大学物理实验报告PN结的温度特性的研究及应用
- 格式:pdf
- 大小:580.41 KB
- 文档页数:6
PN结正向压降与温度关系的研究和应用引言:PN结是半导体器件中常见的结构之一,其正向压降与温度之间的关系对于半导体器件的设计和应用具有重要意义。
本文将对PN结正向压降与温度关系的研究和应用进行探讨。
一、PN结正向压降与温度关系的研究PN结的正向压降是指在正向偏置电压下,PN结两端电势差的大小。
正向压降与温度之间的关系直接影响到PN结的工作性能和稳定性。
因此,研究正向压降与温度关系对于PN结器件的性能优化至关重要。
1.1PN结正向压降随温度的变化规律实验研究表明,PN结的正向压降随温度的增加而减小。
这是由于温度升高,PN结内部的载流子浓度增加,导致正向压降减小。
但是,在一定范围内,正向压降与温度之间存在一个非线性的关系。
当温度升高到一定程度时,由于热激发效应和载流子迁移速度的变化,正向压降开始增大。
1.2温度对PN结的载流子浓度分布的影响温度的改变会引起PN结内的载流子浓度分布的变化,从而影响其正向压降。
一般来说,温度升高会导致载流子浓度的增加,进而减小正向压降。
这是因为升高温度可以提高载流子的能量,从而使得更多的电子和空穴从价带跃迁到导带,增加了导电性能。
1.3温度对PN结的载流子迁移率的影响温度的变化还会影响PN结内载流子的迁移率,进而改变其正向压降。
一般来说,温度的升高会导致载流子的迁移率减小,从而增加了载流子在PN结内的停留时间,减小了正向压降。
二、PN结正向压降与温度关系的应用2.1温度补偿电路由于温度变化对PN结正向压降的影响,可以利用温度补偿电路来校正正向压降的变化。
温度补偿电路的原理是利用与温度成反比的电压源在PN结上产生一个与温度变化补偿相等的电压,从而实现对正向压降的补偿,保持其稳定性。
2.2温度传感器根据PN结正向压降与温度的关系,可以设计成温度传感器。
通过测量正向压降的变化,就可以推算出所测量的温度。
这种基于正向压降的温度传感器具有结构简单、成本低廉等优点,在很多领域有广泛的应用。
实验报告
课程名称普通物理实验2 实验项目PN结温度特性与伏安特性的研究专业班级姓名学号
指导教师成绩日期2022年9月11日
图1 PN结温度传感器
实验报告内容:一实验目的二实验仪器(仪器名称、型号)三实验原理(包括文字叙述、公式和原理图)四.实验内容与步骤五、实验原始数据和数据处理六.实验结果七.分析讨论(主要分析实验的误差来源和减小误差的方法,对实验过程和实验结果的评价和对实验方法或实验装置的建议等)八.思考题
也是常数;
,
温度时的
即为灵敏度
这是非线性项可知,
的普遍规律。
此外,由公式可知,减小
就可
图2 二线制电路图
图3 三线制电路图
图5 I F−V F曲线)求玻尔兹曼常数K并计算误差
K=q
T
ln
I F
2
I F
1
(V F
1
−V F
2
)=1.393(10−23J/K)
E=Δ
X ×100%=1.393−1.38
1.38
×100%=0.93%
图6 V F −T 曲线
)计算灵敏度S 和禁带宽度E g (0) 曲线得:
=∆V F ∆T ⁄=−0.0023(V ℃⁄)=−2.3(mV ℃⁄) E g (0)=qV g (0)=1.2026eV
六、实验结果。
大学物理实验教案实验名称:PN 结正向电压温度特性的测定1 实验目的1)了解PN 结正向电压随温度变化的基本规律。
2)掌握用计算机测绘恒流条件下PN 结正向电压随温度变化的关系曲线。
3)确定PN 结的测温灵敏度。
2 实验仪器科学工作室接口、放大器、恒流源、计算机3 实验原理3.1实验原理PN 结是半导体器件的核心。
在P (或N )型半导体中,用杂质补偿的方法将其中一部分材料转变成N (或P )型,这样,在两种材料交界处就形成了PN 结,它保持了两种材料之间晶格的连续性。
P 区多子空穴比N 区少子空穴浓度大,空穴由P 区向N 区扩散,并与N 区的多子自由电子复合,在N 区产生正离子的电荷区;N 区多子自由电子比P 区少子自由电子浓度大,自由电子由N 区向P 区扩散,并与P 区的多子空穴复合,在P 区产生负离子的电荷区。
P 区和N 区的电荷区之间形成电场,在此电场作用下产生与扩散运动相反的情况,它阻止扩散运动的进一步加强。
最终形成两种运动的动态平衡。
