最新2020八年级数学上册 第11章 平面直角坐标系 11.1 平面内点的坐标 第2课时 图形与坐标作业
- 格式:doc
- 大小:408.19 KB
- 文档页数:4
第十一章平面直角坐标系11.1平面内点的坐标第1课时平面直角坐标系◇教学目标◇【知识与技能】1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等的概念;2.理解坐标平面内的点与有序实数对的一一对应关系;3.能在方格纸中建立平面直角坐标系来描述点的位置.【过程与方法】1.通过画坐标系,由点找坐标等过程,发展学生的数形结合意识、合作交流意识;2.通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识.【情感、态度与价值观】让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心.◇教学重难点◇【教学重点】理解平面直角坐标系的有关知识;在给定的平面直角坐标系中,会根据点的位置写出它的坐标.【教学难点】坐标轴上的数字与坐标系中的坐标之间的关系.◇教学过程◇一、情境导入假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图(如图),回答以下问题:(1)你是怎样确定各个景点位置的?(2)“大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?(3)如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看作一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?二、合作探究1.平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分.在了解有关平面直角坐标系的知识后,再返回刚才讨论的问题.结论:如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看作一个单位长度,则“碑林”的位置是(3,1),“大成殿”的位置是(-2,-2).问题:在(3)的条件下,你能把其他景点的位置表示出来吗?结论:能,钟楼的位置是(-2,1),雁塔的位置是(0,3),影月湖的位置是(0,-5),科技大学的位置是(-5,-7).2.例题讲解典例写出图中多边形ABCDEF各顶点的坐标.此图中各顶点的坐标是否永远不变?你能举个例子吗?[解析]多边形ABCDEF各顶点的坐标分别为A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3).不是.当坐标轴的位置发生变动时,各点的坐标相应地变化.若以线段BC所在的直线为x轴,纵轴(y轴)位置不变,如图,则六个顶点的坐标分别为A(-2,3),B(0,0),C(3,0),D(4,3),E(3,6),F(0,6).再思考这个结论是否是永恒的.结论:不是.还能再改变坐标轴的位置,得出不同的坐标.继续进行坐标轴的变换,总结一下共有多少种不同的变换方式.3.想一想在上例中,(1)点B与点C的纵坐标相同,线段BC的位置有什么特点?(2)线段测定位置有什么特点?(3)坐标轴上点的坐标有什么特点?【归纳总结】(1)坐标轴上的点的坐标中至少有一个是0;横轴上的点的纵坐标为0,纵轴上的点的横坐标为0.(2)x轴、y轴把坐标平面分成四个象限,但是坐标轴上的点不属于任何一个象限.(3)各个象限内的点的坐标特征:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).变式训练如图,确定点A,B,C,D,E,F,G的坐标.[解析]点A(-1,-1),点B(0,-3),点C(2,-5),点D(4,-1),点E(3,2),点F(-2,3),点G(2,-2).三、板书设计平面直角坐标系1.平面直角坐标系:横轴、纵轴、横坐标、纵坐标、原点.2.象限的划分.◇教学反思◇学生在实际生活中经常遇到物体位置的问题,可能想不到这些问题与数学的联系,老师在这节课上应引导学生建立平面直角坐标系来表示物体的位置,让学生参与到探索获取新知的活动中,主动学习思考,感受数学的魅力,增强学生学习数学的兴趣.。
