废水深度处理和微污染水源预处理中的微生物学原理
- 格式:pptx
- 大小:1.01 MB
- 文档页数:43
第十章污(废)水深度处理和微污染源水预处理中的微生物学原理1.污(废)水为什么要脱氮除磷?答:污(废)水需要脱氮除磷的原因如下:(1)在好氧生物处理中,生活污水经生物降解,大部分的可溶性含碳有机物被去除,同时会产生NH3-N、NO3--N和PO43-、SO42-,其中,只有25%的氮和19%左右的磷被微生物吸收合成细胞,通过排泥得到去除,出水中的氮和磷含量仍未达到排放标准。
(2)氮和磷是生物的重要营养源。
但水体中氮磷过多,危害极大。
最大的危害是引起水体富营养化,蓝藻、绿藻等大量繁殖后引起水体缺氧,产生毒素,进而毒死鱼虾等水生生物和危害人体健康,使水源水质恶化。
不但影响人类生活,还严重影响工农业生产。
2.微生物脱氮工艺有哪些?答:微生物脱氮工艺有A/O、A2/O、A2/O2、SBR等工艺。
反硝化有单级反硝化和多级反硝化。
根据不同水质,通常有以下3种组合工艺,即碳氧化、硝化和反硝化三者的不同组合方式。
(1)碳氧化、硝化、反硝化分级(2)碳氧化和硝化结合,反硝化分级(3)碳氧化、硝化、反硝化结合3.叙述污(废)水脱氮原理。
答:污(废)水脱氮原理如下:(1)概述脱氮是先利用好氧段经硝化作用,由亚硝化细菌和硝化细菌的协同作用,将NH3转化为NO2--N和NO3--N。
再利用缺氧段经反硝化细菌将NO2--N(经反亚硝化)和NO3--N (经反硝化)还原为氮气(N2),溢出水面释放到大气,参与自然界氮的循环。
(2)具体反应机理①硝化短程硝化:全程硝化(亚硝化+硝化):②反硝化反硝化脱氮:厌氧氨氧化脱氮:厌氧氨氧化脱氮:厌氧氨反硫化脱氮:4.参与脱氮的微生物有哪些?它们有什么生理特征?答:参与脱氮的微生物及其生理特征如下:(1)硝化作用段及微生物①好氧氨氧化细菌好氧氨氧化细菌即好氧的亚硝化细菌,以NH3为供氢体,O2作为最终电子受体,产生HNO2。
其中的亚硝化叶菌属在低氧压下能生长,化能无机营养,氧化NH3为HNO2,从中获得能量供合成细胞和固定CO2。
污水处理中的微生物原理1. 引言污水处理是指将废水中的有害物质去除或减少到一定的标准以符合环境排放要求的过程。
其中,微生物在污水处理中起着至关重要的作用。
微生物通过代谢和转化废水中的有机物和无机物,使其减少对环境的污染,提高水质,保护生态环境。
本文将介绍污水处理中微生物的主要作用机理。
2. 微生物的作用机理微生物在污水处理中的作用机理主要包括生化分解,厌氧/好氧氧化和沉淀。
2.1 生化分解微生物在污水处理中以生化分解为主要作用机理。
污水中的有机物经过微生物的代谢作用,被分解为较小的有机分子,最终转化为水和二氧化碳等无害物质。
这一过程主要由厌氧菌和好氧菌参与。
厌氧菌主要在无氧环境中生活,利用有机物进行厌氧呼吸,产生甲烷等气体。
好氧菌则需要氧气参与,通过氧化有机物来获得能量,产生水和二氧化碳。
2.2 厌氧/好氧氧化厌氧/好氧氧化是指微生物在缺氧或氧气充足的环境中分解有机物。
在厌氧条件下,厌氧菌通过厌氧呼吸产生甲烷等气体,而在好氧条件下,好氧菌通过氧化有机物获得能量。
这一过程可以减少废水中的有机物质量并降低毒性。
2.3 沉淀微生物通过产生胶状多糖物质,将污水中的悬浮物和胶体颗粒聚集成较大的颗粒,并与微生物自身形成沉淀物。
这些沉淀物可以通过物理方式(如沉淀、过滤等)从水中去除,减少污水中的悬浮物和颗粒物。
3. 微生物的应用微生物在污水处理中的应用主要包括活性污泥法和厌氧消化。
3.1 活性污泥法活性污泥法是指利用微生物(如好氧菌和厌氧菌)在污泥颗粒上生长和代谢,将废水中的有机物质分解为水和二氧化碳。
活性污泥法具有处理能力强、处理效果好等优点,在城市污水处理中得到广泛应用。
3.2 厌氧消化厌氧消化是指将废水或农业废弃物放入密闭的容器中,利用厌氧菌分解有机物质,产生甲烷等气体,从而减少有机物质的处理量,产生可再利用的能源。
厌氧消化广泛应用于农村和农业废弃物的处理中。
4.微生物在污水处理中起着重要的作用,通过生化分解、厌氧/好氧氧化和沉淀等机理,可以将废水中的有害物质减少到一定的标准,提高水质,保护环境。
