当前位置:文档之家› 三种谐波和无功电流检测算法的综合性能比较

三种谐波和无功电流检测算法的综合性能比较

三种谐波和无功电流检测算法的综合性能比较
三种谐波和无功电流检测算法的综合性能比较

三种谐波和无功电流检测算法的综合性能比较

王冲,解大,陈陈

(上海交通大学电子信息与电气工程学院,上海市 200240)

摘要:有关谐波和无功电流的检测方法,学界提出了三种主流算法,即

p-q法、i

p -i

q

法和自适应电流检测法。一般文献只对算法某些方面的性能进行探

讨,并未就算法的稳态和动态滤波性能进行综合研究。本文将对这三种算法的综合滤波性能对比研究,并给出各种典型的复杂谐波状况下的仿真验证。

关键词:谐波检测;无功补偿;电力有源滤波器

0引言

电力电子技术的快速发展使得非线性装置在工业界广泛使用,随之产生的谐波污染问题也日益严重。高次谐波和无功电流的补偿已成为电力电子学和现代电力系统中亟待解决的问题。目前,有源滤波器(Active Power Filter)技术可视为最有效和最具潜力的方案。而其谐波和无功电流检测技术是整个方案的关键之处,能否快速精确的检测出需补偿的分量,并具有良好的动态跟踪性能,直接决定了装置的整体滤波性能。

谐波和无功电流检测方法一般有:

(1)基于频域分析的FFT方法。原理是将谐波分量分解再合成出总的谐波分量,其特点是速度慢,且对高次谐波检测的效果不佳,同时无法检测出无功分量。

(2)用模拟带通滤波器或陷波器检测高次谐波电流。由于滤波器的中心频率固定,当电网频率波动时,滤波器效果将随之变差。此外,滤波器的中心频率对元件的参数十分敏感,这样较难得到理想的幅频特性和相频特性。同样,该法也不能分离出无功电流。

(3)基于“瞬时无功功率理论”的电流检测法。自1983年日本学者赤木泰文

提出该理论[1]以来,已发展出成熟的算法,即p-q法和i

p -i

q

法。理论上可检测

出除基频分量外的所有高频分量,同时可检测出无功电流分量。除适用于三相三线制的电路,经过改进还可用于三相四线制电路。文[2]在该理论的基础上又提出适应于单相制的检测算法。这两类算法不仅模拟电路可实现,数字电路也可实现。在工业实际应用中,如ABB,Simens等公司也将此类算法用于电气产品的开发。

(4)自适应谐波检测方法。该算法基于自适应噪声对消原理,经过自适应滤波处理,输出负载电流中的有功分量,将此分量从负载电流中减去就得到高次谐波和无功分量。此算法不受元件参数变化和电压波形畸变的影响。

经过不断研究和实际检验,p-q法,i

p -i

q

法和自适应法已成为主流算法。一

般文献在讨论算法、仿真和样机实验时,局限于某种特定谐波状况下的THD或频谱分析,这样会有两方面欠缺,即未考虑实际中复杂而变化多端的谐波状况,另外只分析谐波成分也不够全面,检测速度也应考虑。本文将在简述三种算法的原理之后,着重分析算法的稳态和动态滤波性能,并给出各种典型的复杂谐波状况下的仿真分析。

1三种算法的基本原理

1.1基于瞬时无功理论的p-q法

在三相电路中,各相电压电流的瞬时值为e

a 、e

b

、e

c

和i

a

、i

b

、i

c

,进行变

换得到α-β平面上的向量

α-β平面上的瞬时有功电流i p、i q分别为i在e和e垂直方向上的投影:

其中:φ—i和e的夹角。

瞬时实功率p和瞬时虚功率q为:

在上述定义的基础上,发展起来两种检测算法,即p-q法和i p-i q法。运用MATLAB的Simulink进行p-q法的仿真原理如图1所示:

1.2基于瞬时无功理论的i

p -i

q

法(dq0法)

该算法也是从瞬时无功理论发展而来的。Simulink仿真如图2,该方法用锁

相环和正余弦发生电路得到与电网电压同相位的正余弦信号。经过运算得到i

p

和i

q

,通过LPF滤出直流分量在反变换后得出基波分量,再从原始的三相值中减去就是需检测的谐波分量。

1.3自适应检测法

这种方法是在自适应噪声对消原理的基础上发展起来的,把电压作为参考输入,负载电流作为原始输入,电压经自适应滤波处理后,输出与负载电流基波有功分量幅值、相位均相等的信号,将此信号从负载电流中扣除后,得到谐波和无

功电流分量的总和。具体的数学原理和推导见文[3],神经元学习速率η是影响滤波性能的重要参数。仿真原理如图3所示。

2稳态动态滤波性能分析

2.1衡量滤波性能的综合指标

判断滤波性能的优劣,应以在任何状况下能否快速精确的分离出谐波和无功分量为依据。所以要从各方面来考虑算法的性能,不能只考虑精确度或只顾及速度。

稳态滤波性能可视为滤波的精度指标,即输入稳定的谐波源,不论检测出谐波和无功分量的时延如何,以最终检测出的谐波与电网电流之差(即经过补偿后的电流)的THD(Total Harmonics Distortion)作为衡量标准。

动态滤波性能可视为滤波的速度指标,即最终补偿后的THD值在一定范围的条件下,在谐波出现或突变后的第几个周波,检测出的谐波分量才能完全跟踪上实际谐波分量。对于谐波信号的突变需考虑的几种典型系统暂态变化情况,如负荷电流幅值突变、非周期脉冲干扰等,在后面的仿真部分讨论。

以下对算法的滤波性能分析,不考虑采样频率大小的因素,也不考虑前向的

电流互感器、电压互感器和AD的因素,另外对算法的软硬件实现(单片机或DSP,汇编、C或混合编程)的优化,如预测算法也不作考虑。

2.2算法的滤波性能分析

以瞬时无功理论为基础的p-q和i

p -i

q

算法基本思想是,对输入信号进行变

换使其中的基频分量转化为直流量,而其他的倍频分量仍然为交流变化量,通过低通滤波提取包含基频信息的直流量,再反变换就得到了基频分量。其原理的数学推导[1]是严格的,理论上的精度是理想的。但其中低通滤波器LPF的设计,无论是模拟滤波器还是数字滤波器(IIR或FIR)中的某种滤波器类型,在具体实现时均达不到严格意义上的精确,因其带来的精度损失是无法避免的。另一方面对于动态滤波性能,算法的每一步骤除了LPF外均不存在时延,而LPF始终是非理想的,对包含直流和交流量的滤波响应速度也是有限的。

瞬时无功理论的核心变换矩阵C

pq ·C

αβ 可视为Park变换的一种,其实质是

将n次谐波变换为n-1次谐波信号,故一般的5、7、11、13、17、19等奇次谐波将变为200Hz、300Hz等的交流信号,而基频分量变为直流信号。由数字信号处理方面的理论,将直流信号从包含200Hz甚至更高频率的信号中分离出来,低通滤波器的参数要经过综合考虑,才能满足很高的滤波精度和足够快的响应速度。所以LPF的设计成为影响这类算法稳态和动态性能的环节。在仿真中,正是通过合理设计低通滤波器参数,使滤波性能达到最佳。