我们把这个空间电荷区叫PN 结,有时也叫作耗尽层。
根据半导体理论,通过PN 结的正向电流e I IkT qV s f =(1) 式中:I f ——正向电流(mA );V f ——正向压降(V );I s ——反向饱和电流(mA );q电子电量(e );k ——波尔兹曼常数;T ——热力学温度(K )。
而:e T I kT V goq B A s -=(2)式(2)中:V go ——能带间隙电压(V );A 、B ——由PN 结工艺结构所决定的常数。
由(1)、(2)式经整理后,PN 结正向压降的温度灵敏度S 为:)(q kB T f go dT f d S V V V +--== (3)根据这一特性,PN 结可作为温度传感器来使用。
3.2实验方法本实验通过电加热的方法提供给PN 结一个温度可以变化的热源,利用精确的温度传感器测量温度。
把待测的PN 结放置热源中,并利用恒流源给定待测PN 结一个恒定电流,PN 结两端则接入一高稳定放大器进行电压放大后,连接到自定义电压传感器来测量电压。
半导体PN 结的物理特性及弱电流测量摘要:PN 结是构成双极型晶体管和场效应晶体管的核心,是现代电子技术的基础。
PN 结具有单向导电性,是电子技术中许多器件所利用的特性,例如半导体二极管、双极性晶体管的物质基础。
根据PN 结的材料、掺杂分布、几何结构和偏置条件的不同,利用其基本特性可以制造多种功能的晶体二极管。
PN 结温度传感器优点是灵敏度高、响应速度快、体积小、重量轻、便于集成化、智能化,能使检测转换一体化。
PN 结传感器的主要应用领域是工业自动化、遥测、工业机器人、家用电器、环境污染监测、医疗保健、医药工程和生物工程。
关键词:PN 结;电信号;检测与控制。
Abstract: PN junction is the core components of bipolar transistor and field effecttransistor and the basis of Modern electronic technology.PN junction with unidirectionalconductivity is the characteristics of many devices in the electronic technology.For example, the material base of a semiconductor diode and a bipolar transistor.According to the materials, doping distribution, PN junction geometry and bias conditions, using the basic properties can produce the crystal diode with a variety of functions.PN junction temperature sensor has the advantages of high sensitivity, fast response speed, small volume, light weight, easy integration, intelligentdetection, can make the conversion of integration.The main application field of PN junction sensor is industrial automation, remote sensing, industrial robots, household appliances, environmental monitoring, medical care, medical and biological engineering.Key words: PN junction; signal; detection and control.1 前言随着信息时代的影响越来越深入,各种控制电路已经融入了人们的生活。