第十一章平面直角坐标系11.1平面内点的坐标第1课时平面直角坐标系◇教学目标◇【知识与技能】1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等的概念;2.理解坐标平面内的点与有序实数对的一一对应关系;3.能在方格纸中建立平面直角坐标系来描述点的位置.【过程与方法】1.通过画坐标系,由点找坐标等过程,发展学生的数形结合意识、合作交流意识;2.通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识.【情感、态度与价值观】让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心.◇教学重难点◇【教学重点】理解平面直角坐标系的有关知识;在给定的平面直角坐标系中,会根据点的位置写出它的坐标.【教学难点】坐标轴上的数字与坐标系中的坐标之间的关系.◇教学过程◇一、情境导入假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图(如图),回答以下问题:(1)你是怎样确定各个景点位置的?(2)“大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?(3)如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看作一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?二、合作探究1.平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分.在了解有关平面直角坐标系的知识后,再返回刚才讨论的问题.结论:如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看作一个单位长度,则“碑林”的位置是(3,1),“大成殿”的位置是(-2,-2).问题:在(3)的条件下,你能把其他景点的位置表示出来吗?结论:能,钟楼的位置是(-2,1),雁塔的位置是(0,3),影月湖的位置是(0,-5),科技大学的位置是(-5,-7).2.例题讲解典例写出图中多边形ABCDEF各顶点的坐标.此图中各顶点的坐标是否永远不变?你能举个例子吗?[解析]多边形ABCDEF各顶点的坐标分别为A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3).不是.当坐标轴的位置发生变动时,各点的坐标相应地变化.若以线段BC所在的直线为x轴,纵轴(y轴)位置不变,如图,则六个顶点的坐标分别为A(-2,3),B(0,0),C(3,0),D(4,3),E(3,6),F(0,6).再思考这个结论是否是永恒的.结论:不是.还能再改变坐标轴的位置,得出不同的坐标.继续进行坐标轴的变换,总结一下共有多少种不同的变换方式.3.想一想在上例中,(1)点B与点C的纵坐标相同,线段BC的位置有什么特点?(2)线段测定位置有什么特点?(3)坐标轴上点的坐标有什么特点?【归纳总结】(1)坐标轴上的点的坐标中至少有一个是0;横轴上的点的纵坐标为0,纵轴上的点的横坐标为0.(2)x轴、y轴把坐标平面分成四个象限,但是坐标轴上的点不属于任何一个象限.(3)各个象限内的点的坐标特征:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).变式训练如图,确定点A,B,C,D,E,F,G的坐标.[解析]点A(-1,-1),点B(0,-3),点C(2,-5),点D(4,-1),点E(3,2),点F(-2,3),点G(2,-2).三、板书设计平面直角坐标系1.平面直角坐标系:横轴、纵轴、横坐标、纵坐标、原点.2.象限的划分.◇教学反思◇学生在实际生活中经常遇到物体位置的问题,可能想不到这些问题与数学的联系,老师在这节课上应引导学生建立平面直角坐标系来表示物体的位置,让学生参与到探索获取新知的活动中,主动学习思考,感受数学的魅力,增强学生学习数学的兴趣.。
第2课时图形与坐标
知识要点基础练
知识点1通过找点、连线、观察,确定图形的大致形状
1.经过两点A(2,3),B(-4,3)作直线AB,则直线AB(A)
A.平行于x轴
B.平行于y轴
C.经过原点
D.无法确定
2.在平面直角坐标系内顺次连接下列各点,不能得到正方形的是(C)
A.(-2,2),(2,2),(2,-2),(-2,-2),(-2,2)
B.(0,0),(2,0),(2,2),(0,2),(0,0)
C.(0,0),(0,2),(2,-2),(-2,0),(0,0)
D.(-1,-1),(-1,1),(1,1),(1,-1),(-1,-1)
知识点2坐标系中图形的面积问题
3.如图,在平面直角坐标系中,平行四边形ABCD的顶点A,B,C,D的坐标分别是
(0,0),(5,0),(7,4),(2,4),则这个四边形的面积为(D)
A.6
B.8
C.12
D.20
4.如图,在平面直角坐标系中,A(2,3),B(4,0),则三角形AOB的面积为6.
知识点3根据实际情况建立适当的坐标系求解问题
5.如图,在方格纸上有A,B两点,若以点B为原点建立平面直角坐标系,则点A的坐标为(4,3);若以点A为原点建立平面直角坐标系,则点B的坐标为(A)
A.(-4,-3)
B.(-4,3)
C.(4,-3)
D.(4,3)
6.如图,正方形ABCD的边长为6.