但p-q法和i

p -i

q

法在动态滤波性能上也是有区别的,即对于电压畸变的情

形,p-q法的检测精度随之变差,而i

p -i

q

法因其采用了PLL和正余弦发生电路,

检测精度不受电网电压畸变的影响。

自适应检测算法,稳态动态滤波性能和算法中的神经元学习速率有很大关系。

一般情况下η的取值范围: 0<η<f

s ,f

s

为采样周期。η应取值适中,η过

大,虽然检测速度较快,但稳定性可能会变差;η取值偏小,检测精度将提高但速度会变慢。至于η和滤波性能的具体关系以及改进算法在作者的另一篇文章[4]中讨论。

3仿真分析

3.1滤波性能的仿真测试内容

对于稳态滤波性能的仿真测试,是考察补偿后电流的THD值。而仿真谐波源的设置,根据实际工业情况,以奇次谐波为主,即1,5,7,11,13,17,19次,其幅值依次递减。考虑严重情况,仿真中幅值依次设为1.0,0.22,0.18,0.15,0.1,0.08,0.08,总畸变率THD达到了36.66%;另外,方波也是常见的非线性负载电流波形,THD为48.33%。

对于动态滤波性能的仿真测试,是考察谐波检测的时延。对实际中各种复杂的工况,应考虑的情况有:负荷电流幅值突变(Magnitude Flop),非周期脉冲干扰(Nonperiodic Pulse),谐波相位突变(Phase Shift),电网电压的畸变影响(Voltage Harmonics)。

三种算法的仿真参数设置均为数字离散状态,采样频率f s=5000Hz,仿真时间为0.2s,即10个周波;仿真解法为变步长解法ode45,最大步长为0 0001,误差限为0 001。经过综合考虑的低通滤波器LPF,为5阶Butterworth 数字滤波器,通带截止频率为40Hz,阻带截止频率为80Hz,通带的幅度响应为1,阻带的幅度响应为-20dB。

3.2稳态滤波性能仿真

按前面的设置,谐波源电流波形,p-q法、i

p -i

q

法和自适应法的仿真波形如

图4。i

sf 表示电流基波分量, i

sf

′表示补偿后的电流基波分量。

三种算法仿真,补偿前THD为36.66%,补偿后p-q法和i

p -i

q

法均为1.57%,

未近似为0%与采样频率和MATLAB的THD模块测量误差有关,1.57%可认为是理

想的。自适应法为1.75%,其中η取值为125。p-q法和i

p -i

q

法的检测精度都

很高,可见参数设计合理的LPF可达到很高的滤波精度,但自适应法仍不及其他两种,这与η的选择有关。

另外也可看出动态滤波性能,p-q法和i

p -i

q

法补偿电流在1.5到2个周波

就完全跟上了谐波分量,速度是很快的,可见LPF达到了很高的响应速度;而自适应法就相对较慢,在3到4个周波之后才能跟上谐波变化,这仍与η的选择

有关。这些在下面的仿真中还可看到。还有,p-q法和i

p -i

q

法的动态响应很相

近,其实从理论上分析两者也是没有差别的,除了电压畸变外,所以下面两种算法的动态性能仿真只以其中一种来分析。

3.3动态滤波性能仿真

3.3.1负荷电流幅值突变(Magnitude Flop)

仿真条件为在0.1s的时候谐波电流源的幅值突然降为原来的50%,为分析明显以方波作为谐波源,仿真结果如图5。

从图中可见,p-q法和i

p -i

q

法的动态响应速度是很快的,在1.5个周波已

完全可以跟上谐波分量;而自适应法的响应速度仍较慢,至少需3个周波。3.3.2非周期脉冲干扰(Nonperiodic Pulse)

仿真条件为,在0.1s和0.12s的时候在方波上分别叠加一个正脉冲和负脉冲,仿真结果如图6。

可见,非周期性的干扰对三种算法都没有影响。i

p -i

q

法的谐波分量波形如

图7,i

sh 和i

sh

′表示谐波实际值和检测值,可见在两次脉冲干扰时的谐波检测值

和实际值完全一致,并未出现抖动,另两种算法的谐波分量波形也是类似的。

3.3.3谐波相位突变(Phase Shift)

仿真条件为,在0.1s时方波的相位突然发生改变,滞后π/6,谐波源和i

p -i

q

法仿真波形如图8。可见此时i

p -i

q

法和自适应法动态跟踪速度都很快,1个周波

就稳定了。其中自适应法考虑了无功补偿,故在相位和幅值上有所不同。

3.3.4电压畸变(Voltage Harmonics)

仿真条件,电网电压基波幅值为1.0,考虑较严重状况,5、7次谐波幅值为0.08、0.05,电压波形THD为9.57%,0.1s系统电压发生畸变。电网电压和谐波

源电流波形、以及p-q法、i

p -i

q

法和自适应法的仿真波形如图9。

p-q法在电压畸变后的电流THD变为9.66%,效果明显较差;i

p -i

q

法和自适

应法补偿后的电流THD与电压畸变前一样,为1.57%、2.25%。可见i

p -i

q

法和自

适应法的补偿精度与系统电压畸变无关,这是因为这两种算法都有PLL锁相环和正弦余弦波形发生器,消除了系统电压的畸变影响。而p-q法由于采用畸变的电压波形运算,效果显然较差。另外,不同波形对自适应法滤波精度也是有影响的,可见自适应的精度相对较低,这仍然与其学习速率有关。

4结论

经过各种典型的稳暂态谐波状况仿真研究,可见三种算法的稳态动态滤波性能都是较理想的。对p-q法而言,LPF环节的参数设计合理可达到很高的稳态性能,和很快的动态响应速度。但受电压畸变的影响严重;另外该算法中涉及了除法,对模拟电路和数字电路的实现都不利。

对i

p -i

q

法而言,LPF的参数设计也是关键。相比p-q法,其优点是不受电

压畸变的影响,另外也没有除法运算,只多出锁相环电路和正余弦发生电路。因

此,是一种综合性能不错的算法。

自适应检测算法能克服电压畸变的影响,但相比以上两种算法,检测精度和速度不够理想,这与神经元学习速率相关,这方面可通过改进算法[4]提高其滤

波性能。

参考文献

[1]Akagi .et al. Generalized theory of the instantaneous reactive power inthree phase circuits. IPEC Tokyo `83,1983.

