压力不同,以及泥浆压力与地层压力不同。
在砂泥岩剖面中,自然电位曲线以泥岩为基线,只在砂质渗透性岩层处,才出现自然电位曲线异常,所以我们可以利用它来划分渗透性岩层。
纯砂岩井段出现最大的负异常,含泥质的砂岩负异常幅度较低,而且随泥质含量的增多负异常幅度下降。
此外通过自然电位曲线幅度还可判断渗透层孔隙中所含流体的性质,一般含水砂岩的自然电位幅度比含油砂岩的自然电位幅度要高。
自然电位曲线的应用仅限于淡水泥浆钻的井,因为自然电位曲线幅度(偏离泥岩基线的幅度)与地层水含盐量和井中流体含盐量之差有关。
对于淡水泥浆,纯砂岩的负向偏移幅度最大,当砂岩含泥时,幅度减小。
而当采用盐水泥浆时,含盐水地层的SP曲线,偏移很小或没有偏移,甚至出现反转。
自然电位曲线在含盐水纯砂岩部位最高,而当地层含有烃类时,自然电位幅度有所降低,当砂层厚度小于3m 或更薄时,其幅度大大降低;当砂岩胶结作用较强时,其幅度可显著降低。
应用:1、自然电位曲线,对于厚岩层可用由线半幅点划分岩层界面,对于薄岩层必须与视电阻率曲线配合,才能获得准确结果。
2、可以很清楚地划分渗透层与非渗透层。
一、介绍测井曲线的用途电测内容探测对象曲线特征主要用途影响因素使用条件梯度电极系测井视电阻率⒈底部梯度在高阻层上底部有极大值顶部有极小值⒉顶部梯度在高阻层上顶部有极大值底部有极小值⒈确定地层的电阻率。
⒉确定岩性,根据地层电阻率。
⒊分层⒈本层屏蔽效应。
⒉高阻邻层屏蔽效应淡水泥浆油基泥浆咸水泥浆下过套管井不使用电位电极系测井视电阻率曲线以地层中心为对称,高阻层上有高值,低阻层上有低值,岩层界面位于曲线的半幅点上⒈确定地层电阻率。
⒉确定岩性根据地层电阻率高低⒊分层以半幅点影响较小淡水泥浆对于下过套管的井不使用微电极测井井壁内附近深浅两个不同部分的电阻率⒈高阻层上曲线有高值,低阻层上曲线有低值。
⒉渗透层上有幅度差,非渗透层上无幅度差。
⒊半幅点对应于岩层界面。
⒈确定岩层渗透性,其它条件一致的情况下,幅度差大,渗透性好,反之则小。
⒉特别用于分层。
⒊确定岩性,视电阻率大小,井壁发育情况。
⒈矿化度差,是指地层水矿化度泥浆滤液矿化度的不等。
同一砂层来讲矿化度大幅度差大。
⒉灰岩井段的幅度差虚假。
⒊有些灰质泥岩出现反常的负异常微梯度大于微电位。
⒈淡水泥浆。
⒉对于下过套管井不使用。
电测内容探测对象曲线特征主要用途影响因素使用条件自然电位直接测量地层水和钻井液中离子浓度的差异及各种岩性的泥质含量。
⒈地层水矿化度大于泥浆滤液矿化度时,渗透层上负异常。
⒉地层水矿化度小于泥浆滤液矿化度时,渗透层上正异常。
⒊在非渗透层上无异常。
⒋地层中心为对称曲线的半幅点对于岩层的界面。
⒈用于划分渗透层凡是有自然电位异常的通常都是渗透层。
⒉判断地层矿化度高低。
⒊分层(半幅点)大于4倍井径时半幅点小于4倍井径向曲线峰部移动。
⒈地层水矿化度与泥浆滤液矿化度有差时,渗透层上才有异常,地层水矿化度随井的不断加深而变化。
⒉含泥量对同一砂层来讲,随泥质含量的增加其异常幅度变小。
⒊工业迷散电流的影响。
⒈淡咸水泥浆都可以。
⒉下过套管的井不使用。