天津大学物理实验报告姓名: 专业: 班级: 学号: 实验日期: 实验教室: 指导教师:【实验名称】 PN 结物理特性综合实验 【实验目的】1. 在室温时,测量PN 结电流与电压关系,证明此关系符合波耳兹曼分布规律2. 在不同温度条件下,测量玻尔兹曼常数3. 学习用运算放大器组成电流-电压变换器测量弱电流4. 测量PN 结电压与温度关系,求出该PN 结温度传感器的灵敏度5. 计算在0K 温度时,半导体硅材料的近似禁带宽度 【实验仪器】半导体PN 结的物理特性实验仪 资产编号:××××,型号:×××(必须填写) 【实验原理】1.PN 结的伏安特性及玻尔兹曼常数测量 PN 结的正向电流-电压关系满足:]1)/[ex p(0-=kT eU I I (1)当()exp /1eU kT >>时,(1)式括号内-1项完全可以忽略,于是有:0exp(/)I I eU kT = (2)也即PN 结正向电流随正向电压按指数规律变化。
若测得PN 结I U -关系值,则利用(1)式可以求出/e kT 。
在测得温度T 后,就可以得到/e k ,把电子电量e 作为已知值代入,即可求得玻尔兹曼常数k 。
实验线路如图1所示。
2、弱电流测量LF356是一个高输入阻抗集成运算放大器,用它组成电流-电压变换器(弱电流放大器),如图2所示。
其中虚线框内电阻r Z 为电流-电压变换器等效输入阻抗。
运算放大器的输入电压0U 为:00i U K U =- (3)式(3)中i U 为输入电压,0K 为运算放大器的开环电压增益,即图2中电阻f R →∞时的电压增益(f R 称反馈电阻)。
因而有:00(1)i i s f fU U U K I R R -+== (4) 由(4)式可得电流-电压变换器等效输入阻抗x Z 为001i f f x s U R R Z I K K ==≈+ (5) 由(3)式和(4)式可得电流-电压变换器输入电流s I 与输出电压0U 之间的关系式,即:图1 PN 结扩散电源与结电压关系测量线路图图2 电流-电压变换器i s fr U U I Z R ==- (6) 只要测得输出电压0U 和已知f R 值,即可求得s I 值。
PN 结正向电压温度特性研究一、实验目的(1)了解PN 结正向电压随温度变化的基本规律。
(2)在恒流供电条件下,测绘PN 结正向电压随温度变化的关系图线,并由此确定PN 结的测温灵敏度和被测PN 结材料的禁带宽度。
二、实验仪器PN 结正向特性综合实验仪、DH-SJ5温度传感器实验装置。
三、实验原理1、测量PN 结温度传感器的灵敏度 由半导体理论可知,PN 结的正向电流I F 与正向电压V F 满足以下关系:I F =I n (ⅇqV FkT−1)(1)式(1)中I n 是反向饱和电流,T 是热力学温度,q 是电子的电量。
由于在常温(例如300K )时,kT/q 约为0.026V ,而PN 结正向电压约为十分之几伏,所以ⅇ^((qV_F)/kT)≫1,故式(1)中括号内的−1项完全可以忽略,于是有: I F =I n ⅇqV F kT(2)其中,I n 是与PN 结材料禁带宽度及温度等有关的系数,满足以下关系:I n =CTγⅇqV g0kT(3)式(3)中C 为与PN 结的结面积、掺杂浓度等有关的常数,k 为玻尔兹曼常数,γ在一定温度范围内也是常数,V g0为热力学温度0K 时PN 结材料的导带底与价带顶的电势差,对于给定的PN 结,V g0是一个定值。
将式(3)代入式(2),两边取对数,整理后可得:V F =V g0−(k q ln C I F )T −kTqln T γ=V 1+V nr (4)其中V 1=V g0−(k q ln CI F)T (5) V n r =−kTqln T γ (6)根据式(4),对于给定的PN 结材料,令PN 结的正向电流I F 恒定不变,则正向电压V F 只随温度变化而变化,由于在温度变化范围不大时,V n r 远小于V 1,故对于给定的PN 结材料,在允许的温度变化范围内,在恒流供电条件下,PN 结的正向电压V F 几乎随温度升高而线性下降,即 V F =V g0−(k q ln CI F)T(7)为了便于实际使用对式(7)进行温标转换,确定正向电压增量∆V [与温度为0℃时的正向电压比较]与用摄氏温度表示的温度之间的关系。