[2]刘进军,刘波,王兆安.基于瞬时无功功率理论的串联混合型单相电力有源滤波器[J].中国电机工程学报,1997(1)

[3]Qun Wang ,Ning Wu and Zhaoan Wang .A Neuron Adaptive Detecting Approach of Harmonic Current for APF and Its Realization of Analog Circuit. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 50, NO. 1, FEBRUARY 2001

[4]王冲,解大,陈陈. 一种自适应谐波检测技术的快速改进算法.[J]

电力电容器

建筑节能检测方法综述

建筑节能现场检测方法 田斌守 摘要本文综述了几种建筑物围护结构传热系数现场检测方法的原理、操作方法、适用条件,指出各种方法的优缺点及注意事项。 关键词建筑节能检测热流计法热箱法控温箱-热流计法非稳态法当今飞速发展的国民经济活动必然导致前所未有的资源能源消耗速度。而许多资源能源是不可再生的,为了人类的可持续发展,节约能源刻不容缓。据介绍,我国目前单位建筑面积采暖能耗相当于气候条件相近的发达国家的2~3倍,而建筑能耗也占全国能耗总量的27.5%。随着人民生活水平的不断提高、城市化进程的加快以及住房体制改革的深化,建筑能耗在我国增长趋势很大,很可能是我国今后能耗的一个主要增长点。为建设节约型社会,促进经济社会可持续发展,国家发展委员会发布了“节能中长期专项规划”,建筑节能作为三大重点领域中的一项,受到高度重视。建设部也相继发布了一系列建筑节能标准,其中包括若干强制性条款,目前正在建设领域逐步实施。 建筑节能工作从流程上可分为设计审查、现场检测、竣工验收三个大的阶段。对节能建筑的评价,从建设前期对施工图纸审查计算阶段、向现场检测和竣工验收转移是大势所趋。建筑节能现场检测也是落实建筑节能政策的重要保证手段。目前,全国范围内建筑节能检测都执行JGJ132-2001《采暖居住建筑节能检验标准》,它是最具权威性的检测方法,它的发布实施,为建筑节能政策的执行提供了一个科学的依据,使得建筑节能由传统的间接计算、目测定性评判到现在的直接测量,从此这项工作进入了由定性到定量、由间接到直接、由感性判断到科学检测的新阶段。 根据我们对建筑节能影响因素和现场检测的可实施性的分析,我们认为能够在实验室检测的宜在实验室检测(如门窗等作为产品在工程使用前后它的性状不会发生改变),除此之外,只有围护结构是在建造过程中形成的,对它的检测只能在现场进行。因此建筑节能现场检测最主要的项目是围护结构的传热系数,这也是最重要的项目。如何准确测量墙体传热系数是建筑节能现场检测验收的关键。目前对建筑节能现场检测的、围护结构(一般测外墙和屋顶、架空地板)的

电力系统谐波及其检测方法研究

第23卷 第5期 电子测量与仪器学报 Vol. 23 No. 5 2009年5月 JOURNAL OF ELECTRONIC MEASUREMENT AND INSTRUMENT · 29 · 本文于2008年1月收到。 *基金项目: 国家自然科学基金(编号: 60775047)资助项目; 国家863计划(编号: 2007AA042244)资助项目。 电力系统谐波及其检测方法研究* 唐 求 王耀南 郭斯羽 (湖南大学电气与信息工程学院, 长沙 410082) 摘 要: 谐波测量在电力系统中占有重要的作用和地位。本文概述了谐波测量的主要方法, 对基于加窗插值FFT 的谐波测量方法进行了分析和研究。在此基础上, 设计并实现了一种多功能虚拟谐波测量系统, 采用加窗插值FFT 算法, 以图形化编程语言LabVIEW 为开发平台, 实现了电力系统电压、电流谐波参数的测量。与传统的谐波测量系统相比, 该系统硬件简单、编程灵活、可自定义、数据分析与处理能力强、使用方便, 测量结果证明了系统的可行性和准确性。 关键词: 谐波测量;加窗插值FFT ;虚拟仪器;LabVIEW 中图分类号: TM714 文献标识码: A 国家标准学科分类代码: 470.4054 Research on harmonics and its measurement method in power system Tang Qiu Wang Yaonan Guo Siyu (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China) Abstract: The harmonic measurement plays an important role in power system. In this paper, some main harmon-ics measurement methods are generally described, and a harmonic measurement method based on interpolating win-dowed FFT is discussed. According to the interpolating windowed FFT method, a multifunctional virtual instrument system for harmonic measurement of voltage and current signals is designed and implemented with LabVIEW envi-ronment. Compared with traditional harmonic measurement system, this system is flexible, self-defined, capable of data processing and analysis, with simple hardware and so on. The measurement results show the feasibility and the validity of the system. Keywords: Harmonic measurement;interpolating windowed FFT;virtual instrument;LabVIEW 1 引 言 近年来, 随着工业和民用用电负荷的迅速增加以及各种电力电子设备的广泛应用, 非线性负载的数量和容量日益增加, 电力系统谐波污染日趋严重。电网谐波使得电压、电流的波形发生畸变, 使电力系统的发、供、用电设备出现许多异常现象和故障, 对电力系统的安全、经济运行造成极大的危害。谐波问题已成为电力部门普遍重视和关心的问题[1] 。谐波测量是处理谐波问题的基础, 是分析和控制电网谐波含量的依据。 传统的电力谐波测量方法多采用电力谐波分析仪或MATLAB 软件包, 但是它们不具有图形化编程 和远程测控能力, 因此具有局限性。 本文在研究谐波测量的主要方法的基础上, 设计了基于加窗插值FFT 的虚拟谐波测量系统。实现了三相电压、三相电流的总谐波畸变率(THD)以及各次(1~13次)谐波畸变率的测量。系统集信息采集、处理和传输于一体, 具有数据采集、谐波分析处理和显示等功能, 试验结果表明了其性能良好, 测量稳定。 2 谐波测量方法 谐波测量是解决谐波问题的基础和主要依据, 通过对谐波的检测, 可以实时监测电网中谐波的含量及其潮流方向, 计量各次谐波含量、 谐波电压电流幅值、相位等参数, 从而提高测量和计量仪表的准确