感应测井地层的电导率或地层的电阻率⒈以地层的中心为对称。
二、测井资料的概括使用一、区分岩层界里二、决定天层的电阻率三、决定天层的孔隙度四、决定天层传声速度五、决定天层的含泥量六、决定天层的含H量七、决定天层的稀度八、概括推断天层的岩性九、概括推断油气火层1、⑴渗透层.⑵油气层皆是下阻层,其电阻率相称于尺度火层2-3倍,油层Ωm.⑶尺度火层其电阻率交近于共井段的泥岩.正在所钻研井段不砂岩,可近似天以泥岩电阻率去代替尺度火层的电阻率.2、⑴油层:下阻渗透层,电阻直线幅度下,特天是正在4m直线必须有鼓包,4m幅度越下,油层越佳,自然电位非常十分常常小于火层,声波为中值.⑵气层:下阻渗透层,电阻直线幅度下,4m直线有鼓包.声波时好大,以至比泥岩还要大,而且有周波跳跃的局里,中子伽马常常幅度下.⑶火层:矮阻渗透层(浓火层例中为下阻层),当天层矿化度比较下时,中子伽马幅度比较下,常常情况较矮,自然电位常常比较大(取油层做比较).十、油气火界里的化分1、油火界里的区分:⑴电阻直线上有明隐幅度变更,含油部分幅度下,含火部分幅度矮.⑵感触直线上正在油火界里上幅度变更特天明隐.⑶自然电位直线正在油火界里上有一个不很明隐的台阶,含油部分非常十分小,含火部分非常十分大.⑷稀度直线正在油火界里上有微小的台阶,含油部分稀度小,含火部分稀度较大.⑸声波正在油火界里含油部分时好大,含火部分时好小,油层正在4m直线上一定有鼓包.2、油气界里的区分:⑴声波时好正在油气界里有明隐的幅度变更,气层时好大,油层时好小,气层周波跳跃,正在油气界里有不太明隐的幅度变更.⑵中子伽马正在油气界里上有不太明隐的变更,少源距气层的幅度下,油层的幅度小.3、气火界里的区分:⑴声波时好正在气火界里上明隐的幅变更,含火部分时好小,含气部分时好大,含气部分有周波跳跃.⑵稀度直线正在气火界里上有明隐的幅度变更,气层部分稀度小,含火部分稀度大.⑶中子伽马直线正在气火界里上有不明隐的变更,短源距气层部分幅度下,火层部分幅度矮,(但是有例中,当火层矿化度比较下,直线幅度变更不明隐).。
一、介绍测井曲线的用途- 二、测井资料的综合运用一、划分岩层界面二、确定地层的电阻率三、确定地层的孔隙度四、确定地层传声速度五、确定地层的含泥量六、确定地层的含H量七、确定地层的密度八、综合判断地层的岩性九、综合判断油气水层1、⑴渗透层。
⑵油气层都是高阻层,其电阻率相当于标准水层2-3倍,油层3.2-4.8Ωm。
⑶标准水层其电阻率接近于同井段的泥岩。
在所研究井段没有砂岩,可近似地以泥岩电阻率来替代标准水层的电阻率。
2、⑴油层:高阻渗透层,电阻曲线幅度高,特别是在4m曲线必须有鼓包,4m幅度越高,油层越好,自然电位异常通常小于水层,声波为中值。
⑵气层:高阻渗透层,电阻曲线幅度高,4m曲线有鼓包。
声波时差大,甚至比泥岩还要大,而且有周波跳跃的现象,中子伽马通常幅度高。
⑶水层:低阻渗透层(淡水层例外为高阻层),当地层矿化度比较高时,中子伽马幅度比较高,通常情况较低,自然电位通常比较大(与油层作比较)。
十、油气水界面的化分1、油水界面的划分:⑴电阻曲线上有明显幅度变化,含油部分幅度高,含水部分幅度低。