天津大学物理实验报告姓名: 专业: 班级: 学号: 实验日期: 实验教室: 指导教师:【实验名称】 PN 结物理特性综合实验 【实验目的】1. 在室温时,测量PN 结电流与电压关系,证明此关系符合波耳兹曼分布规律2. 在不同温度条件下,测量玻尔兹曼常数3. 学习用运算放大器组成电流-电压变换器测量弱电流4. 测量PN 结电压与温度关系,求出该PN 结温度传感器的灵敏度5. 计算在0K 温度时,半导体硅材料的近似禁带宽度 【实验仪器】半导体PN 结的物理特性实验仪 资产编号:××××,型号:×××(必须填写) 【实验原理】1.PN 结的伏安特性及玻尔兹曼常数测量 PN 结的正向电流-电压关系满足:]1)/[ex p(0-=kT eU I I (1)当()exp /1eU kT >>时,(1)式括号内-1项完全可以忽略,于是有:0exp(/)I I eU kT = (2)也即PN 结正向电流随正向电压按指数规律变化。
若测得PN 结I U -关系值,则利用(1)式可以求出/e kT 。
在测得温度T 后,就可以得到/e k ,把电子电量e 作为已知值代入,即可求得玻尔兹曼常数k 。
实验线路如图1所示。
2、弱电流测量LF356是一个高输入阻抗集成运算放大器,用它组成电流-电压变换器(弱电流放大器),如图2所示。
其中虚线框内电阻r Z 为电流-电压变换器等效输入阻抗。
运算放大器的输入电压0U 为:00i U K U =- (3)式(3)中i U 为输入电压,0K 为运算放大器的开环电压增益,即图2中电阻f R →∞时的电压增益(f R 称反馈电阻)。
因而有:00(1)i i s f fU U U K I R R -+== (4) 由(4)式可得电流-电压变换器等效输入阻抗x Z 为001i f f x s U R R Z I K K ==≈+ (5) 由(3)式和(4)式可得电流-电压变换器输入电流s I 与输出电压0U 之间的关系式,即:图1 PN 结扩散电源与结电压关系测量线路图图2 电流-电压变换器i s fr U U I Z R ==- (6) 只要测得输出电压0U 和已知f R 值,即可求得s I 值。
天津大学物理实验报告姓名: 专业: 班级: 学号: 实验日期: 实验教室: 指导教师:【实验名称】 PN 结物理特性综合实验 【实验目的】1. 在室温时,测量PN 结电流与电压关系,证明此关系符合波耳兹曼分布规律2. 在不同温度条件下,测量玻尔兹曼常数3. 学习用运算放大器组成电流-电压变换器测量弱电流4. 测量PN 结电压与温度关系,求出该PN 结温度传感器的灵敏度5. 计算在0K 温度时,半导体硅材料的近似禁带宽度 【实验仪器】半导体PN 结的物理特性实验仪 资产编号:××××,型号:×××(必须填写) 【实验原理】1.PN 结的伏安特性及玻尔兹曼常数测量 PN 结的正向电流-电压关系满足:]1)/[ex p(0-=kT eU I I (1)当()exp /1eU kT >>时,(1)式括号内-1项完全可以忽略,于是有:0exp(/)I I eU kT = (2)也即PN 结正向电流随正向电压按指数规律变化。
若测得PN 结I U -关系值,则利用(1)式可以求出/e kT 。
在测得温度T 后,就可以得到/e k ,把电子电量e 作为已知值代入,即可求得玻尔兹曼常数k 。
实验线路如图1所示。
2、弱电流测量LF356是一个高输入阻抗集成运算放大器,用它组成电流-电压变换器(弱电流放大器),如图2所示。
其中虚线框内电阻r Z 为电流-电压变换器等效输入阻抗。
运算放大器的输入电压0U 为:00i U K U =- (3)式(3)中i U 为输入电压,0K 为运算放大器的开环电压增益,即图2中电阻f R →∞时的电压增益(f R 称反馈电阻)。
因而有:00(1)i i s f fU U U K I R R -+== (4) 由(4)式可得电流-电压变换器等效输入阻抗x Z 为001i f f x s U R R Z I K K ==≈+ (5) 由(3)式和(4)式可得电流-电压变换器输入电流s I 与输出电压0U 之间的关系式,即:图1 PN 结扩散电源与结电压关系测量线路图图2 电流-电压变换器i s fr U U I Z R ==- (6) 只要测得输出电压0U 和已知f R 值,即可求得s I 值。
实验题目:PN 结正向压降温度特性的研究 实验目的:1) 了解PN 结正向压降随温度变化的基本关系式。
2) 在恒流供电条件下,测绘PN 结正向压降随温度变化曲线,并由此确定其灵敏度和被测PN 结材料的禁带宽度。
3) 学习用PN 结测温的方法。