谐波及无功电流检测方法对比分析

谐波及无功电流检测方法对比分析 0 引言 APF补偿电流的检测不同于电力系统中的谐波测量。它不须分解出各次谐波分量,而只须检测出除基波和有功电流之外的总的高次谐波和无功畸变电流。难点在于准确、实时地检测出电网中瞬态变化的畸变电流,为有源电力滤波器控制系统进行精确补偿提供电流参考,这是决定APF性能的关键。目前文献已报道运行的三相APF中所使用的几种谐波电流检测方法,除了各自存在的难以克服的缺陷外,共同存在的问题是,由于是开环检测系统,故对元件参数和系统的工作状况变化依赖性都比较大,且都易受电网电压畸变的影响。对单相电路的谐波和无功电流的检测还存在实时性较差的缺点。 本文对目前有源电力滤波器中应用的畸变电流检测与控制方法进行了分析比较,在此基础上,针对APF中只须检测总的畸变电流,反向后注入系统,以抵消或补偿系统中畸变电流,使电网仅提供基波有功电流这一工作特点,从保证APF能最有效地工作出发,综合瞬时无功功率理论检测法的快速性和闭环电路的鲁棒性,提出了基于瞬时无功功率理论的闭环检测方案。从谐波及无功电流开环、闭环检测电路抽象出检测电路的本质(本文称为统一模型),在此基础上,给出了检测电路的优化设计方案,研究了检测系统中等效低通滤波器的阶数与截止频率对检测精度与快速性的影响,推导了统一模型下闭环检测电路的实现。最后,通过实验加以验证。 1 基波幅值检测原理 设单相电路中的电源电压为 u s= U sin t(1) 非线性负荷电流为 i L(t)=i f(t)+i h(t)=i fp(t)+i fq(t)+i h(t)=i fp(t)+i c(t)(2) 式中:i f(t)为i L(t)的基波电流; i h(t)为i L(t)中高次谐波电流; i fp(t),i fq(t)分别为基波电流的有功分量和无功分量; i c(t)为要补偿的谐波和无功电流之和,称为畸变电流。 因为,负荷电流中的基波有功分量必定是一个初相角与电网电压相同,角频率为基波角频率ω的正弦波,所以,我们可以设负荷电流的基波有功分量为 i fp(t)=A sin t(3) 若能求出A的大小,则可由式(3)得出基波有功电流的表达式。

电力系统谐波检测与治理的研究

电力系统谐波检测与治理的研究 摘要:目前电力系统谐波危害已经引起了各个部门的关注,为了整个供电系统 的供电质量,必须对谐波进行有效的检测和治理。 关键字:电力谐波检测治理 前言随着我国工业化进程的迅猛发展,电网装机容量不断加大,电网中电力电子元件的 使用也越来越多,致使大量的谐波电流注入电网,造成正弦波畸变,电能质量下降,不但对 电力系统的一些重要设备产生重大影响,对广大用户也产生了严重危害。目前,谐波与电磁 干扰、功率因数降低被列为电力系统的三大公害,因而了解谐波产生的机理,研究和清除供 配电系统中的高次谐波,对改于供电质量、确保电力系统安全、经济运行都有着十分重要的 意义。 一、电力系统谐波危害 ①谐波会使公用电网中的电力设备产生附加的损耗,降低了发电、输电及用电设备的效率。大量三次谐波流过中线会使线路过热,严重的甚至可能引发火灾。 ②谐波会影响电气设备的正常工作,使电机产生机械振动和噪声等故障,变压器局部严 重过热,电容器、电缆等设备过热,绝缘部分老化、变质,设备寿命缩减,直至最终损坏。 ③谐波会引起电网谐振,可能将谐波电流放大几倍甚至数十倍,会对系统构成重大威胁,特别是对电容器和与之串联的电抗器,电网谐振常会使之烧毁。 ④谐波会导致继电保护和自动装置误动作,造成不必要的供电中断和损失。 ⑤谐波会使电气测量仪表计量不准确,产生计量误差,给供电部门或电力用户带来直接 的经济损失。 ⑥谐波会对设备附近的通信系统产生干扰,轻则产生噪声,降低通信质量;重则导致信息丢失,使通信系统无法正常工作。 ⑦谐波会干扰计算机系统等电子设备的正常工作,造成数据丢失或死机。 ⑧谐波会影响无线电发射系统、雷达系统、核磁共振等设备的工作性能,造成噪声干扰 和图像紊乱。 二、谐波检测方法 1.模拟电路 消除谐波的方法很多,即有主动型,又有被动型;既有无源的,也有有源的,还有混合 型的,目前较为先进的是采用有源电力滤波器。但由于其检测环节多采用模拟电路,因而造 价较高,且由于模拟带通滤波器对频率和温度的变化非常敏感,故使其基波幅值误差很难控 制在10%以内,严重影响了有源滤波器的控制性能。近年来,人工神经网络的研究取得了较 大进展,由于神经元有自适应和自学习能力,且结构简单,输入输出关系明了,因此可用神 经元替代自适应滤波器,再用一对与基波频率相同,相位相差90度的正弦向量作为神经元 的输入。由神经元先得到基波电流,然后检测出应补偿的电流,从而完成谐波电流的检测。 但人工神经网络的硬件目前还是一个比较薄弱的环节,限制了其应用范围。 2.傅立叶变换 利用傅立叶变换可在数字域进行谐波检测,电力系统的谐波分析,目前大都是通过该方 法实现的,离散傅立叶变换所需要处理的是经过采样和A/D转换得到的数字信号,设待测信 号为x(t),采样间隔为 t秒,采样频率 =1/ t满足采样定理,即大于信号最高频率分量的2倍,则采样信号为x(n t),并且采样信号总是有限长度的,即n=0,1……N-1。这相当于对无限长 的信号做了截断,因而造成了傅立叶变换的泄露现象,产生误差。此外,对于离散傅立叶变 换来说,如果不是整数周期采样,那么即使信号只含有单一频率,离散傅立叶变换也不可能 求出信号的准确参数,因而出现栅栏效应。通过加窗可以减小泄露现象的影响。 3.小波变换 小波变换已广泛应用于信号分析、语音识别与合成、自动控制、图象处理与分析等领域。电力谐波是由各种频率成分合成的、随机的、出现和消失都非常突然的信号,在应用离散傅 立叶变换进行处理受到局限的情况下,可充分发挥小波变换的优势。即对谐波采样离散后,

三种谐波和无功电流检测算法的综合性能比较

三种谐波和无功电流检测算法的综合性能比较 王冲,解大,陈陈 (上海交通大学电子信息与电气工程学院,上海市 200240) 摘要:有关谐波和无功电流的检测方法,学界提出了三种主流算法,即 p-q法、i p -i q 法和自适应电流检测法。一般文献只对算法某些方面的性能进行探 讨,并未就算法的稳态和动态滤波性能进行综合研究。本文将对这三种算法的综合滤波性能对比研究,并给出各种典型的复杂谐波状况下的仿真验证。 关键词:谐波检测;无功补偿;电力有源滤波器 0引言 电力电子技术的快速发展使得非线性装置在工业界广泛使用,随之产生的谐波污染问题也日益严重。高次谐波和无功电流的补偿已成为电力电子学和现代电力系统中亟待解决的问题。目前,有源滤波器(Active Power Filter)技术可视为最有效和最具潜力的方案。而其谐波和无功电流检测技术是整个方案的关键之处,能否快速精确的检测出需补偿的分量,并具有良好的动态跟踪性能,直接决定了装置的整体滤波性能。 谐波和无功电流检测方法一般有: (1)基于频域分析的FFT方法。原理是将谐波分量分解再合成出总的谐波分量,其特点是速度慢,且对高次谐波检测的效果不佳,同时无法检测出无功分量。 (2)用模拟带通滤波器或陷波器检测高次谐波电流。由于滤波器的中心频率固定,当电网频率波动时,滤波器效果将随之变差。此外,滤波器的中心频率对元件的参数十分敏感,这样较难得到理想的幅频特性和相频特性。同样,该法也不能分离出无功电流。 (3)基于“瞬时无功功率理论”的电流检测法。自1983年日本学者赤木泰文 提出该理论[1]以来,已发展出成熟的算法,即p-q法和i p -i q 法。理论上可检测