(1)如果以点A为原点,AB所在的直线为x轴,建立平面直角坐标系,那么y轴是哪条线?
(2)写出正方形的顶点A,B,C,D的坐标.
(3)请另建立一个平面直角坐标系,并写出此时正方形的顶点A,B,C,D的坐标.
解:(1)AD所在直线.
(2)A(0,0),B(6,0),C(6,6),D(0,6).
(3)略.
综合能力提升练
7.如图,在平面直角坐标系中,点A,B,C的坐标分别为A(2,3),B(5,0),C(4,1),则三角形AOC 的面积为(A)
A.5
B.10
C.15
D.75
8.在网格图中有一个面积为10的三角形ABC,三角形ABC的三个顶点均在网格的格点上,墨墨在网格图中建立了适当的平面直角坐标系,并知道点A的坐标为(2,3),点B的坐标为(-3,-2),后来墨墨不小心在该图洒上了墨水,如图所示,点C的坐标看不清了,但他记得线段AC与y轴平行,则点C的坐标为(C)
A.(2,1)
B.(1,2)
C.(2,-1)
D.(-1,2)
【变式拓展】已知点A(0,4),B点在x轴上,AB与坐标轴围成的三角形面积为2,则B点坐标是(1,0)或(-1,0).
9.若线段AB平行于x轴,AB长为5,且点A的坐标为(4,5),则点B的坐标为(-1,5)或(9,5).
10.(1)如图,若以火车站为坐标原点,建立平面直角坐标系,超市的坐标为(2,-3),则市场的坐标为(4,3),文化宫的坐标为(-3,1);
(2)如图,若已知医院的坐标为(1,-1),宾馆的坐标为(5,3),请根据题目条件画出适合的平面直角坐标系,并直接写出体育馆的坐标(-1,4).
解:(2)图略.
11.在平面直角坐标系中描出下列各点,并将各点用线段依次连接起来.
A(-2,-1),B(2,-1),C(2,2),D(3,2),E(0,3),F(-3,2),G(-2,2),A(-2,-1).根据图形回答下列问题:
(1)观察所得图形,你觉得像什么?
(2)线段FD和x轴有什么位置关系?点F和点D的坐标有什么特点?
解:(1)如图所示,图形像一个房子的图案.
(2)线段FD平行于x轴,点F和点D的纵坐标相同,横坐标互为相反数.
12.已知点A(0,1),B(2,0),C(4,3).
(1)在坐标系中描出各点,画出△ABC;
(2)求△ABC的面积;
(3)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.
解:(1)如图所示.
(2)过点C向x,y轴作垂线,垂足为D,E.
所以△ABC的面积=四边形DOEC的面积-△ACE的面积-△BCD的面积-△AOB的面积
=12-4-3-1=4.
(3)当点P在x轴上时,△ABP的面积=AO·BP=4,即×1×BP=4,解得BP=8,
所以点P的坐标为(10,0)或(-6,0).
当点P在y轴上时,△ABP的面积=×BO×AP=4,即×2×AP=4,解得AP=4.
所以点P的坐标为(0,5)或(0,-3).
综上,点P的坐标为(0,5)或(0,-3)或(10,0)或(-6,0).
拓展探究突破练
13.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(-3,1),C(2,-2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20.根据所给定义解决下列问题:
(1)若已知点D(1,2),E(-2,1),F(0,6),则这3点的“矩面积”=15;
(2)若D(1,2),E(-2,1),F(0,t)三点的“矩面积”为18,求点F的坐标.
解:(2)由题意可得,“水平底”a=1-(-2)=3,
当t>2时,h=t-1,
则3(t-1)=18,解得t=7,
故点F的坐标为(0,7).
当1≤t≤2时,h=2-1=1≠6,
故此种情况不符合题意.
当t<1时,h=2-t,
则3(2-t)=18,解得t=-4,
故点F的坐标为(0,-4).
综上,点F的坐标为(0,7)或(0,-4).。