实验原理:理想PN 结的正向电流I F 和压降V F 存在如下近似关系 )exp(kTqV Is I FF = (1) 其中q 为电子电荷;k 为波尔兹曼常数;T 为绝对温度;Is 为反向饱和电流,它是一个和PN 结材料的禁带宽度以及温度等有关的系数,可以证明 ])0(ex p[kTqV CT Is g r-= (2)其中C 是与结面积、掺质浓度等有关的常数:r 也是常数;V g (0)为绝对零度时PN 结材料的导带底和价带顶的电势差。
将(2)式代入(1)式,两边取对数可得 11)0(n r Fg F V V InT q kT T I c In qkV V +=-⎪⎪⎭⎫ ⎝⎛-= (3) 其中这就是PN 结正向压降作为电流和温度函数的表达式。
令I F =常数,则正向压降只随温度而变化,但是在方程(3)中,除线性项V 1外还包含非线性项V n1项所引起的线性误差。
设温度由T 1变为T 时,正向电压由V F1变为V F ,由(3)式可得[]rn F g g F T T q kT T T V V V V ⎪⎪⎭⎫⎝⎛---=1111)0()0( (4) 按理想的线性温度影响,VF 应取如下形式: )(111T T TV V V F F F -∂∂+=理想 (5)T V F ∂∂1等于T 1温度时的TVF ∂∂值。
由(3)式可得r qk T V V T V F g F ---=∂∂111)0((6)所以()[]()r T T q kT T V V V T T r q k T V V V V F g g F g F 1111111)0()0(----=-⎥⎦⎤⎢⎣⎡---+=理想 (7)由理想线性温度响应(7)式和实际响应(4)式相比较,可得实际响应对线性的理论偏差为()r F T TLn q kT T T r q k V V )(11+--=-=∆理想 (8)设T 1=300°k ,T=310°k ,取r=*,由(8)式可得=,而相应的V F 的改变量约20mV ,相比之下误差甚小。
实验 17 半导体 PN结伏安特性和温度特性研究
实验目的:研究半导体的PN结伏安特性和温度特性。
实验原理:
1. PN结:半导体材料中的一种结构,由P型半导体和N型半导体通过P-N结相连接而成。
PN结具有整流特性,在正向偏置时具有低电阻,而反向偏置时具有高电阻。
2. 伏安特性:指PN结在不同偏置电压下的电流和电压关系。
在正向偏置时,随着偏置电压的增加,电流也增大;在反向偏置时,电流较小。
3. 温度特性:温度对半导体器件特性有一定的影响。
通常情况下,随着温度的增加,半导体器件的电阻会减小,导致电流增大。
实验步骤:
1. 搭建半导体PN结伏安特性测量电路。
将PN结连接到电源和电流表,通过改变偏置电压测量不同电流值。
2. 测量PN结在不同偏置电压下的伏安特性曲线。
从零电压开始逐渐增加偏置电压,记录电流和电压值,并绘制伏安特性曲线。
3. 测量PN结在不同温度下的伏安特性。
通过将PN结加热或冷却,改变温度,并测量电流和电压值,观察温度对伏安特性的影响。
4. 分析实验结果,并讨论PN结的伏安特性和温度特性。
实验注意事项:
1. 搭建电路时应注意电流和电压的接线正确。
2. 在测试过程中,应逐渐增加偏置电压,避免过大的电流或电压对半导体器件的损坏。
3. 测量温度时需要使用专用的温度计或热敏电阻等检测温度变化。
实验结果:
通过测量PN结在不同偏置电压和温度下的伏安特性,可以得到相关数据,并通过曲线分析和对比,得出PN结的特性和温度特性的结论。
⼤学物理实验PN结正向压降与温度特性的研究实验报告(完整)PN 结正向压降与温度特性的研究⼀、实验⽬的1.了解PN 结正向压降随温度变化的基本关系式。
2.在恒流供电条件下,测绘PN 结正向压降随温度变化曲线,并由此确定其灵敏度和被测PN 结材料的禁带宽度。
3.学习⽤PN 结测温的⽅法。
⼆、实验原理理想PN 结的正向电流I F 和压降V F 存在如下近似关系)exp(kTqV Is I FF = (1)其中q 为电⼦电荷;k 为波尔兹曼常数;T 为绝对温度;Is 为反向饱和电流,它是⼀个和PN 结材料的禁带宽度以及温度等有关的系数,可以证明])0(ex p[kTqV CT Is g r -= (2)(注:(1),(2)式推导参考刘恩科半导体物理学第六章第⼆节)其中C 是与结⾯积、掺质浓度等有关的常数:r 也是常数;V g (0)为绝对零度时PN 结材料的导带底和价带顶的电势差。