船舶电力系统中的谐波检测方法综述

船舶电力系统中的谐波检测方法综述 船舶电力系统是一个独立的、小型的完整电力系统,由于整流型,冲击性等非线性负荷的存在,所以对比陆地大电网,船舶电力系统有着更加严重的电能质量问题,而其中最主要的问题就是谐波,谐波会使船舶电网供电质量指标严重下降,同时使得电网各个部件运行情况恶化。所以如何更快速更准确的测量出系统中的谐波与简谐波,成为了全世界的焦点。文章主要介绍了目前流行的谐波检测方法,并详细论述了各种检测方法上的优势与不足,以便在检测过程中选择更加恰当的方法。 标签:船舶电力系统;谐波;检测方法 1 概述 船舶電力系统是一个独立的系统,随着电力技术的飞速发展以及科技的进步,船舶电力系统已经从早期的单一照明供电,逐渐发展成现代的船舶电力。然而,正是由于大量半导变流器的普遍投入使用,以及电力技术的应用,这使得船舶电力系统中的谐波污染日益严重[1]。 谐波会造成电动机的电机和变压器的附加损耗,并且产生噪声、过热现象、谐波过电压以及机械振动,甚至会损坏变压器与电机。同时谐波会引起,电流变化率电压变化率过高或产生过热效应,控制系统误差,会给换流装置带来影响、并且引起晶闸管故障[2]。高次谐波也会对线路以及通讯设备带来干扰,从而产生电力测量仪表中的误差。 而谐波问题涉及面很广,其中包括畸变波形、谐波抑制的分析方法、谐波潮流计算、电网谐波潮流计算、谐波测量、谐波源分析以及谐波限制标准等[2]。谐波检测是谐波问题的一个重要分支,也是研究谐波问题的基础与出发点。 2 基于傅里叶变换的谐波检测算法 虽然加窗插值法能够减小一定的误差,但为了检测出信号中所有的间谐波和谐波分量,窗宽在大多数情况下可能会高达几十个信号周期,并且容易受噪声干扰,这对实时检测是不利的。 3 基于小波变换的谐波检测方法 小波变换是将信号与一个时域和频域均具有局部化性质的平移伸缩小波基函数进行卷积,将信号分解成位于不同频带时段上的各个成分。小波变换是在工程应用中最重要的是最优小波选择,目前主要是通过小波分析处理信号的结果与结论的误差来判定小波的好坏,并由此选择小波基。 特殊地,取a0=2,b0=1,可以得到二进小波(Dyadic Wavelet),相应的变

水中油类测定分析方法的综述

水中油类测定分析方法的综述 李海州 (浙江海洋学院海洋与技术学院,浙江舟山316004) [摘要]:本文对国内外学者有关水中油类的测定方法做了比较系统的综述。对几种水中油类的常用方法,重量法、紫外分光光度法、荧光分光光度法、红外分光光度法和非分散红外光度法做了简要介绍,并对其优劣进行了评价。另外,介绍了测定水中油类含量存在的难点、发展趋势和技术改进等。 关键词:水;油类;测定分析 油类是指任何类型的(矿物油、植物油等)及其炼制品(汽油、柴油、机油、煤油等)、油泥和油渣[1]。油类主要有漂浮油、分散油、乳化油、溶解油和油类附着在固体悬浮物表面而形成油膜---固体物5种形式。全世界每年至少有500—1000吨油类通过各种途径进入水体,由于漂浮于水体表面的油将会影响空气和水体表面氧的交换,而分散于水体中以及吸附于悬浮颗粒上或以乳化状态存在于水体的油易被微生物氧化分解,并将消耗水中的溶解氧,从而使水质恶化;油膜还能附着于鱼鳃上,使鱼类窒息而死;当鱼类产卵期,在含有油类污染物质废水中孵化的鱼苗,多数为畸形,生命力低下,易于死亡;含有油类污染物的废水进入水体后,造成的危害很为严重,不仅影响水生生

物的生长,降低水体的自我净化能力,而且影响水体附近的环境,因此,油类是水体环境中的主要污染物之一,在水质监测中,也是一项重要的监测项目。要消除油类对环境的污染和危害,首先就必须能够准确的测定水中油类的含量。 然而,水中油类含量测定又是比较复杂的,因为水中的油类成分是相当复杂的,此外不同地区、不同行业水体中油类污染的成分也不同,无法有用单一的油标准进行对照,无法准确测定,所以水体中油类物质含量的测定问题是环境分析化学一个古老、重要而又困难的问题。目前水体中油类测定常用的方法有重量法、紫外分光光度法、荧光分光光度法、非分散红外光度和国家最新颁布的国家标准方法红外分光光度法等[2],本文简要介绍以上几种方法的原理和优劣,及人们对水体中油类监测分析方法的创新和改进。 1.重量法 重量法是用有机萃取剂(石油醚或正己烷)提取酸化了的样品中的油类,将溶剂蒸发掉后,称重后计算油类含量。重量法应用范围不受油品的限制,可测定含油量较高的污水,不需要特殊的仪器和试剂,测定结果的准确度较高、重复性较好。缺点是损失了沸点低于提取剂的油类成分,方法操作复杂,灵敏度低,分析时间长,并要耗费大量的提取剂,而且方法的精密度随操作条件和熟练程度不同差异很大。因此,水体中动植物油含量较高的,采用该方法较适合,可以得到比较准确的结果;工业废水、石油开采及炼制行业中含油量较高,此方