⑵感应曲线上在油水界面上幅度变化特别明显。
⑶自然电位曲线在油水界面上有一个不很明显的台阶,含油部分异常小,含水部分异常大。
⑷密度曲线在油水界面上有微弱的台阶,含油部分密度小,含水部分密度较大。
⑸声波在油水界面含油部分时差大,含水部分时差小,油层在4m曲线上一定有鼓包。
2、油气界面的划分:⑴声波时差在油气界面有明显的幅度变化,气层时差大,油层时差小,气层周波跳跃,在油气界面有不太明显的幅度变化。
⑵中子伽马在油气界面上有不太明显的变化,长源距气层的幅度高,油层的幅度小。
3、气水界面的划分:⑴声波时差在气水界面上明显的幅变化,含水部分时差小,含气部分时差大,含气部分有周波跳跃。
⑵密度曲线在气水界面上有明显的幅度变化,气层部分密度小,含水部分密度大。
⑶中子伽马曲线在气水界面上有不明显的变化,短源距气层部分幅度高,水层部分幅度低,(但有例外,当水层矿化度比较高,曲线幅度变化不明显)。
一、介绍测井曲线的用途
-
二、测井资料的综合运用一、划分岩层界面
二、确定地层的电阻率
三、确定地层的孔隙度
四、确定地层传声速度
五、确定地层的含泥量
六、确定地层的含H量
七、确定地层的密度
八、综合判断地层的岩性
九、综合判断油气水层
1、⑴渗透层。
⑵油气层都是高阻层,其电阻率相当于标准水层2-3倍,油层3.2-4.8Ωm。
⑶标准水层其电阻率接近于同井段的泥岩。
在所研究井段没有砂岩,可近似地以泥岩电阻率来替代标准水层的电阻率。
2、⑴油层:高阻渗透层,电阻曲线幅度高,特别是在4m曲线必须有鼓包,4m幅度越高,油层越好,自然电位异常通常小于水层,声波为中值。
⑵气层:高阻渗透层,电阻曲线幅度高,4m曲线有鼓包。
声波时差大,甚至比泥岩还要大,而且有周波跳跃的现象,中子伽马通常幅度高。
⑶水层:低阻渗透层(淡水层例外为高阻层),当地层矿化度比较高时,中子伽马幅度比较高,通常情况较低,自然电位通常比较大(与油层作比较)。
十、油气水介面的化分
1、油水界面的划分:
⑴电阻曲线上有明显幅度变化,含油部分幅度高,含水部分幅度低。
⑵感应曲线上在油水界面上幅度变化特别明显。
⑶自然电位曲线在油水界面上有一个不很明显的台阶,含油部分异常小,含水部分异常大。
⑷密度曲线在油水界面上有微弱的台阶,含油部分密度小,含水部分密度较大。
⑸声波在油水界面含油部分时差大,含水部分时差小,油层在4m曲线上一定有鼓包。
2、油气界面的划分:
⑴声波时差在油气界面有明显的幅度变化,气层时差大,油层时差小,气层周波跳跃,在油气界面有不太明显的幅度变化。
⑵中子伽马在油气界面上有不太明显的变化,长源距气层的幅度高,油层的幅度小。
3、气水界面的划分:
⑴声波时差在气水界面上明显的幅变化,含水部分时差小,含气部分时差大,含气部分有周波跳跃。
⑵密度曲线在气水界面上有明显的幅度变化,气层部分密度小,含水部分密度大。
⑶中子伽马曲线在气水界面上有不明显的变化,短源距气层部分幅度高,水层部分幅度低,(但有例外,当水层矿化度比较高,曲线幅度变化不明显)。
(注:素材和资料部分来自网络,供参考。
请预览后才下载,期待你的好评与关注!)。