将(2)式代⼊(1)式,两边取对数可得11)0(n r F g F V V InT q kT T IcIn q k V V +=--= (3)其中()rn F g InT qKTV T Ic In q k V V -=???? ?-=11)0(这就是PN 结正向压降作为电流和温度函数的表达式,它是PN 结温度传感器的基本⽅程。
令I F =常数,则正向压降只随温度⽽变化,但是在⽅程(3)中,除线性项V 1外还包含⾮线性项V n1项所引起的线性误差。
设温度由T 1变为T 时,正向电压由V F1变为V F ,由(3)式可得[]rn F g g F T T q kT T T V V V V---=1111)0()0( (4)按理想的线性温度影响,VF 应取如下形式:)(111T T TV V V F F F -??+=理想(5) TV F ??1等于T 1温度时的T V F ??值。
由(3)式可得r qk T V V T V F g F ---=??111)0( (6)所以()[]()r T T q kT T V V V T T r q k T V V V V F g g F g F 1111111)0()0(----=----+=理想(7)由理想线性温度响应(7)式和实际响应(4)式相⽐较,可得实际响应对线性的理论偏差为()r F T T Ln q kT T T r q k V V )(11+--=-=?理想(8)设T 1=300°k ,T=310°k ,取r=3.4*,由(8)式可得?=0.048mV ,⽽相应的V F 的改变量约20mV ,相⽐之下误差甚⼩。
PN 结正向压降与温度特性的研究一、实验目的1. 了解PN 结正向压降随温度变化的基本关系式。
2. 在恒流供电条件下,测绘PN 结正向压降随温度变化曲线,并由此确定其灵敏度和被测PN 结材料的禁带宽度。
3. 学习用PN 结测温的方法。
二、实验原理理想PN 结的正向电流I F 和压降V F 存在如下近似关系)exp(kTqV Is I FF = (1) 其中q 为电子电荷;k 为波尔兹曼常数;T 为绝对温度;Is 为反向饱和电流,它是一个和PN 结材料的禁带宽度以及温度等有关的系数,可以证明])0(ex p[kTqV CT Is g r -= (2)(注:(1),(2)式推导参考 刘恩科 半导体物理学第六章第二节)其中C 是与结面积、掺质浓度等有关的常数:r 也是常数;V g (0)为绝对零度时PN 结材料的导带底和价带顶的电势差。
将(2)式代入(1)式,两边取对数可得11)0(n r F g F V V InT q kT T IcIn q k V V +=-⎪⎪⎭⎫ ⎝⎛-= (3) 其中()rn F g InT qKTV T Ic In q k V V -=⎪⎪⎭⎫ ⎝⎛-=11)0(这就是PN 结正向压降作为电流和温度函数的表达式,它是PN 结温度传感器的基本方程。
令I F =常数,则正向压降只随温度而变化,但是在方程(3)中,除线性项V 1外还包含非线性项V n1项所引起的线性误差。
设温度由T 1变为T 时,正向电压由V F1变为V F ,由(3)式可得[]rn F g g F T T q kT T T V V V V ⎪⎪⎭⎫⎝⎛---=1111)0()0( (4) 按理想的线性温度影响,VF 应取如下形式:)(111T T TV V V F F F -∂∂+=理想 (5) TV F ∂∂1等于T 1温度时的T V F ∂∂值。
由(3)式可得r qk T V V T V F g F ---=∂∂111)0( (6) 所以()[]()r T T q kT T V V V T T r q k T V V V V F g g F g F 1111111)0()0(----=-⎥⎦⎤⎢⎣⎡---+=理想(7)由理想线性温度响应(7)式和实际响应(4)式相比较,可得实际响应对线性的理论偏差为()r F T T Ln q kT T T r q k V V )(11+--=-=∆理想 (8)设T 1=300°k ,T=310°k ,取r=3.4*,由(8)式可得∆=0.048mV ,而相应的V F 的改变量约20mV ,相比之下误差甚小。