电力系统谐波检测与治理的研究

电力系统谐波检测与治理的研究 1、谐波的定义 供电系统谐波的定义是对周期性非正弦电量进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的力量,这部分电量称为谐波。谐波频率与基波频率的比值(n=fn/f1)称为谐波次数。电网中有时也存在非整数倍谐波,称为非谐波或分数谐波。谐波实际上是一种干扰量,使电网受到“污染”。 2、谐波的危害 电网谐波造成电网污染,正弦电压波形畸变,使电力系统的发供用电设备出现许多异常现象和故障,情况日趋严重。电力系统中谐波的危害是多方面的,概括起来有以下几个方面: 2.1 对供配电线路的危害 2.1.1 影响线路的稳定运行 供配电系统中的电力线路与电力变压器一般采用电磁式继电器、感应式继电器或晶体管继电器予以检测保护,使得在故障情况下保证线路与设备的安全。但由于电磁式继电器与感应式继电器对10%以下含量高达40%时又导致继电保护误动作,因而在谐波影响下,不能全面有效地起到保护作用。晶体管继电器虽然具有许多优点,但由于采用了整流取样电路,容易受谐波影响,产生误动或拒动。这样,谐波将严重威胁供配电系统的稳定与安全运行。 2.1.2影响电网的质量 电力系统中的谐波能使电网的电压与电流波形发生畸变。如民用电配电系统中的中性线,由于荧光灯、调光灯、计算机等负载,会产生大量的奇次谐波,其中3次谐波的含量较低,可达40%;三相配电线路中,相线上的3的整数倍谐波,在中性线上会叠加,使中性线的电流值可能超过相线上的电流。另外,相同频率的谐波电压与谐波电流要产生同次谐波的有功功率与无功功率,从而降低电网电压,浪费电网的容量。 2.2 对电力设备的危害 2.2.1对电力容器的危害 当电网存在谐波时,投入电容器后,其端电压增大,通过电容器的电流增加得更大,使电容器损耗功率增加。对于膜低复合介质电容器,虽然允许有谐波时的损耗功率为无谐波时损耗功率的1.38倍;对于全膜电容器,允许有谐波时的损耗功率为无谐波时的1.43倍,但如果谐波含量较高,超出电容器允许条件,就会使电容器过电流和过负荷,损耗功率超过上述值,使电容器异常发热,在电场和温度的作用下绝缘介质会加速老化。尤其是电容器投入在电压已经畸变的电网中时,还可能使电网的谐波加剧,即产生谐波扩大现象。另外,谐波的存在往往使电压器呈现尖顶波形,尖顶电压波易在介质中诱发局部放电,且由于电压变化率大,局部放电强度大,对绝缘介质更能起到加速老化的作用,从而缩短电容器的使用寿命。一般来说,电压每升高10%,电容器的寿命就要缩短1/2左右。再者,在谐波严重的情况下,还会使电容器鼓肚、击穿或爆炸。 2.2.2 对电力变压器的危害 谐波使变压器的铜耗增大,其中包括电阻损耗、导体中的涡流损耗与导体外部因漏磁通引起的杂散损耗都要增加。谐波还使变压器的铁耗增大,这主要表现在铁心中的磁滞损耗增加,谐波使电压的波形变得越差,则磁滞损耗越大。同时

基于PO法的谐波电流与无功电流检测方法没计

基于PO法的谐波电流与无功电流检测方法没计 【摘要】抑制谐波和提高功率因数是涉及电力电子技术、电气自动化技术和电力系统的一个重大课题。本文首先对谐波的危害进行了简述,分析了谐波的定义,重点讨论了三相瞬时无功功率理论,并对以此为基础的谐波电流检测法PQ法进行了理论分析和仿真验证。 【关键词】功率因数;谐波抑制;瞬时无功功率 0 引言 电力电子技术在推动电力系统发展,灵活高效地利用电能的同时,其设备又成为电力系统中最主要的谐波源,同时消耗无功功率[1-2]。谐波的危害是多方面的,主要体现在:1)对供配电线路的危害:主要是影响线路的稳定运行和电能质量;2)对电力设备的危害:包括对电力电容器的危害、对电力变压器的危害和对电力电缆的危害;3)对用电设备的危害:包括对电动机的危害、对低压开关设备的危害和对弱电系统设备的干扰。4)对人体和电力测量准确性的影响:目前采用的电力测量仪表当谐波较大时将产生计量混乱,测量不准确。谐波污染对电力系统安全、稳定、经济运行构成潜在的威胁,给周围的电器环境带来极大影响并对人体健康存在潜在危害,被公认为电网的危害和人体生命的杀手。 1 电力谐波的定义 目前国际普遍定义谐波为:谐波是一个周期电气量正弦波分量,其频率为基波频率的整数倍[3]。以正弦波电压为例,可以表示式(1):式中U是电压有效值,θ是初相角,ω是角频率,T为周期;对于周期为T的非正弦波信号,在满足狄里赫利的条件下,可分解为如式(2)的傅立叶级数。 2 基于PQ法的谐波电流和无功电流检测设计 2.1 三相瞬时无功功率理论 2.3 PQ检测仿真设计和验证 3 结论 本文以现代电力生活中大量非线形负荷造成的谐波现象为背景,提出了谐波电流抑制这个现实而急切的问题。本文揭示了谐波的产生原因和危害,重点分析了基于PQ法的谐波电流和无功电流检测法。该方法主要是将三相电流电压通过帕克转换到两相坐标上,利用向量的有关性质,在坐标系中可得到电源电流与两相电流的关系以及电源电压和两相电压的关系,从另一侧面表达出电流与功率的关系,将无功功率与有功功率分开来分析。最后以一三相电轮为实例作出仿真设计,证明了PQ法在同时检测谐波电流和无功电流时具有无延迟性。

电力系统谐波检测方法综述

综述 2019年第9期 1电力系统谐波检测方法综述 陈和洋1,3 吴文宣2 郑文迪1 晁武杰3 唐志军3 (1. 福州大学电气工程与自动化学院,福州 350108; 2. 国网福建省电力有限公司,福州 350003; 3. 国网福建省电力有限公司电力科学研究院,福州 350007) 摘要 电力系统谐波检测为谐波治理提供了方向,同时也是谐波监测系统的核心。本文首先 阐述了电力系统谐波的诸多危害;其次对一些传统检测方法和近期新方法展开讨论和分析,比如瞬时无功功率法、快速傅里叶变换法、小波变换法、希尔伯特-黄变换法等;最后阐述了将来谐波检测领域的发展趋势。 关键词:谐波检测;瞬时无功功率;快速傅里叶变换;小波变换;希尔伯特-黄变换;人工神 经网络;复合检测 Reviews of power system harmonic measurement methods Chen Heyang 1,3 Wu Wenxuan 2 Zheng Wendi 1 Chao Wujie 3 Tang Zhijun 3 (1. College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108; 2. State Grid Fujian Electric Power Co., Ltd, Fuzhou 350003; 3. Electric Power Reserch Institute of State Grid Fujian Electric Power Co., Ltd, Fuzhou 350007) Abstract Power system harmonic detection provides the direction for harmonic control and is also the core of the harmonic monitoring system. This paper first expounds the many hazards of power system harmonics, and then discusses and analyzes some traditional detection methods and recent new methods, such as: instantaneous reactive power method, fast Fourier transform method, wavelet transform method, Hilbert-Hang transformation method, etc., finally pointed out the future development trend and personal outlook in the field of harmonic detection. Keywords :harmonic detection; instantaneous reactive power; fast Fourier transform (FFT); wavelet transform; Hilbert-Huang transform (HHT); artificial neural network (ANN); composite detection 100多年来,随着电力系统的不断发展,以非化石能源为主的新一代电力系统格局已经产生,将来清洁能源和可再生能源将占有很大的比重。在此背景下,电力电子元器件的大量使用导致电力系统不可避免地受到谐波的污染。电力系统中的谐波分量过大将造成诸多危害:①使电能利用率降低,电力系统设备产生附加能耗,同时增加了电气应力,影响设备安全稳定运行[1];②大量分布式电源在公共连接点(point of common coupling, PCC )集中被 接入,可能放大电网的谐波振荡;③在柔性直流输 电运行过程中,直流场持续的谐波扰动可能引发一 系列不稳定现象,从而影响系统的安全稳定运行; ④谐波还可能使得保护误动作,测量装置产生误差,甚至可能会对通信线路产生干扰,影响通信效果。 针对谐波产生的种种危害,我国在20世纪90年代就已经开展了谐波治理的相关研究,并制定了《电能质量:公用电网谐波》(GB/T 14549—93)国家标准对公共电网谐波允许值进行了限制。此后对电力系统进行谐波治理,改善电能质量成为一项持续而长久的工作。有源电力滤波器(active power filter, APF )是一种能够动态抑制谐波、全面改善电能质量的电力电子装置,谐波电流的精确、实时检测直接影响其动态抑制的效果。 对谐波信号进行高精度、实时地检测是谐波治 福建省自然基金项目(2017J01480) 国网福建省电力有限公司科技项目(52130416001P )