第四章污、废水深度处理和微污染源水预处理中的微生物学原理第一节污、废水深度处理——脱氮、除磷与微生物学原理一、污、废水脱氮、除磷的目的和意义污、废水一级处理只是除去废水中的砂砾及大的悬浮固体。
去除COD约30%左右。
二级生物处理则是去除废水中的可溶性有机物。
在好氧生物处理中,生活污水经生物降解,大部分的可溶性含碳有机物被去除。
去除COD 70%~90%,BOD5去除90%以上。
同时产生NH3-N、N03--N和P043-、S042-。
其中有25%的氮和19%左右的磷被微生物吸收合成细胞,通过排泥得到去除。
但出水中的氮和磷含量仍未达到排放标准。
有的工业废水如味精(谷氨酸)废水和赖氨酸废水含氨氮(NH3-N)非常高,味精浓废水含氨氮6 000 mg/L左右。
COD更高,60 000~80 000 mg/L,BOD5约为COD的一半。
氮和磷是生物的重要营养源。
但水体中氮、磷量过多,危害极大。
最大的危害是引起水体富营养化。
蓝藻、绿藻等大量繁殖后引起水体缺氧,产生毒素,进而毒死鱼、虾等水生生物和危害人体健康。
使水源水质恶化。
不但影响人类生活,还严重影响工、农业生产。
鉴于以上原因,脱氮除磷非常重要。
若水体中磷含量低于0.02 mg/L可限制藻类过度生长。
上海地方标准规定,氨氮排放标准在15 mg/L以下。
二、天然水体中氮、磷的来源主要来自城市生活污水,来自农业施肥(氮)和喷洒农药(磷等),来自工业废水,如化肥、石油炼厂、焦化、制药、农药、印染、腈纶及洗涤剂等生产废水,食品加工、罐头食品加工及被服洗涤服务行业的洗涤剂废水,以及禽、畜粪便水。
城市生活污水含氮量见表2.4-1。
三、微生物脱氮工艺、原理及其微生物(一)微生物脱氮工艺可采用A/0、A2/0、A2/02、SBR等,工艺均可取得较好脱氮效果。
经厌氧-好氧或缺氧-好氧等的合理组合处理,既可去除COD和BOD,又可去除氨氮,脱氮工艺也可除磷。
(二)脱氮原理脱氮首先利用设施内好氧段,由亚硝化细菌和硝化细菌的硝化作用,将NH3转化为NO3--N。
第十一章废水生物处理的微生物学原理与方法第一节废水生物处理的微生物学原理当前水体环境的污染非常明显,具体表现为水体无法进行正常的自净作用。
废水生物处理是20世纪初出现的治理废(污)水的技术,发展至今已成为世界各国处理城市污水和工业废水的主要手段。
1.物理法主要是采用物理作用分离废水中呈悬浮状态的污染物质。
具体有:①沉淀法(沉降作用),②过滤法(砂、微孔管等过滤介质不截留),③其它的如浮选法,萃取法等。
2.化学法采用化学反应原理去除污染的方法。
包括:①化学凝聚法:水中胶体物质通常呈负电荷,彼此排斥而形成稳定的悬浮液。
向水中投加电解质(凝聚剂)可使其呈中性,从而凝聚为大颗粒而沉降。
常用的凝聚剂有硫酸铝、三氯化铁、明矾等。
②其它的化学方法还有中和法、氧化还原法、离子交换法等。
3.生物法主要是利用微生物的作用,使废水中有机污染物降解转化为无机物质,使污水得以净化。
由于整个过程贯穿着微生物酶的作用,废水生物处理也称废水生化处理。
它是当前最重要的废水处理方法。
废水生物处理的方法很多,简单的可根据微生物与氧的关系分为好氧处理和厌氧处理。
根据微生物在构筑物中处于悬浮状态或固着状态,分为活性污泥法和生物膜法。
其中活性污泥和生物膜是净化废水的工作主体。
事实上它是一个人工生态系统。
在实践中,三种方法并不是单独被使用,而是根据城市污水或工业废水的性状和处理目标,构成一个综合的处理系统。
生物处理作为其中的主体发挥作用。
二、废水的污染指标制定的指标应能反映废水中污染物的含量和可净化程度。
对于特定污染物废水,如含酚废水、含氰废水、含汞等有毒重金属废水等,这些具体污染物含量是重要的废水污染指标。
然而多数废水的组分都较复杂,因此常采用以下有机污染指标:BOD、COD、SS(悬浮固体)、MLSS(混合液悬浮固体)、MLVSS(混合液挥发性悬浮固体)、以及N、P含量和PH值等。
1.BOD(B lochemical Oxygen Demand)即生物化学需氧量。