PN 结正向压降与温度关系的研究实验报告一、实验目的〔1〕了解PN 结正向压降随温度变化的根本关系,测定PN 结F F V I -特性曲线及玻尔兹曼常数;〔2〕测绘PN 结正向压降随温度变化的关系曲线,确定其灵敏度及PN 结材料的禁带宽度;〔3〕学会用PN 结测量温度的一般方法。
二、实验仪器SQ-J 型PN 结特性测试仪,三极管〔3DG6〕,测温元件,样品支架等。
三、实验原理1.PN 结F F V I -特性及玻尔兹曼常数k 的测量:由半导体物理学中有关PN 结的研究可以得出PN 结的正向电流F I 与正向电压F V 满足以下关系F I =s I 〔e*p kTeV F -1〕⑴ 式中e 为电子电荷量、k 为玻尔兹曼常数,T 为热力学温度,s I 为反向饱和电流,它是一个与PN 结材料禁带宽度及温度等因素有关的系数,是不随电压变化的常数。
由于在常温〔300K 〕下,kT/q=0.026,而PN 结的正向压降一般为零点几伏,所以e*p kTeV F ",1上式括号的第二项可以忽略不计,于是有 kT eV Is I F F exp=⑵ 这就是PN 结正向电流与正向电压按指数规律变化的关系,假设测得半导体PN 结的F F V I -关系值,则可利用上式以求出e/kT.在测得温度T 后,就可得到e/k 常数,将电子电量代入即可求得玻尔兹曼常数k 。
在实际测量中,二极管的正向F F V I -关系虽能较好满足指数关系,但求得的k 值往往偏小,这是因为二极管正向电流F I 中不仅含有扩散电流,还含有其它电流成份。
如耗尽层复合电流.、外表电流等。
在实验中,采用硅三极管来代替硅二极管,复合电流主要在基极出现,三极管接成共基极线路〔集电极与基极短接〕,集电极电流中不包含复合电流。
假设选取性能良好的硅三极管,使它处于较低的正向偏置状态,则外表电流的影响可忽略。
此时集电极电流与发射极—基极电压满足⑵式,可验证该式,求出准确的e/k 常数。
实验题目: PN 结正向压降温度特性的研究实验目的:1.了解PN 结正向压降随温度变化的基本关系式。
2.在恒流供电条件下,测绘PN 结正向压降随温度变化曲线,并由此确定其灵敏度和被测PN 结材料的禁带宽度。
3.学习用PN 结测温的方法。
实验原理:理想PN 结的正向电流S I 和压降F V 存在如下近似关系)exp(kTqV I I FS F = (1) 其中q 为电子电荷;k 为波尔兹曼常数;T 为绝对温度;S I 为反向饱和电流,它是一个和PN 结材料的禁带宽度以及温度等有关的系数,可以证明])0(ex p[kTqV CT I g r S -= (2)其中C 是与结面积、掺质浓度等有关的常数;r 也是常数;)0(g V 为绝对零度时PN 结材料的导带底和价带顶的电势差。
将(2)式代入(1)式,两边取对数可得11)0(n r F g F V V InT q kT T IcIn q k V V +=-⎪⎪⎭⎫ ⎝⎛-= (3) 其中()rn F g InT qKT V T IcIn q k V V -=⎪⎪⎭⎫ ⎝⎛-=11)0(这就是PN 结正向压降作为电流和温度函数的表达式,它是PN 结温度传感器的基本方程。
令=F I 常数,则正向压降只随温度而变化,但是在方程(3)中,除线性项1V 外还包含非线性项1n V 项所引起的线性误差。
设温度由1T 变为T 时,正向电压由1F V 变为F V ,由(3)式可得[]rF g g F T T Ln q kT T T V V V V ⎪⎪⎭⎫⎝⎛---=111)0()0( (4) 按理想的线性温度影响,F V 应取如下形式:)(111T T TV V V F F F -∂∂+=理想 (5)TV F ∂∂1等于1T 温度时的T V F ∂∂值。
由(3)式可得r qk T V V T V F g F ---=∂∂111)0( (6) 所以()[]()rT T q kT T V V V T T r q k T V V V V F g g F g F 1111111)0()0(----=-⎥⎦⎤⎢⎣⎡---+=理想(7) 由理想线性温度响应(7)式和实际响应(4)式相比较,可得实际响应对线性的理论偏差为()r F T TLn q kT T T r q k V V )(11+--=-=∆理想 (8)设K T 3001=,K T 310=,取4.3=r ,由(8)式可得mV 048.0=∆,而相应的F V 的改变量约mV 20,相比之下误差甚小。