目标检测方法简要综述

龙源期刊网 https://www.doczj.com/doc/4715116624.html, 目标检测方法简要综述 作者:栗佩康袁芳芳李航涛 来源:《科技风》2020年第18期 摘要:目标检测是计算机视觉领域中的重要问题,是人脸识别、车辆检测、路网提取等领域的理论基础。随着深度学习的快速发展,与基于滑窗以手工提取特征做分类的传统目标检测算法相比,基于深度学习的目标检测算法无论在检测精度上还是在时间复杂度上都大大超过了传统算法,本文将简单介绍目标检测算法的发展历程。 关键词:目标检测;机器学习;深度神经网络 目标检测的目的可分为检测图像中感兴趣目标的位置和对感兴趣目标进行分类。目标检测比低阶的分类任务复杂,同时也是高阶图像分割任的重要基础;目标检测也是人脸识别、车辆检测、路网检测等应用领域的理论基础。 传统的目标检测算法是基于滑窗遍历进行区域选择,然后使用HOG、SIFT等特征对滑窗内的图像块进行特征提取,最后使用SVM、AdaBoost等分类器对已提取特征进行分类。手工构建特征较为复杂,检测精度提升有限,基于滑窗的算法计算复杂度较高,此类方法的发展停滞,本文不再展开。近年来,基于深度学习的目标检测算法成为主流,分为两阶段和单阶段两类:两阶段算法先在图像中选取候选区域,然后对候选区域进行目标分类与位置精修;单阶段算法是基于全局做回归分类,直接产生目标物体的位置及类别。单阶段算法更具实时性,但检测精度有损失,下面介绍这两类目标检测算法。 1 基于候选区域的两阶段目标检测方法 率先将深度学习引入目标检测的是Girshick[1]于2014年提出的区域卷积神经网络目标检测模型(R-CNN)。首先使用区域选择性搜索算法在图像上提取约2000个候选区域,然后使用卷积神经网络对各候选区域进行特征提取,接着使用SVM对候选区域进行分类并利用NMS 回归目标位置。与传统算法相比,R-CNN的检测精度有很大提升,但缺点是:由于全连接层的限制,输入CNN的图像为固定尺寸,且每个图像块输入CNN单独处理,无特征提取共享,重复计算;选择性搜索算法仍有冗余,耗费时间等。 基于R-CNN只能接受固定尺寸图像输入和无卷积特征共享,He[2]于2014年参考金字塔匹配理论在CNN中加入SPP-Net结构。该结构复用第五卷积层的特征响应图,将任意尺寸的候选区域转为固定长度的特征向量,最后一个卷积层后接入的为SPP层。该方法只对原图做一

有源电力滤波器中的谐波检测电路设计

有源电力滤波器中的谐波检测电路设计 摘要:针对现在有源电力滤波器中谐波检测的缺陷,设计出一种基于DSP、AD756和MAX260等硬件相结合的谐波检测电路。分析了ip-iq谐波电流检测算法,并且在硬件上实现。介绍了硬件结构原理,给出硬件设计框图和谐波检测各部分的程序流程,并研制出谐波检测电路。实验结果验证了谐波检测的快速性和准确性,系统运行稳定可靠,有较好的应用前景。关键词:谐波检测;TMS320F2812;AD7656;PLL;MAX260;C8051F330 对于有源电力滤波器(APF)而言,实时准确地检测出谐波电流是非常关键的,它的快速性、准 确性、灵活性以及可靠性直接决定APF的补偿性能。设计的谐波检测电路检测出的多路模拟信号会有一定的延迟性,这会大大影响APF计算谐波的精确性和准确性。本文中谐波检测装置所用的AD7656具有6路同步采样特性,克服了测量结果之间延迟的缺点,使得测量精度高。以上优点弥补了目前APF中谐波电流检测技术的缺陷,而且抗混叠滤波器、隔离放大器、过零检测电路、锁相倍频电路的设计增强了检测的精确性。1 装置整体运行原理及相关算法1.1 装置运行原理图1为并联型有源电力滤波器的原理结构框图。图中,交流电网对非线性负载电,非线性负载为谐波源,产生谐波并且消耗无功功率。有源电力滤波器由4部分组成:谐波电流检测电路、电流跟踪控制电路、主开关器件驱动电路和主电路。谐波电流检测电路采用基于瞬时无功功率理论的ip-iq算法,根据有源电力滤波器的补偿目的检测出负载电流中的谐波分量,同时还要检测直流侧母线电容电压。然后将这些信号输入电流跟踪控制电路,通过控制算法生成一系列PWM信号,以此作为补偿电流的指令信号。这些信号经过电平转换后输入主开关器件驱动电路,驱动主电路中的主开关器件。此时,APF 产生并向电网注入补偿电流,该电流与非线性负载电流相位相反,幅值为负载

电力系统中的谐波检测及谐波抑制-最新年文档

电力系统中的谐波检测及谐波抑制 刖言 随着我国工业化进程的迅猛发展,电网装机容量不断加大。 电网中电力电子原件的使用也越来越多,致使大量的谐波电流注入电网,造成正弦波畸变,电能质量下降,不但对电力系统的一些重要设备产生重大影响,对广大用户也产生了严重危害。目前, 谐波于电磁干扰、功率因数降低被列为电力系统的三大公害,因而了解谐波产生的机理,演技和清除供配电系统中的高次谐波, 对于改善供电质量、确保电力系统安全、经济运行都有着十分重要的意义。 、电力系统谐波危害 ①谐波会使公用电网中的电力设备产生附加的损耗,降低了 发电、输电及用电设备的效率。 ②谐波会影响电气设备的正常工作, 使电机产生机械振动和 噪声等故障,变压器局部严重过热,电容器、电缆等设备过热, 绝缘部分老化、变质,设备寿命缩减,直至最终损坏。 ③谐波会引起电网谐振,可能将谐波电流放大几倍甚至数十 倍,会对系统构成重大威胁,特别是对电容器和与之串联的电抗器,电网谐振常会使之烧毁。 ④谐波会导致继电保护和自动装置误动作,造成不必要的供电中断和损失。 ⑤谐波会使电气测量仪表不准确,产生计量误差,给供电部门或电力用户带来直接的经济损失。 ⑥谐波会对设备附近的通信系统产生干扰,轻则产生噪音,境地通信质量;重则导致信息丢失,使通信系统无法正常工作。 ⑦谐波会干扰计算机系统等电子设备的正常工作,造成数据丢失或

死机。 ⑧谐波会影响无线电发射系统、雷达系统、核磁共振等设备的工作性能,造成噪音干扰和图像紊乱。 二、谐波检测 1. 模拟电路 消除谐波的方法很多,既有主动型,又有被动型;既有无源的,也有有源的,还有混合型的,目前较为现金的是采用有源电力滤波器。但由于其检测环节多采用模拟电路,因而造价较高,且由于模拟带通滤波器对频率和温度的变化非常敏感,故使其基波复制误差很难控制在10%以内,严重影响了有源滤波器的控制 性能。 2. 傅立叶变换 利用傅立叶变换可在数字域进行谐波检测,电力系统的谐波分析,目前大都是通过该方法实现的,离散傅立叶变换所需要处理的是经过采样和A/D 转换得到的数字信号,设待测信号为x(t), 采样间隔为t 秒,采样频率=1/t 满足采样定理,即大于信号最高频率分量的2 倍,则采样信号为x(n t) ,并且采样信号总是

建筑节能检测方法综述

建筑节能检测方法综述 The Standardization Office was revised on the afternoon of December 13, 2020

建筑节能现场检测方法 田斌守 摘要本文综述了几种建筑物围护结构传热系数现场检测方法的原理、操作方法、适用条件,指出各种方法的优缺点及注意事项。 关键词建筑节能检测热流计法热箱法控温箱-热流计法非稳态法当今飞速发展的国民经济活动必然导致前所未有的资源能源消耗速度。而许多资源能源是不可再生的,为了人类的可持续发展,节约能源刻不容缓。据介绍,我国目前单位建筑面积采暖能耗相当于气候条件相近的发达国家的2~3倍,而建筑能耗也占全国能耗总量的%。随着人民生活水平的不断提高、城市化进程的加快以及住房体制改革的深化,建筑能耗在我国增长趋势很大,很可能是我国今后能耗的一个主要增长点。为建设节约型社会,促进经济社会可持续发展,国家发展委员会发布了“节能中长期专项规划”,建筑节能作为三大重点领域中的一项,受到高度重视。建设部也相继发布了一系列建筑节能标准,其中包括若干强制性条款,目前正在建设领域逐步实施。 建筑节能工作从流程上可分为设计审查、现场检测、竣工验收三个大的阶段。对节能建筑的评价,从建设前期对施工图纸审查计算阶段、向现场检测和竣工验收转移是大势所趋。建筑节能现场检测也是落实建筑节能政策的重要保证手段。目前,全国范围内建筑节能检测都执行JGJ132-2001《采暖居住建筑节能检验标准》,它是最具权威性的检测方法,它的发布实施,为建筑节能政策的执行提供了一个科学的依据,使得建筑节能由传统的间接计算、目测定性评判到现在的直接测量,从此这项工作进入了由定性到定量、由间接到直接、由感性判断到科学检测的新阶段。 根据我们对建筑节能影响因素和现场检测的可实施性的分析,我们认为能够在实验室检测的宜在实验室检测(如门窗等作为产品在工程使用前后它的性状不会发生改变),除此之外,只有围护结构是在建造过程中形成的,对它的检测只能在现场进行。因此建筑节能现场检测最主要的项目是围护结构的传热系数,这也是最重要的项目。如何准确测量墙体传热系数是建筑节能现场检测验收的关键。目前对建筑节能现场检测的、围护结构(一般测外墙和屋顶、架

一种简单实用的APF 谐波电流检测实验系统

一种简单实用的APF谐波电流检测实验系统① 李自成,任明炜,李彦旭 (江苏大学电气信息工程学院,镇江 212013) 摘 要:现有的多种有源电力滤波器(Active Power Filter, APF)单相电路谐波电流检测方法,它们的有效性均采用仿真验证,而缺少实验环节。针对此问题,将UA206 A/D数据采集卡通过PCI口与计算机相连,以电源电压和负载电流作为输入信号可以构成一种简单实用的APF谐波电流检测实验系统。该系统具有结构简单、稳定性好、可靠性高、程序设计较为容易等特点。使用此系统对一种基于神经网络的谐波电流检测方法进行了实验,实验证实使用此实验系统可以方便验证所提出的APF谐波电流检测方法的正确性和检测性能。 关键词:有源电力滤波器;谐波电流;实验系统;A/D数据采集卡;程序设计 Simple Practical Experimental Detecting System for Harmonic Current of APF LI Zi-Cheng, REN Ming-Wei, LI Yan-Xu (School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China) Abstract: At present, the validities of many detecting methods for harmonic current of single-phase active power filter (APF) are verified by simulation but without experiments. To solve this problem, a simple practical experimental detecting system for harmonic current of APF is obtained by UA206 A/D data collecting block being joined with computer by PCI port and supply power voltage and load current being regarded as input signals. The system has the characteristics of simple configuration, nice stability, high reliability and easy programmer. Using this system, the experiment of a detecting method for harmonic current based on neural networks is done, and it validates that adopting the system can expediently verify the correctness and detecting performance of the proposed detecting method for harmonic current of APF. Keywords: active power filter (APF); harmonic current; experimental system; A/D data collecting block; programmer 1引言 APF是一种治理谐波和补偿无功的电力电子装置,而谐波电流检测是其关键技术。基于三相电路瞬时无功功率理论的三相电路谐波电流检测方法[1]是得到公认的较为成熟的方法。而对于单相电路,至今还没有一种较为成熟的方法。现在,APF单相电路谐波电流检测方法的研究已成为众多学者关注的一个热点。一般地,认为谐波电流检测属于非线性问题,是比较复杂的。因此,他们纷纷将针对非线性系统的现代控制的最新理论如人工神经网络、自适应控制等用于单相电路谐波电流检测,为此提出了许多新方法,如基于神经元的自适应法[2-4],基于补偿电流最 ①收稿时间:2010-09-02;收到修改稿时间:2010-09-23小原理的检测方法[5,6],基于电路模型和神经网络的检测方法[7]等。 这些谐波电流检测方法多采用仿真验证其有效性,而缺少实验环节[3-7]。造成这种结果的主要原因是传统的APF谐波电流检测的实验具有一定的复杂性,其复杂性主要体现在:要设计以微处理器为核心的硬件系统—包括电路板设计、电路板的生产、电路板的调试等;要设计验证检测方案的软件系统—要使用汇编语言或者高级语言(带有高级语言编译器的微处理器开发系统)编程,需要直接对硬件及接口编程,而且不同的微处理器,有不同的指令系统,因此,程序设计较为困难。这些无疑具有一定的难度。而且按照这

相关主题
文本预览
相关文档 最新文档